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ABSTRACT 

The solid transportation problem considers the supply, the demand and the conveyance satisfying the 

transportation requirement in a cost-effective manner. This paper develops a method that is able to derive the 

fuzzy objective value of the fuzzy solid transportation problem when the cost coefficients, the supply and demand 

quantities, conveyance capacities are fuzzy numbers and additional constraints on the total budget at each 

destination which is interval type. We make use of Hu and Wang’s Approach based on interval ranking. Based 

on the extension principle, the fuzzy solid transportation problem is transformed into a pair of mathematical 

programs that is employed to calculate the lower and upper bounds of the fuzzy total transportation cost at 

possibility level . From different values of , the membership function of the objective value is constructed. 

Since the objective value is fuzzy, the values of the decision variables derived in this paper are fuzzy as well. An 

example is illustrated for this model.  

 

Keywords: Extension Principles, Fuzzy Numbers, Solid Transportation Problem. 

 

I INTRODUCTION 
  

The traditional transportation problem (TP) is a well-known optimization problem in operational research, in 

which two kinds of constraints are taken into consideration, i.e., source constraint and destination constraint. But 

in the real system, we always deal with other constraints besides of source constraint and destination constraint, 

such as product type constraint or transportation mode constraint. In such case, the traditional TP turns into the 

solid transportation problem (STP). As a generalization of traditional TP, the STP was introduced by Haley [1]. 

In this paper, we investigate a solution of the fuzzy solid transportation problem with interval valued budget at 

each destination. An assessment of different results of the model is also presented. 

Bellman and Zadeh [1] introduce the notion of fuzziness. Since the transportation problem is essentially a linear 

program, one uniformly apply the existing fuzzy linear programming techniques (Buckly [2], Chanas et al. [3] 

And Hadi Basirzadeh [4]) to the fuzzy transportation problem. Unfortunately, most of the existing techniques [2, 

3 and 4] only provide crisp solutions. The method of Julien [5] and Parra et al. [6] is able to find the possibility 

distribution of the objective value, provided all the inequality constraints are of „„≥‟‟ type or „„≤‟‟ type. 

However, due to the structure of the transportation problem, in some cases their method requires the refinement 
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of the problem parameters to be able to derive the bounds of the objective value. There are also studies 

discussing the fuzzy transportation problem. Obviously, when the cost coefficients, supply and demand 

quantities are fuzzy numbers, the total transportation cost will be fuzzy as well. In this paper, we develop a 

solution procedure that is able to calculate the fuzzy objective value of the fuzzy solid transportation problem, 

where all the parameters are fuzzy numbers. The idea is to apply Zadeh‟s extension principle [7]. A pair of two-

level mathematical programs is formulated [8–9] to calculate the lower and upper bounds of the α-level cut of 

the objective value. In section 2, we introduce the crisp conversion of the constraints of the respective model 

using a different order relation of the intervals such as Hu and Wang‟s Approach [10]. The membership function 

of the fuzzy objective value is derived numerically by enumerating different values of α. It has been observed 

that a very less research work is done on the fuzzy transportation problem to minimize the transportation cost 

using publicly available data which should be more authentic and reliable as compare to crisp data. In the 

following sections, we first concisely describe the fuzzy solid transportation problem. Then a pair of 

mathematical programs is formulated to calculate the fuzzy total transportation cost bounds at a specific α level. 

An example is illustrated to explain the proposed method. Finally, some conclusions are drawn. 

 

II FUZZY SOLID TRANSPORTATION PROBLEM WITH INTERVAL BUDGET 

CONSTRAINT 

Consider  sources and  destinations in a solid transportation problem. At each source, let  be the amount of 

a homogeneous product we want to transport to n destinations to satisfy the demand for  units of the product. 

Here   called conveyance denotes the units of this product that can be carries by k different modes of 

transportation, interval budget at the t h
j destination, such as the land transportation by car or train, and ocean 

shipping. A penalty value of the unit shipping cost represents by of a product from 
th

i origin to t h
j  

destination by means of the th
k  conveyance. We need to determine a feasible way of shipping the available 

amounts to satisfy the demand such that the total transportation cost is minimized.  

Let  denote the number of units to be transported from Source  to Destination  through Conveyance 

capacities . The mathematical form of the solid transportation problem with interval valued budget constraint, 

transportation costs, availabilities and conveyance capacities is given below: 

1 1 1

1 1

m in
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1 1
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m l
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i k

x d j n

 

    

      

1 1

, 1, 2 , ..... ,

m n

ijk k

i j

x e k l

 

                                                                                                                       (1) 

1 1

, 1, 2 , . . . . . ,

m l

i jk i jk j

i k

c x B j n

 

    

0 , , .
i jk

x i j k   

Intuitively, if any of the parameters , ,  or  is fuzzy, the total transportation cost becomes fuzzy as well 

and budget constraint is taken with interval value [ , ]
j jL jR

B b b . Then the Model (1) turns into the fuzzy solid 

transportation problem with interval valued budget constraint. 

 Suppose the unit shipping cost , supply , demand , conveyance capacity   and budget intervals are 

approximately known. They it can be represented by the convex fuzzy numbers  ,  and   respectively, 

with membership functions  ,  ,  and : 

             

{ ( , ( )) | ( )} ,

{ , ( )) | ( )} ,

{ ( , ( ) ) | ( )} ,

{ ( , ( ) ) | ( )} ,

i jk

i

j

k

i jk i jk ijk ijk ijkC

i i i i iS

j j j j jD

k k k k kE

C c c c S C

S s s s S S

D d d d S D

E e e e S E






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 

 

 

 









 

 

 

 

                                                                                                         (2) 

where ( )
i jk

S C , ( )
i

S S , ( )
j

S D  and ( )
k

S E  are the supports of i jk
C  , 

i
S , j

D  and 
k

E , which denote the universe 

sets of the unit shipping cost, the quantity supplied by the 
th

i  origin, the quantity required by the 

t h
j destination, and the capacity carried by the th

k  conveyance, respectively. 

The fuzzy objective function 

1 1 1

i jk

m n l

ijk

i j k

Z C x

  

  
 , which is to be minimized, together with the following 

constraints, constitutes the fuzzy solid transportation problem: 

Using Hu and Wang‟s approach [7] on budget constraint we have the following crisp conversion.  

     

1 1

( )
, 1, 2 , . . . . . ,

2

m l

jL jR

ijk i jk

i k

b b
C x j n

 


                                                                                                      (3) 

Without loss of generality, all the supply and demand quantities and conveyance capacities are assumed to be 

convex fuzzy numbers as the crisp values can be represented by degenerated membership functions which have 
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only one value in their domains. In the next section, we shall develop the solution procedure for fuzzy solid 

transportation problem with fuzzy supply, requirement and conveyance capacity. 

 

III THE SOLUTION PROCEDURE 

We are interested in deriving the membership function of the total transportation cost Z . Since Z is a fuzzy 

number, instead of a crisp number, it cannot be minimized directly. To tackle this problem, one can transform 

the fuzzy solid transportation problem, which is based on Zadeh‟s extension principle to a family of 

mathematical programs to be solved. 

Based on the extension principle, the membership function 
Z

   can be defined as: 

( ) s u p m in { ( ) , ( ) , ( ) , ( ) , , | ( , , , )} ,
j ki jk i

i jk i j kZ D EC S
z c s d e i j k z Z c s d e                  (4)

 
 

Where ( , , , )Z c s d e  is defined in Model (1). The application of the extension principle to Z  may be viewed as 

the application of this extension principle to the ∝ -cuts of Z . Let us denote the ∝-cuts of i jk
C , 

i
S , j

D  and 

k
E as  

( ) { ( ) | ( ) } [( ) , ( ) ] , (5 .1)

( ) { ( ) | ( )) } [( ) , ( ) ] , (5 .2 )

( ) { ( ) |, ( ) } [( ) , ( ) ] , (5 .3 )

( ) { ( ( ) | ( ) } [(

i jk

i

j

k

L U
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L U

i i i i i iS
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j j j j j jD
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E e S E e E

  

  

  



 













   

   

   
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













 ) , ( ) ] , (5 .4 )
L U

k
E

 

These intervals indicate where the unit shipping cost, supply, demand, and conveyance lie at possibility level ∝. 

In Eq. (4), several membership functions are involved. To derive 
Z

   in closed form is hardly possible. 

According to (4), 
Z

  is the minimum of , , a n d , , , .
j ki jk i

D EC S
i j k         We 

need ( )
i jk

i jkC
c  , ( ) )

i
iS

s  , ( )
j

jD
d  or ( )

k
kE

e 

 
and at least 

one ( ) , ( ) , ( ) , ( ) , ,
j ki jk i

i jk i j kD EC S
c s d e i j k        , equal to ∝ such that ( , , , )z Z c s d e to satisfy ( ) .

Z
z   To 

find the membership function 
Z

  , it suffices to find the left shape function and right shape function of 
Z

  , 

which is equivalent to finding the lower bound L
Z


 and upper bound U

Z


of the ∝-cuts of Z . Since L
Z


is the 

minimum of ( , , , )Z c s d e and U
Z


is the maximum of ( , , , )Z c s d e , they can be expressed as: 

m in { ( , , , ) | ( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) , , } ,

L L U L U

ijk ijk ijk i i i

L U L U

j j j k k k

Z Z c s d e C c C S s S

D d D E e E i j k

    

   

    

    

 

m ax { ( , , , ) | ( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) , , } ,

U L U L U

ijk ijk ijk i i i

L U L U

j j j k k k

Z Z c s d e C c C S s S

D d D E e E i j k

    

   

    

    

 

This can be reformulated as the following pair of two-level mathematical programs: 
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                                                             (6a) 
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                                                         (6b) 

In Model (6a), the inner program calculates the objective value for each
i jk

c , 
i

s , 
j

d  and 
k

e  specified by the 

outer program, while the outer program determines the values of 
i jk

c ,
 i

s , 
j

d  and 
k

e that generate the smallest 

objective value L
Z . The objective value is the lower bound of the objective value for Model (3). By the same 

token, the inner program of Model (6b) calculates the objective value for each given value of 
i jk

c , 
i

s , 
j

d  and 

k
e ,while the outer program determines the values of 

i jk
c , 

i
s , 

j
d  and 

k
e  that produce the largest objective 

value. The objective value U
Z is the upper bound of the objective value for Model (3). 

Since the value of ∝ varies in, Model (6a and 6b), it can also be regarded as a pair of parametric programming 

model. 

A necessary and sufficient condition for Model (6a and 6b) to have feasible solutions is 
1 1

m n

i ji j
s d

 
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, respectively. However, to ensure the transportation 
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problem of the second level to be feasible, it is necessary that the constraint 
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In above Model (7a and 7b) will be infeasible when 
0 01 1

m nU L

i j
S D
   

   for any α level. In other words, a 

fuzzy transportation problem is feasible if the upper bound of the total fuzzy supply is greater than or equal to 

the lower bound of the total fuzzy demand. To derive the lower bound of the objective value in Model (7a), we 

can directly set 
i jk

c to its lower bound ( )
L

i jk
C

 , , ,i j k  to find the minimum objective value. 

Hence, Model (7a) can be reformulated as: 
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, 1, 2 , . . . . . ,

, 1, 2 , . . . . . ,

[ , ] 1, 2 , . . . . . ,

0 , , .

i jk

m n l

i jk

i j k

n l

i jk i

j k

m l

i jk j

i k

m n

ijk k

i j

m l

i jk i jk j jL jU

i k

i jk

c x

s t x s i m

x d j n

x e k l

c x B b b j n

x i j k

  

 

 

 

 









  





 





  





  



  


  

 

 

 

 

                                                          (8) 

 

Since Model (8) is to find the minimum of all the minimum objective values, one can combine the constraints of 

inner program and outer program together and simplify the two-level mathematical program to the conventional 

one-level program as follows: 

                

1 1 1

1 1

1 1

1 1

1 1

m in ( )

. . , 1, 2 , . . . . . ,

, 1, 2 , . . . . . ,

, 1, 2 , . . . . . ,

( ) 1, 2 , . . . . . ,

i jk

m n l
L L

ijk

i j k

n l

i jk i

j k

m l

i jk j

i k

m n

ijk k

i j

m l
L

ijk i jk j

i k

Z C x

s t x s i m

x d j n

x e k l

C x B j n



  

 

 

 

 



 

 

 

 

  

 

 

 

 

                                                                                               (9)           

               

1 1

1 1

( ) ( )

( ) ( )

( ) ( )

0 , , .

m n

i j

i j

l n

k j

k j

L U

i i i

L U

j j j

L U

k k k

i jk

s d

e d

S s S

D d D

E e E

x i j k

 

 

 

 

 





 

 

 

 

 

 

 

This model is a linear program which can be solved easily. In this model, since all  have been set to the 

lower bounds of their ∝-cuts, that is, ( ) ,
i jk

i jkC
c  this assures ( )

Z
z  as required by (4). 

To solve Model (7b) is not so straightforward as Model (7a). The outer program and inner program of Model 

(7b) have different directions for optimization, one for maximization and another for minimization. A 
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transformation is required to make a solution obtainable. The dual of inner program is formulated to become a 

maximization problem to be consistent with the maximization operation of outer program. It is well known from 

the duality theorem of linear programming that the primal model and the dual model have the same objective 

value. Thus, Model (7b) becomes: 

1 1

1 1

m a x

( ) ( )

( ) ( )

( ) ( )

( ) ( )

, ,

U

L U

ijk i jk i jk

L U

i i i

L U

j j j

L U

k k k

m n

i j

i j

l n

k j

k j

Z

C c C

S s S

D d D

E e E

s d

e d

i j k



 

 

 

 

 

 

 

 

 

 

 







 

 

1 1 1 1

m a x

. .

1, 2 , . . . . . , , 1, 2 , . . . . . , , 1, 2 , . . . . . , ,

, , 0 , , ,

m n l n

i i j j k k j j

i j k j

i j k j i jk

i j k

s u d v e w B y

s t u v w y c

i m j n k l

u v w i j k

   


   




    


  



  


   

                                                      (10) 

Since ( ) ( ) , , , ,
L U

ijk ijk i jk
C c C i j k

 
   in Model (10), one can derive the upper bound of the objective value by 

setting 
i jk

c  to its upper bound because this gives the largest feasible region. Thus, we can reformulate Model 

(10) as: 

1 1

1 1

m a x

( ) ( )

( ) ( )

( ) ( )

( ) ( )

, ,

U

L U

ijk i jk i jk

L U

i i i

L U

j j j

L U

k k k

m n

i j

i j

l n

k j

k j

Z

C c C

S s S

D d D

E e E

s d

e d

i j k



 

 

 

 

 

 



 

 

 

 







 

 

1 1 1

m a x

. . ( ) ,

1, 2 , ... . . , , 1, 2 , .. . . . , , 1, 2 , .. . . . , ,

, , 0 , , ,

m n l

i i j j k k

i j k

U

i j k ijk

i j k

s u d v e w

s t u v w c

i m j n k l

u v w i j k



  


  




   


  



  


  

                                                   (11) 

Now, since both outer program and inner program perform the same maximization operation, their constraints 

can be combined to form the following one-level mathematical program:   

1 1 1

m ax

m n l
U

i i j j k k

i j k

Z s u d v e w


  

                          (12.0) 

. . ( ) , 1, 2 , . . . . . , , 1, 2 , . . . . . , , 1, 2 , . . . . . , ,
U

i j k i jk
s t u v w c i m j n k l


                      (12.1) 

1 1

,

m n

i j

i j

s d

 

                                                   (12.2) 

1 1

,

l n

k j

k j

e d

 

                                                        (12.3) 
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( ) ( ) 1, ....., ,
L U

i i i
S s S i m

 
                                              (12.4) 

( ) ( ) 1, . . . . . , ,
L U

j j j
D d D j n

 
                      (12.5)  

( ) ( ) 1, ....., ,
L U

k k k
E e E k l

 
                      (12.6) 

0 , , ,
i jk

x i j k                                           

(12.7)This model is a linearly constrained nonlinear program. There are several effective and efficient methods 

for solving this Model (12.0 – 12.7). Similar to Model (9), since all 
i jk

c  have been set to the upper bounds of 

their ∝-cuts, that is, ( ) ,
i jk

i jkC
c   this assures ( )

Z
z   as required by (4). 

 If the total supply and the total conveyance capacity are greater than the total demand at all  

 values, respectively, i.e., 
0 01 1

( ) ( )
m nL U

i ji j
S D

   
  and 

0 01 1
( ) ( )

l nL U

k jk j
E D

   
   then the constraints 

1 1

m n

i ji j
s d

 
   can be deleted from Model (12.0 – 12.7). Multiplying constraints (12.4)– (12.6) 

by ,
i j k

u v a n d w , respectively, and substituting 
i i

s u by ,
i j j

p d v by
j

q , and 
k k

e w by
k

r , Model (12.0 – 12.7) is 

transformed into the following linear program: 

1 1 1

m a x

. . ( ) , 1, 2 , .. . . . , , 1, 2 , .. . . . , , 1, 2 , .. . . . , ,

( ) ( ) 1, .. . . . , ,

( ) ( ) 1, .. . . . , ,

( ) ( ) 1, .. . . . , ,

, ,

m n l
U

i j k

i j k

U

i j k ijk

L U

i i i i i

L U

j j j j j

L U

k k k k k

i j k

Z p q r

s t u v w c i m j n k l

S u p S u i m

D v q D v j n

E w r E w k l

p q r





 

 

 

  

   

      

  

  

  

  

0 , , ,i j k 

                            (13) 

In this case, the upper bound of the total transportation cost U
Z


at ∝ level can be found more easily. Problems 

(7a) and (7b) are assured to be feasible if the lower bound of the total fuzzy demand is smaller than both of the 

upper bound of the total fuzzy supply and the upper bound of the total conveyance capacity, i.e.,  

0 01 1
( ) ( )

n mL U

j ij i
D S

   
  and 

0 01 1
( ) ( )

n lL U

j kj k
D E

   
  . 

 

EXAMPLE 

As an illustration of the proposed approach, consider a fuzzy solid transportation problem with two fuzzy 

supplies, three fuzzy demands, two conveyance capacities and three budget intervals in nature. The notations 

used in this example is (a, b, c, d) for a trapezoidal fuzzy number with a, b, c and d as the coordinates of the four 

vertices of the trapezoid and (x, y, z) for the triangular fuzzy number with x, y, z as the coordinates of the three 

vertices of the triangle. The problem has the following mathematical form: 

 

 

1 1 1 1 1 2 1 2 1 1 2 2 1 3 1 1 3 2

2 1 1 2 1 2 2 2 1 2 2 2 2 3 1 2 3 2

M in   2 0 , 3 0 , 4 0 7 0 6 0 6 0 5 0 3 0

1 0 , 2 0 , 3 0 4 0 2 0 5 0 4 0 5 0

x x x x x x

x x x x x x

    

       
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s.t.     1 1 1 1 1 2 1 2 1 1 2 2 1 3 1 1 3 2
7 0 , 8 0 ,1 0 0 ,1 2 0x x x x x x           

         
2 1 1 2 1 2 2 2 1 2 2 2 2 3 1 2 3 2

(6 0 , 7 0 , 8 0 ),x x x x x x          

         
1 1 1 1 1 2 2 1 1 2 1 2

(1 0 , 3 0 , 4 0 , 5 0 )x x x x        

         
1 2 1 1 2 2 2 2 1 2 2 2

(4 0 , 5 0 , 6 0 ),x x x x     

         
1 3 1 1 3 2 2 3 1 2 3 2

(3 0 , 4 0 , 6 0 , 7 0 ),x x x x     

         
21 1 1 1 2 1 1 3 1 2 1 1 2 1 2 3 1

(7 0 , 8 0 ,1 0 0 ),x x x x x x     

         
1 1 2 1 2 2 1 3 2 2 1 2 2 22 2 3 2

(6 0 , 7 0 , 9 0 ),xx x x x x     

         
1 1 1 1 1 2 2 1 1 2 1 2

2 0 7 0 4 01 0 [3 4 5 0, 3 7 5 0 ],x x x x    

         
1 2 1 2 2 1 2 2 1 2 2 2

6 0 2 0 0 5 03 [2 5 8 5, 2 6 1 5],x x x x     

         
1 3 1 1 3 2 2 3 1 2 3 2

5 0 3 0 4 0 5 0 [2 8 6 0, 2 9 4 0 ],x x x x    

         0 , 1, 2 , 1, 2 , 3, 1, 2 .
i jk

x i j k     

The total Supply
1 2

(1 3 0 ,1 5 0 ,1 7 0 , 2 1 0 ),S S S    the total demand
1 2 3

D D D D      (8 0 ,1 2 0,1 5 0,1 8 0 ), and 

the total conveyance capacity 
1 2

(1 3 0 ,1 5 0 ,1 9 0 )E E E     and the intervals of budgets are [3450, 3750], [2585, 

2615] and [2860, 2940].  Since ,S D E    Problem has feasible solutions. According to models (9) and 

(12), the lower and upper bounds of Z at possibility level  can be formulated as: 
  

1 1 1 1 1 2 1 2 1 1 2 2 1 3 1 1 3 2

2 1 1 2 1 2 2 2 1 2 2 2 2 3 1 2 3 2

m in 2 0 7 0 6 0 2 0 5 0 3 0

4 0 3 0 5 0 41 0 0 5 0

L
Z x x x x x x

x x x x x x


     

    

 

        s.t,   
111 112 121 122 131 132 1

,x x x x x x s       

                
2 1 1 2 1 2 2 2 1 2 2 2 2 3 1 2 3 2 2

,x x x x x x s          

                
1 1 1 1 1 2 2 1 1 2 1 2 1

x x x x d    ,  

                
1 2 1 1 2 2 2 2 1 2 2 2 2

,x x x x d     

                
1 3 1 1 3 2 2 3 1 2 3 2 3

,x x x x d     

                
111 121 131 2 22 31 11 21 1

,xx x x exx      

                
112 122 132 2 22 32 22 212

,xx x x exx      

               
1 1 1 1 1 2 2 1 1 2 1 2

1 0 3 6 0 02 0 7 0 4 0 ,x x x x    

               
1 2 1 2 2 1 2 2 1 2 2 2

3 2 6 0 06 0 2 0 0 5 0 ,x x x x     

               
1 3 1 1 3 2 2 3 1 2 3 2

290050 30 40 50 ,x x x x   

                  
1 2 1 2 3

1 2 1 2 3

,

,

s s d d d

e e d d d

   

   
 

               

1

2

1

2

3

1

2

7 0 1 0 1 2 0 2 0 ,

6 0 1 0 9 0 2 0 ,

1 0 1 0 5 0 1 0 ,

4 0 1 0 6 0 1 0 ,

3 0 1 0 7 0 1 0 ,

7 0 1 0 1 0 0 2 0 ,

6 0 1 0 9 0 2 0 ,

0 , 1, 2 , 1, 2 , 3, 1, 2 .
i jk

s

s

d

d

d

e

e

x i j k

 

 

 

 

 

 

 

   

   

   

   

   

   

   

   
 

1 1 2 2 1 1 2 2 3 3 1 1 2 2 1 2 3
m ax 3 6 0 0 2 6 0 0 2 9 0 0

U
Z s u s u d v d v d v e w e w y y y


            

          s.t.          
1 1 1 1

2 0 4 0 1 0 ,u v w y        
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1 1 2 1

7 0 7 0,u v w y      

                         
1 2 1 2

6 0 6 0 ,u v w y      

                         
1 2 2 2

2 0 2 0 ,u v w y      

                         
1 3 1 3

5 0 5 0,u v w y      

                         
1 3 2 3

3 0 3 0 ,u v w y      

                         
2 1 1 1

(3 0 1 0 ) 3 0 1 0 ,u v w y         

                         
2 1 2 1

4 0 4 0 ,u v w y      

                        
2 2 1 2

3 0 3 0,u v w y      

                        
2 2 2 2

5 0 5 0,u v w y      

                        
2 3 1 3

4 0 4 0,u v w y    
 

                        2 3 2 3
5 0 5 0,u v w y      

                        
1 2 1 2 3

1 2 1 2 3

,

,

s s d d d

e e d d d

   

   
 

                        

1

2

1

2

3

1

2

1 2 1 2 3 1 2

7 0 1 0 1 2 0 2 0 ,

6 0 1 0 9 0 2 0 ,

1 0 1 0 5 0 1 0 ,

4 0 1 0 6 0 1 0 ,

3 0 1 0 7 0 1 0 ,

7 0 1 0 1 0 0 2 0 ,

6 0 1 0 9 0 2 0 ,

, , , , , , 0 .

s

s

d

d

d

e

e

u u v v v w w

 

 

 

 

 

 

 

   

   

   

   

   

   

   



 

We solve the above two problems by using Lingo [12]. Table.1 lists the  -cuts of the total transportation cost 

at 11 distinct   values: 0, 0.1, 0.2, 0.3… 1.0 and Fig.1 depict the membership function of the total 

transportation cost of this example. 

The  value indicates the level of possibility and degree of uncertainty of the obtained information. The greater 

the  value, the greater the level of possibility and the lower the degree of uncertainty is.  

 

Table 1: The  -cuts of the total transportation cost 

  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

L
Z


 1800 1860 1920 1980 2040 2100 2200 2300 2400 2500 2600 

U
Z


 5700 5543 5392 5247 5108 4975 4848 4727 4612 4503 4100 
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Fig. 1. The membership function of the total transportation cost  

Since the fuzzy total transportation cost lies in a range, its most likely value falls between 2600 and 4100, and 

its value impossible to falls outside the range of 1800 and 5700.  

 For   =0, the lower bound of *
Z =1800 occurs at *

1 2 2
x =40, *

1 3 2
x =30, *

2 1 1
x =10 with  

1
s = 120, 

2
s =90, 

1
d =10, 

2
d =40, 

3
d =30, 

1
e =100, 

2
e =90, and the other decision variables are 0. The upper 

bound of *
Z =5700 occurs at *

1 1 1
x =40, *

1 2 2
x =10, *

1 3 2
x =70, *

2 1 1
x =10, *

2 2 1
x =50 with 

1
s = 120, 

2
s =60, 

1
d =50, 

2
d =60, 

3
d =70, 

1
e =100, 

2
e =80, and the other decision variables are 0. 

At other extreme end of  =1, the lower bound of  *
Z =2600 occurs at *

1 2 2
x =30, *

1 3 2
x =40, *

2 1 1
x =20, *

2 2 1
x =20 

with 
1

s = 80, 
2

s =70, 
1

d =20, 
2

d =50, 
3

d =40, 
1

e =80, 
2

e =70, and the other decision variables are 0. The upper 

bound of *
Z =4100 occurs at *

1 1 1
x =10, *

1 2 2
x =10, *

1 3 2
x =60, *

2 1 1
x =30, *

2 2 1
x =40 with 

1
s = 80, 

2
s =70, 

1
d =40, 

2
d =50, 

3
d =60, 

1
e =80, 

2
e =70, and the other decision variables are 0. Notably, the values of the decision 

variables derived in this example are also fuzzy. 

 

IV CONCLUSION 
 

Transportation models have wide applications in logistics and supply chain management for improving service 

and reduce the cost. We have developed the solution procedure for a fuzzy solid transportation problem with 

fuzzy supply, requirement, conveyance capacity and budget interval and we put solution using Hu and Wang‟s 

approach and fuzzy programming approach. In the present study we solve mathematical problems using Lingo 

software. In frame work with genuine field problem, the technique could be used as very effectual and 

promising and in view of a practical significance. The problem can be extended or applied to other similar 

uncertain models in other areas such as inventory control, ecology, sustainable form management, etc. 
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