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ABSTRACT
The aim of this paper is to introduce and investigate some new classes of mappings called contra pre-y-
continuous mappings and almost contra pre-¥-continuous mappings via pre-¥-open sets. Also, some of their

fundamental properties are studied.
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I. INTRODUCTION

In the recent literature, many topologists had focused their research in the direction of investigating different
types of generalized continuity. Dontchev [1] introduced a new class of mappings called contra-continuity.

Jafari and Noiri [2, 3] exhibited and studied among others a new weaker form of this class of mappings called
contra-z-continuous and contra-pre-continuous mappings. Also, a new weaker form of this class of mappings

called contra-semicontinuous mappings was introduced and investigated by Dontchev and Noiri [4]. Contra-d&-
precontinuous mapping was obtained by EKkici and Noiri [5]. A good number of researchers have also initiated
different types of contra continuous like mappings in the papers (Caldas and Jafari [6]; Ekici [7, 8]; Nasef [9];

Al-Omari and Noorani [10]; EI-Magbrabi [11]). Ogata [12] introduced the notion of pre-y¥-open sets which are

weaker than open sets. The concept of pre-¥-open sets and pre- ¥-open maps in topological spaces are

introduced by Hariwan Z. lbrahim [13, 14]. This paper is devoted to introduce and investigate a new class of

mappings called contra pre- ¥-continuous mappings. Also, some of their fundamental properties are studied.

1. PRELIMINARIES

Throughout this paper {X. 3 and (¥. &) (simply, X and Y) represent topological spaces on which no
separation axioms are assumed, unless otherwise mentioned. The closure of subset A4 of X, the interior of 4 and
the complement of 4 is denoted by cI(4), int{A} and A “or X\A respectively. A subset A of a space (X, )
is called regular open [15] if A = int(cl{A)). An operation ¥ [12] on a topology T is a mapping from 7 in to

power set P{X) of X such that ¥ € (V) for each V € 7, where #{V } denotes the value of vat V. A
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subset 4 of X with an operation ¥ onTis called ¥-open [12] if for each x £ A, there exists an open set I/
such that x € U and y¥(U) € A. Then, 7, denotes the set of all ¥-open sets in X . Clearly 7, < 7.
Complements of y-open sets are called ¥- closed. The 7, —interior [16] of A is denoted by 7,-int{A} and
defined to be the union of all ¥-open sets of X contained in 4. A subset A of a space X is said to be pre-¥-open
[13] if A € 7,- int(cl(A])) .

DEFINITION 2.1.[14] Asubset A of X is called pre-¥-closed if and only if its complement is pre-1-open.
Moreover, pre-¥ (X} denotes the collection of all pre-y-open sets of (X, 7} and pre-¥C(X) denotes the
collection of all pre-y-closed sets of (X, ©}.

DEFINITION 2.2.[14] Let A be a subset of a topological space (X. 7). The intersection of all pre-y¥-closed
sets containing A is called the pre-¥-closure of A and is denoted by pre-¥CI{A).

DEFINITION 2.3.[14] A subset NV of a space (X, 7} is called a pre-¥-Neighborhood (briefly, pre- ¥ -nbd)
of a point p € X if there exists a pre- ¥ -open set W such thatp € W £ N . The class of all pre- ¥ -nbds of
p € Xis called the pre- ¥ —neighborhood system of p and denoted by pre- ¥ -I,, .

DEFINITION 2.4.[14] A mapping f: (X. ) —= (¥. g} is called:

(i) pre-¥ -continuous if f~*(V) € pre- yO(X) for every open set ¥ of ¥,

(i) pre-¥ -irresolute if £~*(V ) & pre- ¥O(X) for every pre-¥ -open set ¥ of ¥ .
DEFINITION 2.5. Amapping f: (X. 73} — (¥, a)is called:

(i) contra-continuous [1] if F=*(¥ ) is closed in X for each opensetin ¥,

(i) almost contra-continuous [17] if £7*(¥ ) is closed in X for each regular open set of ¥'.

DEFINITION 2.6. Let A be a subset of space {(.X. T} . Then:
(i) the kernal of A [18] isgivenby ker (A} =n{ll e 7: 4 £ U},

(ii) the pre-¥ -boundary of A [19] is given by pre-¥b(A) = pre-¥CI(A)Y pre- yint(A).

LEMMA 2.1.]20] The following properties are holds for two subsets 4, E of a topological space (X, 77 :
(i) x € ker(A) ifandonlyif4 N F =@, forany closed set F of X containing x ,
(i) 4 E ker(A) and 4 = ker(4), ifAisopeninX,
(i) If A = B, then ker (4) S ker(E).

DEFINITION 2.7. A topological space (X, T is said to be:
(i) Urysohn [21] if, for each two distinct points x, ¥ of X, there exist two open sets I7 and ¥ such that

x el yeVand el nel(V) = 0,
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(i) ultra Hausdorff [22] if, for each two distinct points x.¥ of X', there exist two closed sets IF and ¥ such
thatx e U, y e V,and UNV =0

(iii) ultra normal [22] if for each pair of nonempty disjoint closed sets can be separated by disjoint clopen

sets.

(iv) weakly Hausdorff [23] if each element of X is the intersection of regular closed sets of X,
(v) strongly 5-closed [24] (resp. § -closed [1], 5 -Lindeloff [25], countably & -closed [26]) if for closed
(resp. regular closed, regular closed, countably regular closed) cover of X has a finite (resp. finite,

countable, finite) subcover.
I11. CONTRA PRE- ¥ -CONTINUOUS MAPPINGS

DEFINITION 3.1.A mapping f: (X. ) — (¥. @) is called contra pre- ¥ -continuous, if f~*(U) & pre-
¥C(X) , for every open set I/ of ¥ .
THEOREM 3.1.For amapping f:({X. ) = (¥. o), the following statements are equivalent:

(i) f iscontra pre-¥-continuous,

(ii) for each x £ X and each closed subset F of ¥ containing f{x}, there exist U € pre-y@{X} such

thatx € Wand f(ll) € F,

(iii) for every closed subset F of ¥, f=*(F) & pre-yO(X),

(iv) f(pre-¥-cl{A)) S ker(f(A)),foreachd S X,

(v) pre-¥-cl(f"*(B)) € f*(ker(B)), foreach® €V,
PROOF.(i) = (ii) Letx € X and F be any closed set of ¥ containing f(x). Thenx € f~*(F) . Hence by
hypothesis, we have f~*(¥ ' F} is pre-y -closed in X and hence f~*(F) is pre-¥ -open set of X containing x.
WeputlU = f~*(F), thenx € Uand f(U') © F.
(ii) = (iii) Let F be any closed set of ¥ and x € f~*(F) . Then f{x) € F . Hence by hypothesis, there exists a
pre-¥-open subset U containing x such that f(I/) = F, this implies that, x € U/ € f~*(F). Therefore,
FHF) =u{U: x e f~*(F)} which is pre-y-open in X . Then f is contra pre-¥-continuous.
(iii) = (iv) Let A be any subset of X and ¥ € ker{(f(A4)}. Then by Lemma 2.1., there exists a closed set ¥ of
¥ containing ¥ such that f{A} N F = ©. Hence, A N f~*(F) = © and pre-y-cl(4) N f~*(F) =@ . Then
f(pre-y-cl{d)) N F = @ andy € f(pre-y-cl(A)) . Therefore, f( pre-y-clid)) S ker (f{A)).
(iv) = (v) Let E be any subset of ¥ . Then by hypothesis and Lemma 2.1., we have  f( pre-¥-

cl(f*(B))) € ker(f(f *(B))) € ker(B).Thus pre-y-cl(f *(B)) € f~'(ker(B)).
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(v) = (i) Let ¥ be any open subset of ¥ . Then by hypothesis and Lemma 2.1., pre- ¥ -

cl(f~X(V)) © f*(ker(V)) = F~Y(V) .Therefore, f~*(V ) is pre- y-closed in X . Hence f is contra pre-y-

continuous.
DEFINITION 3.2. Amapping f: (X. 73 —= (¥, o) iscalled

(i) pre-¥-continuous [14], if F~*(LI} € pre— yO(X), foreachU € &,

(ii) pre-y-irresolute [14], if F~*(U) € pre- yO(X), for each U €pre-y0(¥ ),

(iii) pre * - ¥ -open [19], if f(U) € pre-y0(Y¥ ) for each U € pre-y0(X},

(iv) pre = - ¥ -closed [19], if f{U'} € pre—¥C(¥ ) foreach U € pre-¥ C(X) .
THEOREM 3.2. If a mapping f: (¥, v} = (¥. &} is contra pre-¥-continuous and ¥ is regular, then f is
pre- ¥ -continuous.
PROOF. Letx € X and V¥ be an open set of ¥ containing f{x]. Since ¥ is a regular space, then there exists
an open set & of ¥ such that fix} € & € ¢l(G) € V .But, if f is contra pre- ¥-continuous, then there exists
U epre-yO(X) suchthat x € 7 and f(U'} £ cl{G)} S V. Hence, f is pre- ¥-continuous.
The next theorems give the conditions under which the composition of two contra pre- ¥-continuous mapping is
also contra-pre-y-continuous.

REMARK 3.1.The composition of two contra pre- ¥ -continuous mappings need not be contra pre- ¥ -

continuous as shown by the following example.

EXAMPLE 3.1 Let X =Y =2 ={abecdl with topologies
Ty = {0 X, {a}, {b}. {c} {a. b}, {a.c} {b.c} {a b.c}}, Ty = {8 ¥, {a}} and
T, = {0, Z, {a}, (b}, {a.b}}. Letf: (X, 74) = (V. 7y ) be an identity map and g: (¥, 7, ) = (Z. 75)

be defined as gla) = a. glb) = b, glc) = a. gld) = d and define an operation ¥ on 7y by

(int(cll4))  if A # {a)
¥(4) "{:{(ﬂ] if A= {a}

and define an operation ¥ on 7 is ¥(4) = A. Clearly f and g are contra pre- ¥-continuous. But (g = f}is
not a contra pre- ¥ -continuous, since {a} € 7 isaopensetofZ, (g = fi™*({a}) = {a.c} & pre-¥C(X).

THEOREM 3.3.For two mappings f: (X. 74} = (¥. 7] and g: (¥. 7.} = (Z. 7z}, the following
properties are hold:

(i) If fiscontra pre-¥ -continuous and g is continuous mappings, then g = f is contra pre- ¥-continuous.
(i) If f is pre-¥-irresolute and g is contra pre-¥-continuous mappings, then g = f is contra-pre- ¥ -

continuous.
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PROOF. (i) LetU & 7z and g be a continuous mapping. Then g~*(l/} € 7, . But, f is contra pre-¥-
continuous then (g = f1~*(I7) € pre-¥C(X) . Hence g = f is contra pre- ¥-continuous.

(i) Let U € 7> and g be a contra pre-¥-continuous mapping. Then g~*{I7) & pre-¥C(Y) . But f is pre-y-
irresolute, then (g = f)~*(U'} & pre-yC (X} . Hence, g = f is contra pre-y-continuous.
THEOREM 34. Let f: X — ¥ be a surjective pre- ¥ -irresolute and pre *- ¥ -open mapping. Then

gef X — Ziscontra pre-y-continuous if and only if g is contra pre-y¥-continuous.

PROOF. Necessity: Obvious from Theorem 3.3..

Sufficiency: Letg = f: X — Z be a contra pre-¥-continuous mapping and F be closed set of Z. Then
(g = f)~*(F) € pre- yO(X) .Since f is surjective pre*-y-open, then g~*(F) € pre- ¥O(¥ ). Therefore g is
contra pre-y¥-continuous.

DEFINITION 3.3. A topological space (X. T3 is called:

(i) pre-¥-connected [27] if X cannot be expressed as the union of two disjoint non-empty pre-¥-open sets
of X.

(ii) pre-¥-normal, if every pair of disjoint closed sets f; and F; there exist disjoint pre-¥-open sets [l and ¥
suchthat ; = UandF = V.

(iii) pre- ¥- Ty -space [13], if for every two distinct points x.¥ of X, there exists two pre-y¥-open sets I, V¥
suchthatxe U,y € Uandx & ¥V, v € V.,

(iv) pre-¥- T; -space or pre-¥-Hausdorff space [13] if for every two distinct points x, ¥ of X . there exist

two disjoint pre-y-open sets I/, ¥ suchthatx € Wandy € V.

THEOREM 3.5.0f f: (X. ) — (¥. g)isaninjective closed and contra pre-y¥-continuous mappings, and ¥ is
ultra normal, then X is pre-y-normal.

PROOF. Let F; and F; be two disjoint closed subsets of X . Since f is closed injection, then f(F,}and f(F; )
are two disjoint closed subsets of ¥ and since ¥ is ultra normal space, then there exist two disjoint clopen sets I/
and V such that f(F.) = Uand f(F;) € V.Hence, E € f~*(U)and F, £ f~*(V ). Since f is injective
contra pre-¥-continuous, then f~*(/} and F~*(V } are two disjoint pre-¥-open sets of X . Therefore, X is pre-
¥- normal.

THEOREM 3.6. If f: (X, ) — (¥, &} is a contra-pre-¥-continuous mapping and X is pre-¥-connected

then ¥ is not a discrete space.
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PROOF. Suppose that ¥ is a discrete space and I any subset of ¥ . Then I/ is open and closed set in ¥. Since
f is contra pre-¥-continuous, f~*(U/) is pre-¥-closed and pre-y¥-open in X which is a contradiction with the fact
X is pre- ¥ -connected. Hence, ¥ is not discrete space.

THEOREM 3.7.1f f: (X, v} — (¥. ) is an injective contra pre- ¥ -continuous mapping and ¥ is an
Urysohn space, then X is pre-y- T .

PROOF. Letx, ¥ € X andx = v. By hypothesis, f{x} = f{¥). Since ¥ is an Urysohn space, there exist
two open sets UV and ¥ of ¥ such that f(x) e ', f(v) e Vandcl(U)nel{V) = @. Since f is contra pre-y-
continuous, then there exist two pre-¥-open sets P and @ such that x € P, v € @ and f(P) € &I(l} ,
F@Y € (V). Then F(PY N f{Q) = @andhence, P N Q@ = @ . Therefore, X is pre--T; .
COROLLARY 3.1.Uff: (X, t) — (¥, ¢} is an injective contra pre- ¥ -continuous mapping and ¥ is an
ultra Hausdorff space, then X is pre- ¥ - Ty .

DEFINITION3.4.A mapping f : (X, T3 = (¥. &) is called weakly- pre-¥-continuous, if for eachx € X
and each open set ¥ of ¥ containing f{x] , there exists Il & pre- ¥y@{X} suchthatx € UV and f(l'} € (V).

THEOREM 3.8. Iff: (¥, v} = (¥. &) s a contra pre-y-continuous mapping, then f is weakly-pre-y-

continuous.
.PROOF. Letx € Xand V € o containing f(x}. Then cl{(V ] is closed set in ¥ . Since f is contra pre-y-
continuous, then f~*(cl(¥)) € pre- ¥O(X) and containing x . If we put U= F*(cl(V])) , then

F{U) = IV}, Hence, f is weakly-pre- ¥- continuous.

REMARK 3.2. The converse of Theorem 3.8. is not true as shown by the following example.
EXAMPLE 3.2. Let ¥ =Y = la.becd} with topologies
1y = {0, X, {a}, {b), {c), {a b}, {ac) {bec) {a.b.c}} and 71, = {® ¥V, {a) {b) {@.b}} .  Let

f: (X 1) = (V. 7,) bedefined as fla) = a. flb) = ¢, flc) = d. f(d) = ¢ and define an operation ¥

int(cl(A))  if A# {a}

onzzby ¥(A) :{cm] if A=1{a}.

Then a mapping f is weakly pre-¥-continuous. But it is not contra pre- ¥-continuous, since f~*({a})} = {a} &

pre- ¥C (X)) .
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IV. ALMOST CONTRA-PRE- ¥ -CONTINUOUS MAPPINGS

DEFINITION 4.1.A mapping f : (X. ) = (¥. #)is called almost contra pre- ¥ -continuous if for each
x € X and each open set ¥ of ¥ containing f{x) , there exists I/ & pre- ¥@{X} such that x € 7 and
FIUY € int(cl(V )}, equivalently, f~*(V ) is pre-¥-open in X for every regular open set ¥ of ¥ .
THEOREM 4.1. A mapping f: (X, T} = (Y. o) is called almost pre- ¥-continuous if and only if for each
x € X and each regular open set ¥ of ¥ containing f{x], there exists I & pre- yO(X) containing x such that
FU) c V.

PROOF. Necessity. Let ¥ = ¥ be regular open set containing (x) . Thenx € f~*(¥) . But f is almost pre-
y-continuous, then f~*(¥ ) = U is regular open set of X containing x such that f(I'}) = ff~*(V) € V.
Sufficiency. Let ¥ = ¥ be regular open set. We need to prove that f~*(V ) € pre- ¥@(X). Suppose that
€ f~Y(V ). Then f(x) € V. By hypothesis, there exists I/ € pre- ¥@(X) containing x such that f(U') € V.
Hence x € U © F~Y(f(UY S fF~X(V).Thenf~*(V)=uU{U :x € U}isa pre-y-open set of X . Therefore,
f is almost pre- ¥ -continuous.

DEFINITION 4.2. Amapping f: (X. ©) = (¥. &) is called almost contra pre- ¥-continuous if f~*(V ) is
pre-¥-closed in X, for every regular open set ¥ of ¥.

EXAMPLE 41 Let X =Y = {a,becdl with topologies 7tz = {®, X, {al] and

r = {@ Y. {a} {c} {ac}} . Let f: (X 1) = (V.1p) be defined as

fla) = d, fb) = a, flc) = & f(d)

_{:‘nt{cf(ﬂ]} if A% {a)
“lel(A) if A= {al.

b and define an operation ¥ on 7ty by ¥ (A)

Then a mapping f is almost contra pre- ¥ -continuous.

THEOREM 4.2. Foramapping f: (X. ) — (V. &), the following statements are equivalent:
(i) f isalmost contra-pre-¥-continuous,
(i) f~*(F) is pre-y-open in X, for every regular closed set F of ¥, for each x € X and each regular
closed set F of ¥ containing f(x) , there exists I € pre-y-0( X} suchthatx € U and f(U') E F,
(iii) for each x £ X and each regular open set ¥ of ¥ not containing f(x7, there exists a pre-¥-closed set K

of X not containing x such that f~*(V) < K .

PROOF. (i) = (ii) LetF be any regular closed set of ¥ . Then ¥ * F is regular open. By hypothesis,

FHY\F) = X\ f*(F) € pre-yC(X) . Therefore, f~*(F) € pre-y0(X).
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(ii) = (i) Obvious.

(ii) = (iii) Let F be any regular closed set of ¥ containing f(x) . Then by hypothesis, f~*(F) € pre-y0(X)
andx € f~Y(F) . PutU = f~*(F), then f(U} € F.

(iii) = (ii) Let F be any regular closed set of ¥ and x € f~*(F) . By hypothesis, there exist U € pre-
¥O(X) such that x e U and f(U)S F . Hence, x € U< f*%(F) . That implies
FYF) = U U : x e f~Y(F)) Therefore, f~*(F) € pre-¥0(X) .

(iii) = (i) Let ¥ be any regular open set of ¥ non-containing f{x). Then ¥'% ¥V is regular closed set of ¥
containing fix) . By (iii),there exists U € pre- ¥O(X) such that x € U and f(U} =S¥ %V . Then
Uecf5y\Wv)yc X\ f*Viandsof *(V) S ¥\ U.SinceU €pre-y0(X), then ¥\ U = K is pre-y-
closed set of X not containing x and f~*(V ) € K.

(i) = (iii) Obvious.

REMARK 4.1. The composition of two almost contra-pre-y¥-continuous mappings need not be almost contra-
pre-¥-continuous as shown by the following example.
EXAMPLE 4.2 Let ¥ =¥ =2 = {a.b,c.d} with topologies 7 = {@ X, {a}}, 7 = {@ ¥} and

r = {0 Z.{ab{ch{a.clt. Letf: (X 1) = (V.7 ), g: (¥, 7v) = (Z. 7z ) be an identity map and

int(cl(A))  if A# {a}

define an operation ¥ on tx by ¥(A) :{c{{A] if 4= {a)

and define an operation on Ty is ¥({A) = A. Clearly f and g are almost contra pre-¥ -continuous. But
(g =f) is not a contra pre- ¥ -continuous, since {e} € Tz is a regular open set of Z ,

(g = f) *({a}) = {a} & pre-yC(X).
THEOREM 4.3. For two mappings f: (X, %) = (V. 7w Jand g: (V. ) = (Z. 7z ), the following

properties are hold:
(i) If, f is a surjective pre*-¥-open and g = f : X — &£ is almost contra-pre-¥ -continuous, then g is
almost contra-pre-y-continuous.
(i) If, f is a surjective prex-y¥-closed and g o f : X — Z is almost contra-pre-¥-continuous, then g is almost

contra-pre- ¥-continuous.
PROOF. (i) Let ¥ = Z be regular closed set. Since, g = f is almost contra-pre- ¥ -continuous,
then(gof)™*(V ) € pre-¥O(X). But, f is surjective pre*-y-open, then g~ *(V) & pre-¥0(¥ ) . Therefore, g is

almost contra-pre-y-continuous.
(if) Obvious.
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THEOREM 4.4.1f f: (X. ) — (¥, o), is an injective almost contra- pre-¥-continuous mapping and ¥ is
weakly Hausdorff, then X is pre-y- T} .

PROOF. Let x. ¥ be two distinct points of X. Since f is injective, then f{x} = f(¥) and since ¥ is weakly
Hausdorff, there exist two regular closed sets U and ¥ such that fi(x) € U.f(¥) € U and
f) & V. f{¥) € V. Since f is an almost contra-pre-y-continuous, we have f~*(U) and f~*(¥ ) are pre-y-
open sets in X such that x €f~*U), y & F7HU) and re fYV) vye FFYVY and
FHUy N F~YVY) = 0. Hence X is pre-y-T.

DEFINITION 4.3. A topological space (.. 7 is said to be:
(i) pre-¥-compact if every pre-¥-open cover of X has finite subcover,
(if) countably pre-¥-compact if every countable cover of X by pre-¥-open sets has a finite subcover,

(iii) pre-¥-Lindeloff if every pre-y-open cover of X has a countable subcover.

THEOREM 45.1ff: (X. ©) = (¥. a)is a surjective almost contra- pre-¥-continuous mapping, then the
following statements are hold:

(i) If X is pre-y-compact, then ¥ is 5 -closed,

(ii) If X is countably pre-¥-compact, then ¥ is countably S-closed,

(iii) If X is pre-y-Lindel6ff, then ¥ is 5 -Lindel6ff.
PROOF. (i) Let{}; : i = I}be any regular closed cover of ¥ and f be
almost contra-pre-¥-continuous. Then {f~*(¥) : i € I} is pre-y-open cover of ¥ . But X is  pre-¥-compact,
there exists a finite subset I, of I such that ¥ =W {f *(¥;}: i €1}, hence¥ = U{ff (¥} : i € I,}and

then ¥ = UV : i € I;}. HenceY is 5-closed.
(if) Similar to (i).
(iii) Similar to (i).
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