ASYMPTOTIC ESTIMATES OF LEVEL CROSSINGS OF A RANDOM ALGEBRAIC POLYNOMIAL

${ }^{1}$ Dipty Rani Dhal , ${ }^{2}$ Dr.P.K.Mishra
1,2 Department of Mathematics, ITER, SOA, BBSR, Odisha, (India)

Abstract

This paper provides asymptotic estimates for the expected number of real zeros and k-level crossings of a random algebraic polynomial of the form $a 0\left(n-1 c_{0}\right)^{1 / 2}+a 1\left(n-1 c_{1}\right)^{1 / 2} x+a 2\left(n-1 c_{2}\right)^{1 / 2} x^{2}+\ldots+a_{n-1}\left(n-1 c_{n-1}\right)^{1 / 2} x^{n-1}$, where $a_{J}(J=0,1,2, \ldots, n-1)$ are independent standard normal random variables and k is constant independent of x.It is shown that these asymptotic estimates are much greater than those for algebraic polynomials of the form $a 0+a 1 x+a 2 x^{2}+\ldots+a_{n-1} x^{n-1}$.

1991 Mathematics subject classification (amer. Math. Soc.): 60 B 99.

Keywords and phrases: Independent, identically distributed random variables, random algebraic polynomial, random algebraic equation, real roots, domain of attraction of the normal law, slowly varying function.

I INTRODUCTION

Let (Ω, A, Pr) be a fixed probability space and let $\left\{\mathrm{a}_{\mathrm{J}}(\omega)\right\}^{\mathrm{n}-1}$ be

$$
\mathrm{j}=0
$$

a sequence of independent random variables defined on Ω. The random algebraic polynomial was introduced in the pioneer work of Littlewood and Offord [5] and [6] as

$$
\mathrm{Q}(\mathrm{x}) \equiv \mathrm{Q}_{\mathrm{n}}(\mathrm{x}, \omega)=\sum_{j=0}^{n-1} a j(\omega) x^{j}
$$

and since then has been greatly studied. Denote by $\mathrm{N}_{\mathrm{K}}(\alpha, \beta)$ the number of real roots of the equation $\mathrm{p}(\mathrm{x})=\mathrm{K}$ in the interval (α, β) and by $\mathrm{EN}_{\mathrm{k}}(\alpha, \beta)$ its expected value. In particular it is shown (for example see kac [4] or wilkins [8]) that if the coefficients are assumed to have a standard normal distribution and n is sufficiently large , $\mathrm{EN}_{0}(-\infty, \infty) \sim(2 / \pi) \log n$. Recently (see farahmand [3]), it was shown that this asymptotic value remains valid for $E N_{\mathrm{k}}(-\infty, \infty)$ as long as
k is bounded. For k large such that $\mathrm{k}^{2} / \mathrm{n} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty, \mathrm{EN}_{\mathrm{k}}(-\infty, \infty)$ asymptotically reduced to ($1 / \pi$) $\log \left(\mathrm{n} / \mathrm{k}^{2}\right)$ in $(-1,1)$ while it remains the same as for $\mathrm{k}=0$ in $(-\infty,-1) v(1, \infty)$. In contrast, a random trigonometric polynomial

$$
T(x) \equiv T_{n}(x, \omega)=\sum_{j=0}^{n-1} a_{j}(\omega) \cos j \theta \text { has more roots in }(0,2 \pi) .
$$

In fact $\mathrm{EN}_{\mathrm{k}}(0,2 \pi) \sim 2 \mathrm{n} / \sqrt{3}$ for $\mathrm{k}=\mathrm{o}(\sqrt{\mathrm{n}})$. Motivated by the interesting results obtained in Littlewood and offord [6] we considered the case when the coefficients $\mathrm{a}_{\mathrm{j}}(\omega)$ have variance $1 / \mathrm{j}$!. It is presumably the case, possibly under some mild conditions for K and for n sufficiently large, that $\mathrm{EN}_{\mathrm{k}}(-\infty, \infty)$ Is $\mathrm{o}(\sqrt{ } \mathrm{n})$. This author ,however ,was unable to make any substantial progress towards this conjecture. Instead in this paper we study the polynomials

$$
\mathrm{P}(\mathrm{x}) \equiv \mathrm{P}_{\mathrm{n}}(\mathrm{x}, \omega)=\sum_{j=0}^{n-1} \mathrm{a}_{\mathrm{j}}(\omega)\binom{n-1}{j}^{1 / 2} \mathrm{x}^{\mathrm{j}}
$$

This is indeed, the same as saying that the j th coefficient of $\mathrm{Q}(\mathrm{x})$ has variance $\binom{n-1}{j}$. Besides the mathematical interest, as reported in Edelman and Kostlan [2, page 11] these polynomials have some relationship with physics [1]. We prove the following theorems. Theorem 1 was known to Edelman and Kostlan , however to be complete we give a proof here. Theorem3, and its comparison with theorem1, shows that for $\mathrm{p}(\mathrm{x})$ there are as many extrema as the number of zero crossings. Therefore unlike $Q(x)$, all the oscillations of $p(x)$ are between two zero crossings, asymptotically in expectation.

THEOREM 1. If the coefficients a_{j} of $p(x)$ are independent standard normal random variables, then

$$
E N_{0}(-\infty, \infty)=\sqrt{n}-1
$$

THEOREM 2. Denote $\gamma(n)=(2 n-1)!!/(2 n)!!$ and assume $K^{2} \gamma(n) \rightarrow 0$.With the same assumptions as in theorem 1 for the coefficients of $p(x)$, we have $E N_{K}(-\infty, \infty) \sim V_{n}-1$

II A FORMULA FOR THE EXPECTED NUMBER OF REAL ROOTS

Let (2.1)

And

$$
\begin{gathered}
\mathrm{A}^{2}=\operatorname{var}\{\mathrm{P}(\mathrm{X})-\mathrm{K}\}, \\
\mathrm{B}^{2}=\operatorname{var}\left\{\mathrm{P}^{\prime}(\mathrm{x})\right\}, \\
\mathrm{C}=\operatorname{cov}\left[\{\mathrm{P}(\mathrm{x})-\mathrm{K}\}, \mathrm{P}^{\prime}(\mathrm{x})\right] \\
\eta=-\mathrm{CK} / \mathrm{A} \sqrt{A^{2} B^{2}-C^{2}}
\end{gathered}
$$

Then by using the expected number of level crossings given by Cramer and Leadbetter [1, page 285] for our equation $\mathrm{P}(\mathrm{x})-\mathrm{k}=0$, we can obtain

$$
\operatorname{EN}_{K}(\alpha, \beta)=\int_{a}^{\beta} \frac{B \sqrt{1-C^{2} / A^{2} B^{2}}}{A} \phi\left(-\frac{K}{A}\right)[2 \phi(\eta)+\eta\{2 \phi(\eta)-1\}] d x
$$

Where as usual

$$
\phi(t)=(2 \Pi)^{-1 / 2} \int_{-\infty}^{t} \exp \left(-y^{2} / 2\right) d y
$$

$$
\text { and } \quad \phi(t)=(2 \Pi)^{-1 / 2} \exp \left(-t^{2} / 2\right) d y
$$

Let $\Delta^{2}=A^{2} B^{2}-C^{2}$ and $\operatorname{erf}(x)=\int_{0}^{x} \exp \left(-t^{2}\right) d t$; then we can write the extension of a formula obtained by Rice [7] for the case of $\mathrm{k}=0$ as

$$
\begin{equation*}
E N_{K}(\alpha, \beta)=I_{1}(\alpha, \beta)+I_{2}(\alpha, \beta) \tag{2.4}
\end{equation*}
$$

(2.5) $\quad \mathrm{I}_{1}(\alpha, \beta)=\int_{\beta}^{\alpha} \frac{\Delta}{\Pi A^{2}} \exp \left(-\frac{B^{2} K^{2}}{2 \Delta^{2}}\right) d x$
(2.6) $\quad \mathrm{I}_{2}(\alpha, \beta)=\int_{\beta}^{\alpha} \frac{\sqrt{2} K C}{\Pi A^{3}} \exp \left(-\frac{K^{2}}{2 A^{2}}\right) \operatorname{erf}\left(\frac{K C}{\sqrt{2} A \Delta}\right) d x$

PROOF OF THEOREM 1

We need the following, where (3.2) and (3.3) are obtained by differentiation of (3.1)
and

$$
\begin{equation*}
A^{2}=\sum_{J=0}^{n-1}\binom{n-1}{j} x^{2 J}=\left(x^{2}+1\right)^{n-1} \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
B^{2} & =\sum_{j=0}^{n-1}\binom{n-1}{j} x^{2 j-2}=(n-1)\left(x^{2}+1\right)^{n-3}\left(n x^{2}-x^{2}+1\right) \tag{3.2}\\
C & =\sum_{J=0}^{n-1} j\binom{n-1}{j} x^{2 j-1}=(n-1) x\left(x^{2}+1\right)^{n-2} \tag{3.3}
\end{align*}
$$

Therefore, since from (3.1)-(3.3)

$$
\begin{gather*}
\Delta^{2}=\mathrm{A}^{2} \mathrm{~B}^{2}-\mathrm{C}^{2}=(\mathrm{n}-1)\left(\mathrm{x}^{2}+1\right)^{2 \mathrm{n}-4} \text { from }(2.4)-(2.6) \text { we obtain } \tag{3.4}\\
\mathrm{EN}_{0}(0, \infty)=\prod_{0}^{-1} \int_{A^{2}}^{\infty} \frac{\Delta}{A^{2}} d x \\
=\frac{\sqrt{n-1}}{\prod} \int_{0}^{\infty} \frac{d x}{x^{2}+1}=\frac{\sqrt{n-1}}{2}
\end{gather*}
$$

This gives the proof of theorem 1. It is, indeed, interesting to note that from(3.5)

$$
\frac{\sqrt{n-1}}{\Pi\left(x^{2}+1\right)}
$$

is the destiny function of the number of real zeros of $\mathrm{P}(\mathrm{X})$; see also [2, page 12]. Obtaining a closed form of the above density function is uncommon. An asymptotic result , for most cases, is the best that can be achieved.

PROOF OF THEOREM 2

Because \mid erf u $\mid<\sqrt{\Pi} / 2$, it follows that from (2.6), (3.1), and (3.3) that

$$
\begin{aligned}
0 \leq I_{2}(-\infty, \infty) & \leq \frac{|K|}{\sqrt{2 \Pi}} \int_{-\infty}^{\infty} \frac{C}{A^{3}} \exp \left(-\frac{K^{2}}{2 A^{2}}\right) d x \\
& =\frac{2}{\sqrt{\Pi}} \int_{0}^{|K| / \sqrt{2}} e^{-v^{2}} d v
\end{aligned}
$$

if $\mathrm{v}=|K| /(A \sqrt{2})$. Therefore, because erf $\mathrm{u} \leq \mathrm{u}$ when $\mathrm{u} \geq 0$

$$
\begin{equation*}
0 \leq I_{2}(-\infty, \infty) \leq \frac{2}{\sqrt{\Pi}} \operatorname{erf}\left(\frac{K}{\sqrt{2}}\right) \leq \min \left\{1, \frac{\sqrt{2}|K|}{\sqrt{\Pi}}\right\} \tag{4.1}
\end{equation*}
$$

Moreover, it follows from (2.5), (3.1), (3.2) and (3.4) that

$$
I_{1}(-\infty, \infty)=\frac{\sqrt{n-1}}{\Pi} \int_{-\infty}^{\infty} \frac{e^{-s}}{x^{2}+1} d x
$$

In which $s=K^{2}\left(n x^{2}-x^{2}+1\right) /\left\{2\left(x^{2}+1\right)^{n-1}\right\}$. If $x=\tan \theta$, we find that

$$
I_{1}(-\infty, \infty)=\frac{2 \sqrt{n-1}}{\Pi} \int_{0}^{п / 2} e^{-s} d \theta
$$

in which $s=\left(K^{2} / 2\right)\left\{(n-1) \sin ^{2} \theta+\cos ^{2} \theta\right\} \cos ^{2 n-4} \theta$. Therefore ,

$$
\begin{equation*}
I_{1}(-\infty, \infty)=\frac{2 \sqrt{n-1}}{\Pi} \int_{0}^{\Pi / 2}\left\{1-\left(1-e^{-s}\right)\right\} d \theta=\sqrt{n-1}-R, \tag{4.2}
\end{equation*}
$$

In which from [4, page 369] ,

$$
\begin{gathered}
0 \leq R=\frac{2 \sqrt{n-1}}{\Pi} \int_{0}^{\Pi / 2}\left(1-e^{-s}\right) d \theta \\
\leq \frac{2 \sqrt{n-1}}{\Pi / 2} \int_{0}^{\Pi} s d \theta=K^{2} \beta_{n} \\
\beta_{n}=\frac{\sqrt{n-1}(3 n-4)(2 n-5)!!}{(2 n-2)(2 n-4)!!} \\
=\sqrt{n-1} \gamma(n-2) \frac{3 n-4}{2 n-2}
\end{gathered}
$$

A straight forward algebraic calculation shows that $\beta_{\mathrm{n}+1}<\beta_{\mathrm{n}}$ when $\mathrm{n} \geq 2$. We conclude that that $0 \leq \mathrm{R} \leq \mathrm{K}^{2} \beta_{2}=\mathrm{K}^{2} / 2$ and then that $\mathrm{R}=\mathrm{o}(\sqrt{ } \mathrm{n})$ because $\mathrm{K}^{2}=\mathrm{o}\left\{\gamma^{-1}(\mathrm{n})\right\}$ and $\gamma(\mathrm{n}) \sim$ $\sqrt{n \Pi}$. When this last result is combined with (4.1), (4.2) and (2.4), it is clear that theorem 2 is true. In fact, we have actually proved the better result that

$$
-\frac{K^{2}}{2} \leq E N_{K}(-\infty, \infty)-\sqrt{n-1} \leq \min \left\{1, \frac{\sqrt{2}|K|}{\sqrt{\Pi}}\right\},
$$

from which we can also infer not only Theorem 2 but also that

$$
E N_{K}(-\infty, \infty)=\sqrt{n-1}+O(1)
$$

When K is bounded.

EXTREMA

The expected number of extrema of $\mathrm{P}(\mathrm{x})$, denoted by $\mathrm{EM}(-\infty, \infty)$, is simply the expected number of real zeros of $\mathrm{P}^{\prime}(\mathrm{x})=\sum_{j=1}^{n-1} a_{j} j\binom{n-1}{j}^{1 / 2} x^{j-1}$

Therefore we apply $\mathrm{EN}_{0}(-\infty, \infty)$ for $\mathrm{P}^{\prime}(\mathrm{x})$. To this end , by successive differentiation of (2.2)

We obtain

$$
A^{2}=\sum_{j=0}^{n-1} j^{2}\binom{n-1}{j} x^{2 j-2}
$$

$$
C=\sum_{j=1}^{n-1} j^{2}(j-1)\binom{n-1}{j} x^{2 j-3}
$$

And

$$
\begin{equation*}
=(n-1)(n-2) x\left(x^{2}+1\right)^{n-4}\left\{(n-1) x^{2}+2\right\} \tag{5.2}
\end{equation*}
$$

therefore, from (5.1) - (5.3) we obtain

$$
\begin{equation*}
\frac{\Delta}{A^{2}}=\frac{\sqrt{(n-2)\left\{(n-1)(n-2) x^{4}+2(n-1) x^{2}+2\right\}}}{\left(x^{2}+1\right)\left\{(n-1) x^{2}+1\right\}} \tag{5.4}
\end{equation*}
$$

From (5.4) it then follows that, for all non-zero x

$$
\lim _{n \rightarrow \infty} \frac{\Delta}{A^{2} \sqrt{n-2}}=\frac{1}{x^{2}+1}
$$

Then since $\Delta / A^{2} \sqrt{n-2} \leq \sqrt{2} /\left(\sqrt{x^{2}+1}\right)$ for all real x , the dominated convergent theorem for Lebesgue integrals shows that

$$
\int_{-\infty}^{\infty} \frac{\Delta}{A^{2} \sqrt{n-2}} d x=\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}=\Pi
$$

theorem 3 is then an intermediate consequence of this result.

REFERENCES

1. Crammer, H and Leadbetter, N.R. "Stationary and Related Stochastic Processes", Wiley, New York, 1967.
2. Edelman, F. and Kostlan, H , The average number of maxima of a random algebraic curve, Proc. Cambridge Phil. Soc. 65 (1969), 741-753.
3. Farahmand, K. Level crossings of random trigonometric polynomial, Proc. Of Amer. Math. Soc. Voll. I I I., Number 2, Feb 1991.
4. Kac, M. On the average number of real roots of random algebraic equation ,Bull. Amer. Math. Soc. 49 (1943) 314-320.
5. Littlewood, J.E. and Offord, A.C. On the number of real roots of a random algebraic equation (I) Jour. London Math. Soc. (1938), 288-295.
6. Littlewood, J.E. and Offord, A.C. On the number of real roots of a random algebraic equation (II), Proc. Cambridge phil. Soc. 35 (1939) 133-148.
7. Rice, S.O. Mathematical theory of random noise, Bell System Tech. your. 25 (1945), 46-156. Tech8our. 25 (1945), 46-156.
8. Wilkins, B. "The Integral Calculus", Scientific Book Company, 1955.
