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ABSTRACT

This paper provides asymptotic estimates for the expected number of real zeros and k-level
crossings of a random algebraic polynomial of the form

a0(n-1 ¢ o)*? + al(n-1 ¢ 1)"*x + a2(n-1 ¢ )2 %% + ... +ana(n-1 ¢ n.g) Y2,

where a; (J=0, 1, 2, ..., n-1) are independent standard normal random variables and k is constant
independent of x . Itis shown that these asymptotic estimates are much greater than those for
algebraic polynomials of the form a0 +alx+a2x*+ ... + ap X" .
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I INTRODUCTION
Let (Q, A, Pr)bea fixed probability space and let {a;(®)} ™" be
j=0

a sequence of independent random variables defined on Q. The random algebraic polynomial was

introduced in the pioneer work of Littlewood and Offord [5] and [6] as

n—1

i ]

00X < o0y 2 & (@) X
j=0

and since then has been greatly studied . Denote by Ng(o, B) the number of real roots of the
equation p(x)= K in the interval (o, ) and by ENy(a , B ) its expected value. In particular it is
shown (for example see kac [4] or wilkins [8] ) that if the coefficients are assumed to have a
standard normal distribution and n is sufficiently large , ENg(-00,00 ) ~( 2/7) log n. Recently ( see

farahmand [3] ), it was shown that this asymptotic value remains valid for EN(-c0,0) as long as
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k is bounded. For k large such that k’n —0 as n — oo, ENy(-o0,00) asymptotically reduced to (1/z)
log (n/k?) in(-1, 1) while it remains the same as for k=0in (-co,-1)v(1,). In contrast,a
random trigonometric polynomial

n-1

T(x) = Ta(X,@)=0, a(w)cos j0has more roots in (0,2r).

j=0
In fact EN (0,21 ) ~2n/+3 fork=o0 (Vn). Motivated by the interesting results obtained in
Littlewood and offord [6] we considered the case when the coefficients a(w ) have variance 1/j!. It
is presumably the case , possibly under some mild conditions for K and for n sufficiently large, that
ENy (-00,00 ) Is o(¥n ). This author ,however ,was unable to make any substantial progress towards
this conjecture . Instead in this paper we study the polynomials

1

Z n-1
P(x)=Py(x, 0) = go) )
i= J

0

n-1
This is indeed , the same as saying that the jth coefficient of Q(x) has variance ( ) . Besides

J
the mathematical interest , as reported in Edelman and Kostlan [2 ,page 11] these polynomials
have some relationship with physics [1]. We prove the following theorems. Theorem 1 was known to
Edelman and Kostlan , however to be complete we give a proof here. Theorem3 , and its
comparison with theoreml , shows that for p(x) there are as many extrema as the number of zero
crossings. Therefore unlike Q(x) , all the oscillations of p(x) are between two zero crossings,

asymptotically in expectation.

THEOREM 1. If the coefficients a; of p(x) are independent standard normal random
variables , then
ENo(-o0,00) = Vn-1

THEOREM 2 . Denote » (n)=(2n-1)!1/(2n)!! and assume K*» (n)—0.With
the same assumptions as in theorem 1 for the coefficients of p(x) , we have

ENk(-00,00) ~ \n-1

I A FORMULA FOR THE EXPECTED NUMBER OF REAL ROOTS

Let (2.1) A% = var {P(X)-K},
(2.2) B? = var {P’(x)},
(2.3) C=cov[{P(x)-K},P (x)]

And n= -CK/A+A’B>-C”’
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Then by using the expected number of level crossings given by Cramer and Leadbetter

[1, page 285] for our equation P(x)—k=0, we can obtain

f

B\/l—CzlAsz K
ENg(a . :I ¢(—-——)[2¢(n)+—n{2¢(n)—1}]dx
(@,B) N A

4

t

p()= (211)™" [oxp (- y" 12}y

Where as usual

-1/

and ¢(t):(2H) ZeXp( —t2/2)dy

X

2
Let A= A’B°~C? and erf(x) = jexp( —17)dt : then we can write the extension of a
0

formula obtained by Rice[7] for the case of k=0 as

(24) ENk(a,B) = L(a,B)+L(a,B)

A B’K ? 4
(2.5) Il(a,B)IIHAzeXp Y X
Y:;

(26) h(a.p) =] 5 P N2Aa )

Y

PROOF OF THEOREM 1

We need the following , where (3.2) and (3.3) are obtained by differentiation of (3.1)
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n-1 n — l no1
2 23 2
31y A _ZL X = (x* +1)
=0 J
"1in-1)
2 _ 2j-2 B 2 n-3 2 2
(32) B" = ( o |X =(n-1(x" +1) (nx X +1)
j=0 J
n-1 n—1 _ oo
- 2j-1 2
= X =(n—-1)x\x" +1
(33) IR (n —1)x( )

Therefore , since from (3.1)-(3.3)
(34) A= AB°—C*=(n-1)(x*+1)™* from (2.4) -(2.6)we obtain

A

-1
ENo( 0 )=H I 2
oY, A
0

dx

Wn-1" dx \n-1

(35) =N £x2+1_ 2

This gives the proof of theorem 1. Itis, indeed, interesting to note that from(3.5)

A/n —1

l_I(x2 +1)

is the destiny function of the number of real zeros of P(X) ; see also [2, page 12 ] .
Obtaining a closed form of the above density function is uncommon . An asymptotic result

, for most cases, is the best that can be achieved .

PROOF OF THEOREM 2

Because | erfu| < VII /2 , it follows that from (2.6 ), (3.1),and ( 3.3) that

164 |Page




International Journal of Advance Research In Science And Engineering  http://www.ijarse.com

IJARSE, Vol. No.4, Issue 03, March 2015 ISSN-2319-8354(E)
K K 2
0<1,(-m ‘ ‘ '[ —exp | - — |dx
\/ 211 2A
[k |/V2
— J e ' dv

:\/Eo

ifv= |K |/(A \/;) . Therefore, because erfu <u when u>0

4.1)

Moreover , it follows from (2.5), (3.1),(3.2) and (3.4) that

yn-1" ¢°
Il(—oo,oo): - JX2+1dX.

Inwhich s= K2(x?-x%+1) / {2 (X*+1) ™"} . If x = tand , we find that

2/n_ll_IIZ

1(—oo,oo)z—jeisdl9
H 0
in which s = (K?2) { (n-1) sin?0 + cos’ }cos ™ 0. Therefore ,
n/z
2 -
(42) I (-0,m)= —— - jﬁ (1-¢e ndezdn—l—R,

0
In which from [ 4, page 369 ],
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mn/2
2+/n -1 e
0<R=—— [(l-e")o

I 0

on—1™? ,

< ——— [sdo=K"B,

H 0

B AN —1(3n—4)(2n — 5)!!

(2n — 2)(2n — 4)!1

B,

3n -4
=n-1y(n-2)——
2n -2

A straight forward algebraic calculation shows that g .1 <g , when n >2. We conclude that

that 0 <R <K?p ,=K% 2 and then that R =o(Vn) because K*=o{y * (n)} and » (n) ~

~ni1 . When this last result is combined with (4.1), (4.2) and (2.4) , it is clear that

theorem 2 is true . In fact,we have actually proved the better result that

J

from which we can also infer not only Theorem 2 but also that

EN  (—o,0)=+/n-1+0(@1)

When K is bounded .

_K_g EN K(—oo,oo)—\/n—l < min {I,E‘K‘},

EXTREMA
The expected number of extrema of P(x), denoted by EM(-c0,0) ,is simply the expected

1/2

"ot n-1 ,
number of real zeros of P’(x)= 3 a, j[ ) ] x !
J

j=1
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Therefore we apply ENg (-0,00 ) for P’(x). To this end , by successive differentiation of
(2.2)

We obtain
n-1 n —1
A2 _ Jz[ szj‘z
=, ;
(5.1) = (n—1)(x* + 1)n_3(nx 2o x+1),,

n—-1 n—1 )
C:ij(j_l)[ _ Jx
j=1 J

(5.2) —(n=1)(n-2)x(x"+1)"*{n-1)x*+ 2}
And BZ=nz:lJ'Z(J-—l)z[nfl]x“4
ji=1 J
(5.3) =(n-1)(n-2)(x*+1) {(n—-1)(n-2)x* +4(n - 2)x" + 2}

therefore , from (5.1) — (5.3) we obtain

A A= 2){(n—1)(n-2)x* + 2(n - 1)x* + 2

CONNE (x> +1){(n —1)x* + 1}

From (5.4) it then follows that, for all non-zero x
lim A 1

n— o A2a/n -2 xZ+1

Thensince A/A*vn-2 < \/;/(\/x2 +1) for all real x,the dominated convergent

theorem for Lebesgue integrals shows that

N A T dx
—dx = =
;[C A’A/n -2 Lx2+1
theorem 3 is then an intermediate consequence of this result .
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