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ABSTRACT 

Placing the data in the cloud should come with the guarantee of security, confidentiality and availability of the 

data at all the time. several alternatives exist for the storage services, while data confidentiality solutions for the 

database as a service model are still have scope to work. In the paper, the architecture represents cloud 

database services with the data confidentiality and also possibility of executing the concurrent and independent 

operations on encrypted dataand .This is the solution which supports geographically distributed users to 

directly connect to cloud database and to execute independent operations and also provide a supervisor on N 

Number of clients. The proposed architecture has the further advantage of eliminating any intermediate server 

between the cloud client and the cloud provider. 
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I. INTRODUCTION 

 

In a cloud context, where critical information is placed in  infrastructures of untrusted third parties, ensuring 

data confidentiality is of paramount importance. This requirement imposes clear data management choices: 

original plain data must be accessible only by trusted parties that do not include cloud providers, intermediaries, 

and Internet; in any untrusted context, data must be encrypted. Satisfying these goals has different levels of 

complexity depending on the type of cloud service. There are several solutions ensuring confidentiality for the 

storage as a service paradigm, while guaranteeing confidentiality in the database as a service (DBaaS) paradigm 

is still an open research area. In this context, we propose SecureDBaaS as the first solution that allows cloud 

tenants to take full advantage of DBaaS qualities, such as availability, reliability, and elastic scalability, without 

exposing unencrypted data to the cloud provider. 

The architecture design was motivated by a threefold goal: to allow multiple, independent, and 

geographicallydistributed clients to execute concurrent operations on encrypted data, including SQL statements 

that modify thedatabase structure; to preserve data confidentiality and consistency at the client and cloud level; 

to eliminate any intermediate server between the cloud client and the cloud provider. The possibility of 

combining availability, elasticity,and scalability of a typical cloud DBaaS with data confidentiality is 

demonstrated through a prototype of Secure DBaaS that supports the execution of concurrent and independent 
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operations to the remote encrypted database from many geographically distributed clients as in any unencrypted 

DBaaS setup. To achieve these goals, SecureDBaaS integrates existing cryptographic schemes, isolation 

mechanisms, and novel strategies for management of encrypted metadata on the untrusted cloud database. This 

paper contains a theoretical discussion about solutions for data consistency issues due to concurrent and 

independent client accesses to encrypted data. In this context, we cannot apply fully homomorphic encryption 

schemes because of their excessive computational complexity. The SecureDBaaS architecture is tailored to 

cloudplatforms and does not introduce any intermediary proxy or broker server between the client and the 

cloudprovider. Eliminating any trusted intermediate server allows SecureDBaaS to achieve the same 

availability,reliability, and elasticity levels of a cloud DBaaS. Other proposals based on intermediateserver(s) 

were considered impracticable for a cloud-based solution because any proxy represents a single point offailure 

and a system bottleneck that limits the main benefits (e.g., scalability, availability, and elasticity) of adatabase 

service deployed on a cloud platform. Unlike SecureDBaaS, architectures relying on a trusted intermediateproxy 

do not support the most typical cloud scenario where geographically dispersed clients can concurrentlyissue 

read/write operations and data structure modifications to a cloud database.  

 

II. LITERATURE SURVEY 

 

This survey  intends an architecture that is different from previous work in the field of secure cloud database 

services. SecureDBaaS (Secure database as a service) architecturesupportsmultiple clients and clients which are 

geographicallydistributed to execute the independent and concurrentoperation on encrypted data in the remote 

database.  

There are different approaches which guarantees confidentiality [6], [7] by distributing data among different 

providers and by taking advantage of secret sharing [8]. In such a way, they prevent one cloud provider to read 

its portion of data, but information can be reconstructed by colluding cloud providers. 

A step forward is proposed in [9], that makes it possible to execute range queries on data and to be robust 

against collusive providers. SecureDBaaS differs from these solutions as it Secure DBaaSdiffers from these 

solutions as it does not require the use ofmultiple cloud providers, and makes use of SQL-awareencryption 

algorithms to support the execution of mostcommon SQL operations on encrypted data. 

Some DBMS engines offer the possibility of encryptingdata at the filesystem level through the so-called 

TransparentData Encryption feature [10], [11]. This feature makes itpossible to build a trusted DBMS over 

untrusted storage.However, the DBMS is trusted and decrypts data beforetheir use. Hence, this approach is not 

applicable to theDBaaS context considered by SecureDBaas, because weassume that the cloud provider is 

untrusted. 

Other solutions, such as [12], allow the execution ofoperations over encrypted data. These approaches 

preservedata confidentiality in scenarios where the DBMS is nottrusted; however, they require a modified 

DBMS engineand are not compatible with DBMS software (bothcommercial and open source) used by cloud 

providers.On the other hand, SecureDBaaS is compatible withstandard DBMS engines, and allows tenants to 

build securecloud databases by leveraging cloud DBaaS services already available.  
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For this reason, SecureDBaaS is more related to[3] and [2] that preserve data confidentiality in untrustedDBMSs 

through encryption techniques, allow the executionof SQL operations over encrypted data, and are 

compatiblewith common DBMS engines. However, the architecture ofthese solutions is based on an 

intermediate and trustedproxy that mediates any interaction between each client andthe untrusted DBMS server.  

The approach proposed in [3]by the authors of the DBaaS model [1] works by encryptingblocks of data instead 

of each data item. Whenever a dataitem that belongs to a block is required, the trusted proxyneeds to retrieve the 

whole block, to decrypt it, and to filterout unnecessary data that belong to the same block. As aconsequence, this 

design choice requires heavy modificationsof the original SQL operations produced by eachclient, thus causing 

significant overheads on both the DBMSserver and the trusted proxy. 

Other works [4], [5]introduce optimization and generalization that extend thesubset of SQL operators supported 

by [3], but they share thesame proxy-based architecture and its intrinsic issues. Onthe other hand, SecureDBaaS 

allows the execution ofoperations over encrypted data through SQL-aware encryptionalgorithms. This 

technique, initially proposed inCryptDB [2], makes it possible to execute operations overencrypted data that are 

similar to operations over plaintextdata. In many cases, the query plan executed by the DBMSfor encrypted and 

plaintext data is the same. 

The reliance on a trusted proxy that characterize [3] and[2] facilitates the implementation of a secure DBaaS, 

and isapplicable to multitier web applications, which are theirmain focus. However, it causes several drawbacks. 

Sincethe proxy is trusted, its functions cannot be outsourced toan untrusted cloud provider. Hence, the proxy is 

meant tobe implemented and managed by the cloud tenant.Availability, scalability, and elasticity of the whole 

secureDBaaS service are then bounded by availability, scalability,and elasticity of the trusted proxy that 

becomes a singlepoint of failure and a system bottleneck. Since highavailability, scalability, and elasticity are 

among theforemost reasons that lead to the adoption of cloudservices, this limitation hinders the applicability of 

[3]and [2] to the cloud database scenario. SecureDBaaS solvesthis problem by letting clients connect directly to 

the cloudDBaaS, without the need of any intermediate componentand without introducing new bottlenecks and 

singlepoints of failure.A proxy-based architecture requiring that any clientoperation should pass through one 

intermediate server isnot suitable to cloud-based scenarios, in which multipleclients, typically distributed among 

different locations, needconcurrent access to data stored in the same DBMS. On theother hand, SecureDBaaS 

supports distributed clientsissuing independent and concurrent SQL operations to thesame database and possibly 

to the same data.  

SecureDBaaSextends our preliminary studies [13] showing that dataconsistency can be guaranteed for some 

operations byleveraging concurrency isolation mechanisms implementedin DBMS engines, and identifying the 

minimum isolationlevel required for those statements. 

Moreover, we nowconsider theoretically and experimentally a complete set ofSQL operations represented by the 

TPC-C standard benchmark[14], in addition to multiple clients and differentclient-cloud network latencies that 

were never evaluated inthe literature. 
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III. METHODOGOLY 

3.1 Architecture Design 

 

Figure 1: SecureDBaaS architecture. 

SecureDBaaS is designed to allow multiple and independentclients to connect directly to the untrusted 

cloudDBaaS without any intermediate server. Figure 1 describes theoverall architecture. We assume that a 

tenant organizationacquires a cloud database service from an untrusted DBaaSprovider. The tenant then deploys 

one or more machines(Client 1 through N) and installs a SecureDBaaS client oneach of them. This client allows 

a user to connect to thecloud DBaaS to administer it, to read and write data, andeven to create and modify the 

database tables after creation. 

SecureDBaaS proposes a different approach where alldata and metadata are stored in the cloud 

database.SecureDBaaS clients can retrieve the necessary metadatafrom the untrusted database through SQL 

statements, sothat multiple instances of the SecureDBaaS client can accessto the untrusted cloud database 

independently with theguarantee of the same availability and scalability propertiesof typical cloud DBaaS. 

Encryption strategies for tenantdata and innovative solutions for metadata managementand storage are described 

in the following two sections. 

 

3.2 Data Management 

We assume that tenant data are saved in a relationaldatabase. We have to preserve the confidentiality of 

thestored data and even of the database structure because tableand column names may yield information about 

saved data.We distinguish the strategies for encrypting the databasestructures and the tenant data. 

The data type represents the type of the plaintext data(e.g., int, varchar). The encryption type identifies 

theencryption algorithm that is used to cipher all the data of 

a column. It is chosen among the algorithms supported bythe SecureDBaaS implementation. As in [8], 

SecureDBaaSleverages several SQL-aware encryption algorithms thatallow the execution of statements over 

encrypted data. It isimportant to observe that each algorithm supports only asubset of SQL operators.When 

SecureDBaaS creates an encrypted table, the data typeof each column of the encrypted table is determined by 
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theencryption algorithm used to encode tenant data. Twoencryption algorithms are defined compatible if they 

produceencrypted data that require the same column data type. 

The field confidentiality parameter allows a tenant todefine explicitly which columns of which secure 

tableshould share the same encryption key (if any). SecureDBaaSoffers three field confidentiality attributes: 

 Column (COL) is the default confidentiality level that should be used when SQL statements operate on one 

column; the values of this column are encrypted through a randomly generated encryption key that is not 

used by any other column.  

 Multicolumn (MCOL) should be used for columns referenced by join operators, foreign keys, and other 

operations involving two columns; the two columns are encrypted through the same key. 

 Database (DBC) is recommended when operations involve multiple columns; in this instance, it is 

convenient to use the special encryption key that is generated and implicitly shared among all the columns 

of the database characterized by the same secure type.  

 

3.3 Metadata Management 

Metadata generated by SecureDBaaS contain all theinformation that is necessary to manage SQL statementsover 

the encrypted database in a way transparent to theuser. Metadata management strategies represent an 

originalidea because SecureDBaaS is the first architecture storing allmetadata in the untrusted cloud database 

together with theencrypted tenant data. SecureDBaaS uses two types ofmetadata. 

 Database metadata are related to the whole database. There is only one instance of this metadata type for 

each database. 

 Table metadata are associated with one secure table. Each table metadata contains all information that is 

necessary to encrypt and decrypt data of the associated secure table. 

Database metadata contain the encryption keys that areused for the secure types having the field confidentiality 

setto database..The structure of a table metadata is represented in Figure 2.Table metadata contain the name of 

the related secure tableand the unencrypted name of the related plaintext table. 

 

 

 

 

 

 

 

 

 

Figure 2 :  Structure of table metadata 
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Moreover, table metadata include column metadata for eachcolumn of the related secure table. Each column 

metadatacontain the following information. 

 Plain name: the name of the corresponding column of the plaintext table. 

 Coded name: the name of the column of the secure table. This is the only information that links a column to 

the corresponding plaintext column because column names of secure tables are randomly generated. 

 Secure type: the secure type of the column, as defined in Section 3.1. This allows a SecureDBaaS client to 

be informed about the data type and the encryption policies associated with a column.  

 Encryption key: the key used to encrypt and decrypt all the data stored in the column. 

This isan original choice that augments flexibility, but opens twonovel issues in terms of efficient data retrieval 

and dataconfidentiality. To allow SecureDBaaS clients to manipulate metadata through SQL statements, we 

save database andtable metadata in a tabular form. Even metadata confidentialityis guaranteed through 

encryption. The structure of themetadata storage table is shown in Figure 3. This table usesone row for the 

database metadata, and one row for eachtable metadata. 

Metadata Storage Table 

ID Encrypted Metadata Control Structure 

MAC(„.‟ + Db) Enc(Db metadata) MAC(Db metadata) 

MAC(T1) Enc(T1 metadata) MAC(T1 metadata) 

MAC(T2) Enc(T2 metadata) MAC(T2 metadata) 

   

Figure 3.Organization of database metadata and table metadata in the metadata storage table. 

This mechanism has the further benefit of allowingclients to access each metadata independently, which is 

animportant feature in concurrent environments. In addition, 

SecureDBaaS clients can use caching policies to reduce thebandwidth overhead. 

 

IV. CONCLUSION 

 

The survey describes an architecture that guarantees confidentiality of data stored in public cloud 

databases.Unlike state-of-the-art approaches, our solution does not rely on an intermediate proxy that we 

consider a single point of failure and a bottleneck limiting availability and scalability of typical cloud database 

services. A large part of the research includes solutions to support concurrent SQL operations (including 

statements modifying the database structure) on encrypted data issued by heterogeneous and possibly 

geographically dispersed clients. The architecture does not require modifications to the cloud database, and it is 

immediately applicable to existing cloud DBaaS, There are no theoretical and practical limits to extend our 

solution to other platforms and to include new encryption algorithms. In particular, concurrent read and write 

operations that do not modify the structure of the encrypted database cause negligible overhead.Dynamic 

scenarios characterized by (possibly) concurrent modifications of the database structure are supported, but at the 
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price of high computational costs. These performance results open the space to future improvements that we are 

investigating. 
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