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I INTRODUCTION 
 

In 1975, Zadeh [27] introduced the notion of interval-valued fuzzy sets as an extension of fuzzy sets [26] in 

which the values of the membership degrees are intervals of numbers instead of the numbers. Interval-valued 

fuzzy sets provide a more adequate description of uncertainty than traditional fuzzy sets. It is therefore 

important to use interval-valued fuzzy sets in applications, such as fuzzy control. One of the computationally 

most intensive part of fuzzy control is defuzzification [15]. Since interval-valued fuzzy sets are widely studied 

and used, we describe briefly the work of Gorzalczany on approximate reasoning [10, 11], Roy and Biswas on 

medical diagnosis [22], Turksen on multivalued logic [25] and Mendel on intelligent control [15]. 

The fuzzy graph theory as a generalization of Euler's graph theory was first introduced by Rosenfeld [23] in 

1975. The fuzzy relations between fuzzy sets were first considered by Rosenfeld and he developed the structure 

of fuzzy graphs obtaining analogs of several graph theoretical concepts. Later, Bhattacharya [5] gave some 

remarks on fuzzy graphs, and some operations on fuzzy graphs were introduced by Mordeson and Peng [19]. 

The complement of a fuzzy graph was defined by Mordeson [18] and further studied by Sunitha and 

Vijayakumar [24]. Bhutani and Rosenfeld introduced the concept of M-strong fuzzy graphs in [7] and studied 

some properties. The concept of strong arcs in fuzzy graphs was discussed in [8]. Hongmei and Lianhua gave 

the definition of interval-valued graph in [12]. 

In this paper, we define the operations of Cartesian product, composition, union and join on interval-valued 

fuzzy graphs and investigate some properties. We study isomorphism (resp. weak isomorphism) between 

interval-valued fuzzy graphs is an equivalence relation (resp. partial order). We introduce the notion of interval-

valued fuzzy complete graphs and present some properties of self complementary and self weak complementary 

interval-valued fuzzy complete graphs. 

The definitions and terminologies that we used in this paper are standard. For other notations, terminologies and 

applications, the readers are referred to [1, 2, 3, 4, 9, 13, 14, 17, 20, 21, 28]. 
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II PRELIMINARIES 

A graph is an ordered pair G* = (V, E), where V is the set of vertices of G* and E is the set of edges of G*. Two 

vertices x and y in a graph G* are said to be adjacent in G* if {x,y} is in an edge of G*. (For simplicity an edge 

{x,y} will be denoted by xy. A simple graph is a graph without loops and multiple edges. A complete graph is 

a simple graph in which every pair of distinct vertices is connected by an edge. The complete graph on n 

vertices has n vertices and n(n – 1)/2 edges. We will consider only graphs with the finite number of vertices and 

edges. 

By a complementary graph *G  of a simple graph G* we mean a graph having the same vertices as G* and 

such that two vertices are adjacent in *G  if and only if they are not adjacent in G*. 

An isomorphism of graphs 
*

1
G  and 

*

2
G  is a bijection between the vertex sets of 

*

1
G  and 

*

2
G  such that any two 

vertices v1 and v2 of G1 are adjacent in G1 if and only if   f(v1) and f (v2) are adjacent in G2.  Isomorphic graphs 

are denoted by 
*

2

*

1
GG  . 

Let  
11

*

1
, EVG   and  

22

*

2
, EVG   be two simple graphs, we can construct several new graphs. The first 

construction called the Cartesian product of 
*

1
G  and 

*

2
G  gives a graph  EVGG ,

*

2

*

1
  with V = V1 x V2 

and 

       
211111222122

,|,,,|,, VzEyxzyzxEyxVxyxxxE    

The composition of graphs 
*

1
G and 

*

2
G  is the graph    0

21

*

2

*

1
, EVVGG  , where 

   
221112121

0
,|,, yxEyxyyxxEE    

and E is defined as in 
*

2

*

1
GG  .  Note that    *

1

*

2

*

2

*

1
GGGG  . 

The union of graphs 
*

1
G  and 

*

2
G  is defined as  

2121

*

2

*

1
, EEVVGG  . 

The join of 
*

1
G  and 

*

2
G  is the simple graph  ',

2121

*

2

*

1
EEEVVGG  , where E' is the set of all 

edges joining the nodes of V1 and V2.  In this construction it is assumed that V1 ∩ V2 ≠ Ø. 

By a fuzzy subset μ on a set X is mean a map μ : X → [0, 1].  A map v : X x X → [0,1] is called a fuzzy relation 

on X if v(x, y) ≤  min(μ(x), μ(y)) for all x,y X.  A fuzzy relation v is symmetric if v(x, y) = v(y, x) for all x, 

y X. 

An interval number D is an interval [a
-
, a

+
] with 0 ≤ a

-
 ≤ a

+
 ≤ 1.  The interval [a, a] is identified with the 

number a [0,1].  D[0, 1] denotes the set of all interval numbers. 

For interval numbers D1 = [a1
-
,b1

+
] and D2 = [a

-
2,b

+
2], we define 

            


2121221121
,min,,min,,,min,min bbaababarDDr , 

            


2121221121
,max,,max,,,max,max bbaababarDDr , 

  


2121212121
.,. bbbbaaaaDD , 

 



212121

bbandaaDD , 

 



212121

bbandaaDD , 
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212121

DDandDDDD 



2121

, bbaa  

     10,,,
11111




kwherebkabakkD . 

Then, (D[0,1], ≤, V, Λ) is a complete lattice with [0, 0] as the least element and [1,1] as the greatest. 

 

The interval-valued fuzzy set A in V is defined by 

      VxxxxA
AA




:,,  , 

where  x
A


  and  x

A


  are fuzzy subsets of V such that    xx

AA


   for all Vx  .  For any two 

interval-valued sets     xxA
AA


  ,  and     xxB

BB


  ,  in V we define: 

            VxxxxxxBA
BABA




:max,,max,  , 

            VxxxxxxBA
BABA




:min,,min,  . 

 

If G* = (V, E) is a graph, then by an interval-valued fuzzy relation B on a set E we mean an interval-valued 

fuzzy set such that 

      yxxy
AAB


  ,min  

      yxxy
AAB


  ,min  

for all Exy  . 

If G* =(V,E) is a graph, then by A strong interval valued fuzzy graph, we mean 

      yxxy
AAB


  ,min ,       yxxy

AAB


  ,min  

 

III OPERATIONS ON INTERVAL-VALUED FUZZY GRAPHS 

 

Throughout in this paper, G* is a crisp graph, and G is an interval-valued fuzzy graph. 

Definition 3.1. By an interval-valued fuzzy graph of a graph G* = (V, E) we mean a pair G = (A, B), where 

 


AA
A  ,  is an interval-valued fuzzy set on V and  


BB

B  ,  is an interval-valued fuzzy relation on 

E. 

Definition 3.2. The Cartesian product G1 × G2 of two lattice graphs G1 = (A1,B1) and G2 = (A2,B2) of the 

graphs 
*

1
G = (V1, E1) and 

*

2
G = (V2, E2) is defined as a pair (A1 × A2, B1 × B2) such that 

i)  
















))(),(min(),)((

))(),(min(),)((

2121

2121

2121

2121

xxxx

xxxx

AAAA

AAAA




 

for all (x1, x2)  V, 

ii)  
















))(),(min(),(),,)((

))(),(min()),)(,)((

2222

2222

2121

2121

yxxyxxx

yxxyxxx

BABB

BABB
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for all x  V1, and x2y2  E2, 

iii)  
















))(),(min(),(),,)((

))(),(min()),)(,)((

2121

2121

1111

1111

zyxzyzx

zyxzyzx

ABBB

ABBB




 

for all z  V
2

, and x1y1  E1. 

Definition 3.3 The complement of an interval-valued fuzzy graph G=(A,B) of  G
* 
=(V,E) is an interval-valued 

fuzzy graph 

G  = ),( BA on G
*
, where ],[




AA
AA  and ],[




BB
B   is defined by 



















































0)(),(),(min(

0)(,0
)(

0)(),(),(min(

.0)(,0
)(

xyifyx

xyif
xy

xyifyx

xyif
xy

BAA

B

B

BAA

B

B











 

Definition 3.4  An interval valued fuzzy graph is self complementary, 

if GG   

Example 3.5:   Consider a graph G
*
 =(V,E) such that V=  cba ,, , 

E= bcab , , then an interval valued fuzzy graph G=(A,B), where 

A =  
3.0

,
2.0

,
1.0

cba
, 









5.0
,

4.0
,

3.0

cba
, B= 

















4.0
,

3.0
,,

2.0
,

1.0

bcabbcab
 

is self complementary. 

Solution: 0)(,0)(,0)(,0)( 


bcbcabab
BBBB

  (by definition ) 

)(4.0)(),(2.0)(

),(3.0)(),(1.0)(

bcbcbcbc

abababab

BBBB

BBBB












 

 

Definition 3.6 

Let G1 and G2 are Interval Valued Fuzzy Graphs 

',
212121

EEEVVGGG   defined by 

     vv
'

11

'

11
   if 

21
VVv   

     vv
'

11

'

11
   if 

21
VVv   

     
jiji

vvvv
'

22

'

22
   if 

21
EEvv

ji
  

    
ji

vv
'

11
.  if 'Evv

ji
  

 

 



International Journal of Advance Research In Science And Engineering         http://www.ijarse.com  

IJARSE, Vol. No.4, Special Issue (01), March 2015                                           ISSN-2319-8354(E) 

 

622 | P a g e  

 

Theorem 3.7 

Let 
111

, EVG   and 
222

, EVG   be two Interval Valued Fuzzy Graphs.  Then 

(i) 
2121

GGGG   

(ii) 
2121

GGGG   

Proof 

Consider the identity map I : 
2121

VVVV   , 

To prove (i) it is enough to prove 

(a) (i)    
ii

vv
'

11

'

11
    

(ii)    
ii

vv
'

11

'

11
   

(b) (i)    
jiji

vvvv ,,
'

22

'

22
    

(ii)    
jiji

vvvv ,,
'

22

'

22
   

(a) (i)      
ii

vv
'

11

'

11
  , by Definition 4.1 

 

 










2

'

1

11

Vvifv

Vvifv

ii

ii




 

 

 











2

'

1

11

Vvifv

Vvifv

ii

ii




 

  
i

v
'

11
   

(ii)      
ii

vv
'

11

'

11
  , by Definition 4.1 

 

 










2

'

1

11

Vvifv

Vvifv

ii

ii




 

 

 











2

'

1

11

Vvifv

Vvifv

ii

ii




 

  
i

v
'

11
   

(b) (i)            
jijiji

vvvvvv ,.,
'

22

'

11

'

11

'

22
   

          

           












',..

,,.

'

11

'

11

'

11

21

'

22

'

11

'

11

Evvifvvvv

EEvvifvvvv

jijiji

jijiji
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',..

,,.

,,.

'

11

'

11

2

'

2

'

1

'

1

1211

Evvifvvvv

Evvifvvvv

Evvifvvvv

jijiji

jijiji

jijiji







 

   

   

 





















',0

,,

,,

2

'

2

12

Evvif

Evvifvv

Evvifvv

ji

jiji

jiji





 

  
ji

vv ,
'

22
   

 

(b) (ii)            
jijiji

vvvvvv ,.,
'

22

'

11

'

11

'

22
   

          

           












',..

,,.

'

11

'

11

'

11

21

'

22

'

11

'

11

Evvifvvvv

EEvvifvvvv

jijiji

jijiji








 

        

       

          


















',..

,,.

,,.

'

11

'

11

2

'

2

'

1

'

1

1211

Evvifvvvv

Evvifvvvv

Evvifvvvv

jijiji

jijiji

jijiji







 

   

   

 





















',0

,,

,,

2

'

2

12

Evvif

Evvifvv

Evvifvv

ji

jiji

jiji





 

  
ji

vv ,
'

22
   

To prove (ii) it is enough to prove 

(a) (i)      
ii

vv
'

11

'

11
    

(ii)      
ii

vv
'

11

'

11
   

(b) (i)      
jiji

vvvv ,,
'

22

'

22
   

(ii)      
jiji

vvvv ,,
'

22

'

22
    

Consider the identity map 
2121

: VVVVI    

(a) (i)      
ii

vv
'

11

'

11
    

 

 

 

 






















2

'

1

11

2

'

1

11

Vvifv

Vvifv

Vvifv

Vvifv

ii

ii

ii

ii
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i

v
'

11
   

(ii)      
ii

vv
'

11

'

11
    

 

 










2

'

1

11

Vvifv

Vvifv

ii

ii




 

 

 











2

'

1

11

Vvifv

Vvifv

ii

ii




 

  
i

v
'

11
   

 

(b)      (i)            
jijiji

vvvvvv ,.,
'

22

'

11

'

11

'

22
    

        

       

   


















21

'

11

2

'

2

'

1

'

1

1211

,0.

,,.

,,.

Vvvifvvv

Evvifvvvv

Evvifvvvv

jiji

jijiji

jijiji







 

   

   

   




















21

'

11

2

'

2

12

,.

,,

,,

VvVvifvv

Evvifvv

Evvifvv

jiji

jiji

jiji







 

   

     











',.

,,

1

'

111

21

'

22

Evvifvv

EorEvvifvv

ji

jiji



 
 

  
ji

vv ,
'

22
   

 

(b) (ii)            
jijiji

vvvvvv ,.,
'

22

'

11

'

11

'

22
    

        

       

   


















21

'

11

2

'

2

'

1

'

1

1211

,0.

,,.

,,.

Vvvifvvv

Evvifvvvv

Evvifvvvv

jiji

jijiji

jijiji







 

   

   

   




















21

'

11

2

'

2

12

,.

,,

,,

VvVvifvv

Evvifvv

Evvifvv

jiji

jiji

jiji
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',.

,,

1

'

111

21

'

22

Evvifvv

EorEvvifvv

ji

jiji



 
 

 
ji

vv ,)(
'

22
   

Theorem 3.8 

Let 
111

, EVG   and 
222

, EVG   be two Strong  Interval Valued Fuzzy Graphs.  Then 
21

GG   is 

a strong Interval Valued Fuzzy Graph. 

Proof 

Let EVGGG ,
21

  where V= V1 x V2 and 

        
111211222122

,:,:,,:,, EvuVwwvwuEvuVuvuuuE    

   
221112121

,:,, vuEvuvvuu  . 

(i)       
2221222

.},,{ vuuvuuu    

     
2

'

12

'

11
.. vuu  , since G2 is strong 

       
2

'

112

'

11
... vuuu   

     
2

'

112

'

11
,., vuuu    

      
2221222

.},,{ vuuvuuu    

     
2

'

12

'

11
.. vuu  , since G2 is strong 

       
2

'

112

'

11
... vuuu   

     
2

'

112

'

11
,., vuuu    

 

(ii)        
112

'

1112
,.,, vuwwvwu    

     
1111

'

1
.. vuw  , since G1 is strong 

       
11

'

111

'

1
... vwuw   

     wvwu ,.,
1

'

111

'

11
   

       
112

'

1112
,.,, vuwwvwu    

     
1111

'

1
.. vuw  , since G1 is strong 

       
11

'

111

'

1
... vwvw   

     wvwu ,.,
1

'

111

'

11
   

(iii)         
2

'

12

'

111221212
..,,, vuvuvvuu    

       
2

'

12

'

11111
... vuvu  , since G1 is strong 
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2

'

1112

'

111
...| vvuu   

     
21

'

1121

'

11
,., vvuu    

        
2

'

111211221212
.,.,,, vvuvuvvuu    

       
2

'

12

'

11111
... vuvu  , since G1 is strong 

       
2

'

1112

'

111
... vvuu   

     
21

'

1121

'

11
,., vvuu    

From (i), (ii), (iii), G1 0  G2 is a strong Interval valued Fuzzy Graph. 

 

IV  CONCLUSION 

It is well known that interval-valued fuzzy sets constitute a generalization of the notion of fuzzy sets. The 

interval-valued fuzzy models give more flexibility and compatibility to the system as compared to the classical 

and fuzzy models. So, we have introduced interval-valued fuzzy graphs and have presented several properties in 

this paper. The further study of  interval-valued fuzzy graphs may also be extended with the following projects. 

 Data base theory 

 Expert systems 

 Neural Networks 

 Shortest paths in networks 
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