
 

439 | P a g e  

 

ON GENERALIZED τ–DERIVATIONS  

OF PRIME RINGS 

Deepak Kumar
1
, Gurninder S. Sandhu

2 

1,2
Department of Mathematics, Punjabi University Patiala, Punjab, (India) 

 

ABSTRACT 

Let R be a prime ring and σ, τ be endomorphisms of R. In the present paper we study the commutativity of prime 

ring R admitting a generalized (σ, τ) - derivation F satisfying one of the following  properties: (i) F(xy) - 

d(x)d(y) = 0, (ii) F(xy) + d(x)d(y) = 0, (iii) F[x, y] - [x, y] ϵ Z(R), (iv) F[x, y] + [x, y] ϵ Z(R), (v) F(x o y) – x o y 

ϵ Z(R) and (vi) F(x o y) + x o y ϵ Z(R), for all x, y in some appropriate subset of R . 
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I. INTRODUCTION 

 

Throughout the paper R will denote an associative ring with centre Z(R). A ring R is said to be prime ( resp. 

semiprime) if aRb = (0) implies that either a = 0 or b = 0 ( resp. aRa = (0) implies that a = 0). For any x, y ϵ R 

we shall write [x, y] = xy - yx and x o y = xy + yx. An additive mapping d : R → R is called a derivation if d(xy) 

= d(x)y + xd(y) for all x, y ϵ R. In 1991, Bresar [6] introduced the notion of generalized derivation. An additive 

mapping F : R → R is called a generalized derivation on R if there exists a derivation d : R → R such that F(xy) 

= F(x)y + xd(y) for all x, y ϵ R. Let (σ, τ) be endomorphisms of R. An additive mapping d : R → R is called a 

(σ, τ)-derivation if d(xy) = d(x) (y) + (x)d(y) for all x, y ϵ R. An additive mapping F : R → R is called a 

generalized (σ, τ) - derivation on R if there exists a (σ, τ) - derivation d : R → R such that F(xy) = F(x)σ(y) + 

τ(x)d(y) for all x, y ϵ R. We shall call a generalized (σ, I) - derivation as a generalized σ-derivation where I is 

the identity automorphism of R. Similarly a generalized (I, τ)-derivation as a generalized τ-derivation. 

There has been considerable interest in commuting and centralizing maps in prime and semiprime rings (see for 

examples Bell and Martindale [5], Bell H. E. [4] and Brear [7] where further references can be found). Daif and 

Bell [8] proved that if a semiprime ring R admits a derivation d such that either d([x, y]) + [x, y] = 0 or d([x, y]) 

- [x, y] = 0, holds for all x, y in a nonzero ideal I of R, then R is necessarily commutative. Hongan [9] 

generalized the above result considering R satisfying the conditions d([x, y]) + [x, y] ϵ Z(R) and d([x, y]) - [x, y] 

ϵ Z(R), for all x, y ϵ I. Being inspired by the result Ashraf et. al. [1] have studied the situation with derivation 

replaced by generalized derivation. Later Ali et. al. [2] explored the commutativity of a prime ring admitting a 

generalized derivation. Motivated by the above observations, we explore the commutativity of a prime ring 

admitting a generalized τ-derivation F satisfying any one of the following conditions: 

(i) F([x, y]) - [x, y] ϵ Z(R)  

(ii) F([x, y]) + [x, y] ϵ Z(R)  
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(iii) F(x o y) - (x y) ϵ Z(R) and  

(iv) F(x o y) + (x o y) ϵ Z(R), for all x, y in some appropriate subsets of R. 

Throughout the paper, we make some extensive use of the basic commutator and anti-commutators idetities 

[x, yz] = y[x, z] + [x, y]z, [xy, z] = [x, z]y + x[y, z] ,(x o yz) = y(x o z) + [x, y]z = (x o y)z - y[x, z] and (xy o z) 

= (x o z)y + x[y, z] = x(y o z) - [x, z]y. 

 

II. MAIN RESULTS 

 

We begin with the following known result which will be used frequently to prove our theorems. 

Lemma 2.1 ([10]). If a prime ring R contains a nonzero commutative right ideal I, then R is commutative. 

Theorem 2.1 Let R is a prime ring and I a nonzero ideal of R. Suppose that τ is an automorphism of R. If R 

admits a generalized τ-derivation F associated with a nonzero τ-derivation d, such that F(xy) = d(x)d(y), for all 

x, y ϵ I, then R is commutative. 

Proof: By assumption, we have 

                                              F(xy) = F(x)y + τ(x)d(y) = d(x)d(y), for all x, y ϵ I.                                             (2.1) 

Replacing y by y
2
 in (2.1), we obtain 

F(x)y
2 
+ τ(x)d(y)y + τ(x)τ(y)d(y) = d(x)d(y)y + d(x)τ(y)d(y), for all x, y ϵ I. 

Using (2.1), the relation reduces to 

                                             τ(x)τ(y)d(y) = d(x)τ(y)d(y), for all x, y ϵ I.                                                           (2.2) 

Replacing x by zx in (2.2) and using (2.2), we have 

                                             d(z)τ(x)τ(y)d(y) = 0, for all x, y, z ϵ I.                                                                   (2.3) 

  

Replace x by xr in (2.3) to get d(z)τ(x)τ(r)τ(y)d(y) = 0, for all x, y, z ϵ I and r ϵ R i.e. d(z)τ(x)Rτ(y)d(y) = (0), for 

all x, y, z ϵ I. The primeness of R yields that d(z)τ(x) = 0 or τ(y)d(y) = 0, for all x, y, z ϵ I. If d(z)τ(x) = 0, for all 

x, z ϵ I, then d(z)Rτ(x) = (0), for all z ϵ I. Since I is a nonzero ideal of R and primeness of R yields that d(z) = 0, 

for all z ϵ I. This implies that d(zr) = τ (z)d(r) = 0, for all z ϵ I and r ϵ R i.e. τ(z)Rd(r) = (0). Again I is a nonzero 

ideal of R and primeness of R yields that d(r) = 0, for all r ϵ R, which is a contradiction. On the other hand if 

τ(y)d(y) = 0, for all y ϵ I, then linearization gives 

τ(x)d(y) + τ(y)d(x) = 0, for all x, y ϵ I                                                                    (2.4)                                                                 
 

     

Replace y by zy to get     

τ(x)d(z)y + τ(x)τ(z)d(y) + τ(z)τ(y)d(x) = 0, for all x, y ϵ I.                                    (2.5)    

Comparing (2.4) and (2.5), we get  

τ(x)d(z)y + τ(x)τ(z)d(y) - τ(z)τ(x)d(y) = 0, for all x, y, z ϵ I.                           (2.6)  

Replace y by yr, we obtain 

τ(x)d(z)yr + [τ(x), τ(z)]d(y)r + [τ(x), τ(z)]τ(y)d(r) = 0, for all x, y, z ϵ I, r ϵ R.    (2.7)                                                                                                               

Application of (2.6) in (2.7) yields that [τ(x), τ(z)]τ(y)d(r) = 0, for all x, y, z ϵ I and r ϵ R. Now replace y by ys to 

get [τ(x), τ(z)]τ(y)τ(s)d(r) = 0, for all x, y, z ϵ I and r, s ϵ R i.e. [τ(x), τ(z)]τ(y)Rd(r) = (0), for all x, y, z ϵ I and r ϵ 

R. Thus primeness of R implies that either [τ(x), τ(z)]τ(y) = 0 or d(r) = 0, for all x, y, z ϵ I and r ϵ R. Hence, [x, 
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z]y = 0 implies [x, z] = 0, for all x, z ϵ I. Since I is a nonzero ideal of a prime ring R, then R is commutative by 

Lemma 2.1. 

Theorem 2.2 Let R be a prime ring and I be a nonzero ideal of R. Suppose that τ is an automorphism of R. If R 

admits a generalized τ-derivation F with associated nonzero τ-derivation d such that F(xy) + d(x)d(y) = 0, for all 

x, y ϵ I, then R is commutative. 

Proof: If R satisfies the assumption F(xy) + d(x)d(y) = 0, for all x, y ϵ I, then generalized derivation (-F) also 

satisfies (-F)(xy) - d(x)d(y) = 0, for all x, y ϵ I and hence proof follows from Theorem 2.1. 

Theorem 2.3 Let R be a prime ring and I be a nonzero right ideal of R. Suppose that τ is an automorphism of R 

and R admits a generalized τ-derivation F with associated nonzero τ-derivation d such that d(Z(R)) ≠ (0). If F([x, 

y]) - [x, y] ϵ Z(R) for all x, y ϵ I, then R is commutative. 

Proof: Since d(Z(R)) ≠ (0), there exists c ϵ Z(R) such that d(c) ≠ 0. Thus d(c) ϵ Z(R). By assumption, we have 

F([x, y]) - [x, y] ϵ Z(R), for all x, y ϵ I.                                                            (2.8) 

Replacing y by yc in (2.8), we have 

(F([x, y]) – [x, y])c + [τ(x), τ(y)]d(c) ϵ Z(R), for all x, y ϵ I.                            (2.9) 

This implies that [[τ(x), τ(y)]d(c), r] = 0, for all x, y ϵ I and r ϵ R. That is, [[τ (x), τ(y)], r]d(c) = 0, for all x, y ϵ I 

and r ϵ R. Since R is prime and d(c) ≠ 0, we find that [[τ(x), τ(y)], r] = 0, for all x, y ϵ I and r ϵ R. Replacing y by 

yx, we have 

[τ(x), τ(y)][τ(x), r] + [[τ(x), τ(y)], r]τ(x) = 0, for all x, y ϵ I, r ϵ R                   (2.10) 

In view of the fact that [[τ(x), τ(y)], r] = 0, relation (2.10) yields that [τ(x), τ(y)][ τ(x), r] = 0, for all x, y ϵ I and r 

ϵ R. Replace r by ry to obtain [τ(x), τ(y)]r[τ(x), τ(y)] = 0, for all x, y ϵ I and r ϵ R, that is, [τ(x), τ(y)]R[τ(x), τ(y)] 

= 0, for all x, y ϵ I. The primeness of R yields that [τ(x), τ(y)] = 0, for all x, y ϵ I. Which implies that [x, y] = 0, 

for all x, y ϵ I. So I is a commutative right ideal. Hence application of Lemma 2.1 completes the proof of the 

theorem.  

Theorem 2.4 Let R be a prime ring and I be a nonzero right ideal of R. Suppose that τ is an automorphism of R 

and R admits a generalized τ-derivation F with associated nonzero τ-derivation d such that d(Z(R)) ≠ (0). If F([x, 

y]) + [x, y] ϵ Z(R), for all x, y ϵ I, then R is commutative. 

Proof: If R satisfies the assumption F([x, y]) + [x, y] ϵ Z(R), for all x, y ϵ I, then generalized τ-derivation (-F) 

also satisfies (-F)([x, y]) - [x, y] ϵ Z(R), for all x, y ϵ I and hence proof follows from Theorem 2.3. 

Theorem 2.5 Let R is a prime ring and I a nonzero right ideal of R. Suppose that τ is an automorphism of R and 

R admits a generalized τ-derivation F with associated nonzero τ-derivation d such that d(Z(R)) ≠ (0). If F(x o y) 

- (x o y) ϵ Z(R), for all x, y ϵ I, then R is commutative. 

Proof: By assumption, we have 

F(x o y) - (x o y) ϵ Z(R), for all x, y ϵ I                                                               (2.11) 
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Since d(Z(R)) ≠ (0), there exists c ϵ Z(R) such that d(c) ≠ 0 and d(c) ϵ Z(R). Replacing y by yc in (2.11), we 

have 

(F(x o y) – x o y)c + (τ(x) o τ(y))d(c) ϵ Z(R), for all x, y ϵ I.                              (2.12) 

        That is, (τ(x) o τ(y))d(c) ϵ Z(R), for all x, y ϵ I. Since d(c) ≠ 0 and R is prime, it follows that (τ(x) o τ(y)) ϵ 

Z(R), for all x, y ϵ I. Thus [(τ(x) o τ(y)), r] = 0, for all x, y ϵ I. Substitute yx for y, we obtain (τ(x) o τ(y))[τ(x), r] 

= 0, for all x, y ϵ I and r ϵ R. Replacing r by sr, we find that (τ(x) o τ(y))R[τ(x), r] = (0), for all x, y ϵ I and r ϵ R. 

Now primeness of R, for each x ϵ I gives either (τ(x) o τ(y)) = 0 or [r, τ(x)] = 0, for all y ϵ I and r ϵ R. Let I1 = {x 

ϵ I : τ(x) o τ(y) = 0, for all y ϵ I} and I2 = { x ϵ I : [r, τ(x)] = 0, for all r ϵ R}. Then I1 and I2 are both additive 

subgroups of I whose union is I. Hence either I1 = I or I2 = I. If I1 = I, then (x o y) = 0 for all x, y ϵ I. Now 

replace y by yz, to get (x o yz) = (x o y)z – y[x, z] = 0, which gives y[x, z] = 0, for all x, y, z ϵ I. Thus yR[x, z] = 

0, for all x, y, z ϵ I. Since I is a non zero right ideal of R, primeness of R yields that [x, z] = 0, for all x, z ϵ I. 

Thus I is commutative and the application of Lemma 2.1 gives that R is commutative.  On the other hand if I2 = 

I, then [r, τ(x)] = 0, for all r ϵ R and x ϵ I. Substitute xs for x, we get τ(x)[r, τ(s)] = 0, for all x ϵ I and r, s ϵ R. 

Since I is a non zero right ideal of R, [r, τ(s)] = 0, for all r, s ϵ R. Hence in both the case R is commutative. 

Using the same techniques with necessary variations, we get the following: 

Theorem 2.6 Let R be a prime ring and I be a nonzero right ideal of R. Suppose that R admits a generalized τ-

derivation F associated with nonzero τ-derivation d such that d(Z(R)) ≠ (0). If F(x o y) + (x o y) ϵ Z(R), for all x, 

y ϵ I, then R is commutative.  

The following example demonstrates that the above results do not hold for arbitrary rings. 
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