

47 | P a g e

A SURVEY ONPROVIDING DATA

CONFIDENTIALITY AND SECURE ACCESS TO

UNTRUSTED CLOUD DB

Minaj Mulla
1, Nusrat Inamdar

2
1
Assistant Professor,

2
Student, Dept. of Computer Science Engineering,

S.I.E.T College of Engineering and Technology, Vijaypur, Karnataka, (India)

ABSTRACT

Placing the data in the cloud should come with the guarantee of security, confidentiality and availability of the

data at all the time. several alternatives exist for the storage services, while data confidentiality solutions for the

database as a service model are still have scope to work. In the paper, the architecture represents cloud

database services with the data confidentiality and also possibility of executing the concurrent and independent

operations on encrypted dataand .This is the solution which supports geographically distributed users to

directly connect to cloud database and to execute independent operations and also provide a supervisor on N

Number of clients. The proposed architecture has the further advantage of eliminating any intermediate server

between the cloud client and the cloud provider.

Keywords: Cloud, Security, confidentiality, Secure DBaaS, database

I. INTRODUCTION

In a cloud context, where critical information is placed in infrastructures of untrusted third parties, ensuring

data confidentiality is of paramount importance. This requirement imposes clear data management choices:

original plain data must be accessible only by trusted parties that do not include cloud providers, intermediaries,

and Internet; in any untrusted context, data must be encrypted. Satisfying these goals has different levels of

complexity depending on the type of cloud service. There are several solutions ensuring confidentiality for the

storage as a service paradigm, while guaranteeing confidentiality in the database as a service (DBaaS) paradigm

is still an open research area. In this context, we propose SecureDBaaS as the first solution that allows cloud

tenants to take full advantage of DBaaS qualities, such as availability, reliability, and elastic scalability, without

exposing unencrypted data to the cloud provider.

The architecture design was motivated by a threefold goal: to allow multiple, independent, and

geographicallydistributed clients to execute concurrent operations on encrypted data, including SQL statements

that modify thedatabase structure; to preserve data confidentiality and consistency at the client and cloud level;

to eliminate any intermediate server between the cloud client and the cloud provider. The possibility of

combining availability, elasticity,and scalability of a typical cloud DBaaS with data confidentiality is

demonstrated through a prototype of Secure DBaaS that supports the execution of concurrent and independent

48 | P a g e

operations to the remote encrypted database from many geographically distributed clients as in any unencrypted

DBaaS setup. To achieve these goals, SecureDBaaS integrates existing cryptographic schemes, isolation

mechanisms, and novel strategies for management of encrypted metadata on the untrusted cloud database. This

paper contains a theoretical discussion about solutions for data consistency issues due to concurrent and

independent client accesses to encrypted data. In this context, we cannot apply fully homomorphic encryption

schemes because of their excessive computational complexity. The SecureDBaaS architecture is tailored to

cloudplatforms and does not introduce any intermediary proxy or broker server between the client and the

cloudprovider. Eliminating any trusted intermediate server allows SecureDBaaS to achieve the same

availability,reliability, and elasticity levels of a cloud DBaaS. Other proposals based on intermediateserver(s)

were considered impracticable for a cloud-based solution because any proxy represents a single point offailure

and a system bottleneck that limits the main benefits (e.g., scalability, availability, and elasticity) of adatabase

service deployed on a cloud platform. Unlike SecureDBaaS, architectures relying on a trusted intermediateproxy

do not support the most typical cloud scenario where geographically dispersed clients can concurrentlyissue

read/write operations and data structure modifications to a cloud database.

II. LITERATURE SURVEY

This survey intends an architecture that is different from previous work in the field of secure cloud database

services. SecureDBaaS (Secure database as a service) architecturesupportsmultiple clients and clients which are

geographicallydistributed to execute the independent and concurrentoperation on encrypted data in the remote

database.

There are different approaches which guarantees confidentiality [6], [7] by distributing data among different

providers and by taking advantage of secret sharing [8]. In such a way, they prevent one cloud provider to read

its portion of data, but information can be reconstructed by colluding cloud providers.

A step forward is proposed in [9], that makes it possible to execute range queries on data and to be robust

against collusive providers. SecureDBaaS differs from these solutions as it Secure DBaaSdiffers from these

solutions as it does not require the use ofmultiple cloud providers, and makes use of SQL-awareencryption

algorithms to support the execution of mostcommon SQL operations on encrypted data.

Some DBMS engines offer the possibility of encryptingdata at the filesystem level through the so-called

TransparentData Encryption feature [10], [11]. This feature makes itpossible to build a trusted DBMS over

untrusted storage.However, the DBMS is trusted and decrypts data beforetheir use. Hence, this approach is not

applicable to theDBaaS context considered by SecureDBaas, because weassume that the cloud provider is

untrusted.

Other solutions, such as [12], allow the execution ofoperations over encrypted data. These approaches

preservedata confidentiality in scenarios where the DBMS is nottrusted; however, they require a modified

DBMS engineand are not compatible with DBMS software (bothcommercial and open source) used by cloud

providers.On the other hand, SecureDBaaS is compatible withstandard DBMS engines, and allows tenants to

build securecloud databases by leveraging cloud DBaaS services already available.

49 | P a g e

For this reason, SecureDBaaS is more related to[3] and [2] that preserve data confidentiality in untrustedDBMSs

through encryption techniques, allow the executionof SQL operations over encrypted data, and are

compatiblewith common DBMS engines. However, the architecture ofthese solutions is based on an

intermediate and trustedproxy that mediates any interaction between each client andthe untrusted DBMS server.

The approach proposed in [3]by the authors of the DBaaS model [1] works by encryptingblocks of data instead

of each data item. Whenever a dataitem that belongs to a block is required, the trusted proxyneeds to retrieve the

whole block, to decrypt it, and to filterout unnecessary data that belong to the same block. As aconsequence, this

design choice requires heavy modificationsof the original SQL operations produced by eachclient, thus causing

significant overheads on both the DBMSserver and the trusted proxy.

Other works [4], [5]introduce optimization and generalization that extend thesubset of SQL operators supported

by [3], but they share thesame proxy-based architecture and its intrinsic issues. Onthe other hand, SecureDBaaS

allows the execution ofoperations over encrypted data through SQL-aware encryptionalgorithms. This

technique, initially proposed inCryptDB [2], makes it possible to execute operations overencrypted data that are

similar to operations over plaintextdata. In many cases, the query plan executed by the DBMSfor encrypted and

plaintext data is the same.

The reliance on a trusted proxy that characterize [3] and[2] facilitates the implementation of a secure DBaaS,

and isapplicable to multitier web applications, which are theirmain focus. However, it causes several drawbacks.

Sincethe proxy is trusted, its functions cannot be outsourced toan untrusted cloud provider. Hence, the proxy is

meant tobe implemented and managed by the cloud tenant.Availability, scalability, and elasticity of the whole

secureDBaaS service are then bounded by availability, scalability,and elasticity of the trusted proxy that

becomes a singlepoint of failure and a system bottleneck. Since highavailability, scalability, and elasticity are

among theforemost reasons that lead to the adoption of cloudservices, this limitation hinders the applicability of

[3]and [2] to the cloud database scenario. SecureDBaaS solvesthis problem by letting clients connect directly to

the cloudDBaaS, without the need of any intermediate componentand without introducing new bottlenecks and

singlepoints of failure.A proxy-based architecture requiring that any clientoperation should pass through one

intermediate server isnot suitable to cloud-based scenarios, in which multipleclients, typically distributed among

different locations, needconcurrent access to data stored in the same DBMS. On theother hand, SecureDBaaS

supports distributed clientsissuing independent and concurrent SQL operations to thesame database and possibly

to the same data.

SecureDBaaSextends our preliminary studies [13] showing that dataconsistency can be guaranteed for some

operations byleveraging concurrency isolation mechanisms implementedin DBMS engines, and identifying the

minimum isolationlevel required for those statements.

Moreover, we nowconsider theoretically and experimentally a complete set ofSQL operations represented by the

TPC-C standard benchmark[14], in addition to multiple clients and differentclient-cloud network latencies that

were never evaluated inthe literature.

50 | P a g e

III. METHODOGOLY

3.1 Architecture Design

Figure 1: SecureDBaaS architecture.

SecureDBaaS is designed to allow multiple and independentclients to connect directly to the untrusted

cloudDBaaS without any intermediate server. Figure 1 describes theoverall architecture. We assume that a

tenant organizationacquires a cloud database service from an untrusted DBaaSprovider. The tenant then deploys

one or more machines(Client 1 through N) and installs a SecureDBaaS client oneach of them. This client allows

a user to connect to thecloud DBaaS to administer it, to read and write data, andeven to create and modify the

database tables after creation.

SecureDBaaS proposes a different approach where alldata and metadata are stored in the cloud

database.SecureDBaaS clients can retrieve the necessary metadatafrom the untrusted database through SQL

statements, sothat multiple instances of the SecureDBaaS client can accessto the untrusted cloud database

independently with theguarantee of the same availability and scalability propertiesof typical cloud DBaaS.

Encryption strategies for tenantdata and innovative solutions for metadata managementand storage are described

in the following two sections.

3.2 Data Management

We assume that tenant data are saved in a relationaldatabase. We have to preserve the confidentiality of

thestored data and even of the database structure because tableand column names may yield information about

saved data.We distinguish the strategies for encrypting the databasestructures and the tenant data.

The data type represents the type of the plaintext data(e.g., int, varchar). The encryption type identifies

theencryption algorithm that is used to cipher all the data of

a column. It is chosen among the algorithms supported bythe SecureDBaaS implementation. As in [8],

SecureDBaaSleverages several SQL-aware encryption algorithms thatallow the execution of statements over

encrypted data. It isimportant to observe that each algorithm supports only asubset of SQL operators.When

SecureDBaaS creates an encrypted table, the data typeof each column of the encrypted table is determined by

51 | P a g e

theencryption algorithm used to encode tenant data. Twoencryption algorithms are defined compatible if they

produceencrypted data that require the same column data type.

The field confidentiality parameter allows a tenant todefine explicitly which columns of which secure

tableshould share the same encryption key (if any). SecureDBaaSoffers three field confidentiality attributes:

 Column (COL) is the default confidentiality level that should be used when SQL statements operate on one

column; the values of this column are encrypted through a randomly generated encryption key that is not

used by any other column.

 Multicolumn (MCOL) should be used for columns referenced by join operators, foreign keys, and other

operations involving two columns; the two columns are encrypted through the same key.

 Database (DBC) is recommended when operations involve multiple columns; in this instance, it is

convenient to use the special encryption key that is generated and implicitly shared among all the columns

of the database characterized by the same secure type.

3.3 Metadata Management

Metadata generated by SecureDBaaS contain all theinformation that is necessary to manage SQL statementsover

the encrypted database in a way transparent to theuser. Metadata management strategies represent an

originalidea because SecureDBaaS is the first architecture storing allmetadata in the untrusted cloud database

together with theencrypted tenant data. SecureDBaaS uses two types ofmetadata.

 Database metadata are related to the whole database. There is only one instance of this metadata type for

each database.

 Table metadata are associated with one secure table. Each table metadata contains all information that is

necessary to encrypt and decrypt data of the associated secure table.

Database metadata contain the encryption keys that areused for the secure types having the field confidentiality

setto database..The structure of a table metadata is represented in Figure 2.Table metadata contain the name of

the related secure tableand the unencrypted name of the related plaintext table.

Figure 2 : Structure of table metadata

52 | P a g e

Moreover, table metadata include column metadata for eachcolumn of the related secure table. Each column

metadatacontain the following information.

 Plain name: the name of the corresponding column of the plaintext table.

 Coded name: the name of the column of the secure table. This is the only information that links a column to

the corresponding plaintext column because column names of secure tables are randomly generated.

 Secure type: the secure type of the column, as defined in Section 3.1. This allows a SecureDBaaS client to

be informed about the data type and the encryption policies associated with a column.

 Encryption key: the key used to encrypt and decrypt all the data stored in the column.

This isan original choice that augments flexibility, but opens twonovel issues in terms of efficient data retrieval

and dataconfidentiality. To allow SecureDBaaS clients to manipulate metadata through SQL statements, we

save database andtable metadata in a tabular form. Even metadata confidentialityis guaranteed through

encryption. The structure of themetadata storage table is shown in Figure 3. This table usesone row for the

database metadata, and one row for eachtable metadata.

Metadata Storage Table

ID Encrypted Metadata Control Structure

MAC(„.‟ + Db) Enc(Db metadata) MAC(Db metadata)

MAC(T1) Enc(T1 metadata) MAC(T1 metadata)

MAC(T2) Enc(T2 metadata) MAC(T2 metadata)

Figure 3.Organization of database metadata and table metadata in the metadata storage table.

This mechanism has the further benefit of allowingclients to access each metadata independently, which is

animportant feature in concurrent environments. In addition,

SecureDBaaS clients can use caching policies to reduce thebandwidth overhead.

IV. CONCLUSION

The survey describes an architecture that guarantees confidentiality of data stored in public cloud

databases.Unlike state-of-the-art approaches, our solution does not rely on an intermediate proxy that we

consider a single point of failure and a bottleneck limiting availability and scalability of typical cloud database

services. A large part of the research includes solutions to support concurrent SQL operations (including

statements modifying the database structure) on encrypted data issued by heterogeneous and possibly

geographically dispersed clients. The architecture does not require modifications to the cloud database, and it is

immediately applicable to existing cloud DBaaS, There are no theoretical and practical limits to extend our

solution to other platforms and to include new encryption algorithms. In particular, concurrent read and write

operations that do not modify the structure of the encrypted database cause negligible overhead.Dynamic

scenarios characterized by (possibly) concurrent modifications of the database structure are supported, but at the

53 | P a g e

price of high computational costs. These performance results open the space to future improvements that we are

investigating.

REFERENCES

[1] H. Hacigu¨mu¨ s¸, B. Iyer, and S. Mehrotra, “Providing Database as a Service,” Proc. 18th IEEE Int‟l

Conf. Data Eng., Feb. 2002.

[2] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: Protecting Confidentiality

with Encrypted Query Processing,” Proc. 23rd ACM Symp. Operating Systems Principles,Oct. 2011.

[3] H. Hacigu¨mu¨ s¸, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over Encrypted Data in the Database-

Service-Provider Model,” Proc. ACM SIGMOD Int‟l Conf. Management Data, June 2002.

[4] J. Li and E. Omiecinski, “Efficiency and Security Trade-Off in Supporting Range Queries on Encrypted

Databases,” Proc. 19
th

 Ann. IFIP WG 11.3 Working Conf. Data and Applications Security,Aug. 2005.

[5] E. Mykletun and G. Tsudik, “Aggregation Queries in the Database-as-a-Service Model,” Proc. 20th Ann.

IFIP WG 11.3 Working Conf. Data and Applications Security, July/Aug. 2006.

[6] D. Agrawal, A.E. Abbadi, F. Emekci, and A. Metwally, “DatabaseManagement as a Service: Challenges

and Opportunities,” Proc.25th IEEE Int‟l Conf. Data Eng., Mar.-Apr. 2009.

[7] V. Ganapathy, D. Thomas, T. Feder, H. Garcia-Molina, and R.Motwani, “Distributing Data for Secure

Database Services,” Proc.Fourth ACM Int‟l Workshop Privacy and Anonymity in the InformationSoc.,

Mar. 2011.

[8] A. Shamir, “How to Share a Secret,” Comm. of the ACM,vol. 22, no. 11, pp. 612-613, 1979.

[9] M. Hadavi, E. Damiani, R. Jalili, S. Cimato, and Z. Ganjei, “AS5: ASecure Searchable Secret Sharing

Scheme for Privacy PreservingDatabase Outsourcing,” Proc. Fifth Int‟l Workshop Autonomous

andSpontaneous Security, Sept. 2013.

[10]“OracleAdvancedSecurity,”OracleCorporation,http://www.oracle.com/technetwork/database/options/advanc

ed-security,Apr. 2013.

[11] G. Cattaneo, L. Catuogno, A.D. Sorbo, and P. Persiano, “TheDesign and Implementation of a

Transparent Cryptographic FileSystem For Unix,” Proc. FREENIX Track: 2001 USENIX Ann.Technical

Conf., Apr. 2001.

[12] E. Damiani, S.D.C. Vimercati, S. Jajodia, S. Paraboschi, and P.Samarati, “Balancing Confidentiality and

Efficiency in UntrustedRelational Dbmss,” Proc. Tenth ACM Conf. Computer and Comm.Security, Oct.

2003.

[13] L. Ferretti, M. Colajanni, and M. Marchetti, “Supporting Securityand Consistency for Cloud Database,”

Proc. Fourth Int‟l Symp.Cyberspace Safety and Security, Dec. 2012.

[14] “Transaction Processing Performance Council,” TPC-C, http://www.tpc.org, Apr. 2013.

