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I INTRODUCTION

In 1975, Zadeh [27] introduced the notion of interval-valued fuzzy sets as an extension of fuzzy sets [26] in
which the values of the membership degrees are intervals of numbers instead of the numbers. Interval-valued
fuzzy sets provide a more adequate description of uncertainty than traditional fuzzy sets. It is therefore
important to use interval-valued fuzzy sets in applications, such as fuzzy control. One of the computationally
most intensive part of fuzzy control is defuzzification [15]. Since interval-valued fuzzy sets are widely studied
and used, we describe briefly the work of Gorzalczany on approximate reasoning [10, 11], Roy and Biswas on
medical diagnosis [22], Turksen on multivalued logic [25] and Mendel on intelligent control [15].

The fuzzy graph theory as a generalization of Euler's graph theory was first introduced by Rosenfeld [23] in
1975. The fuzzy relations between fuzzy sets were first considered by Rosenfeld and he developed the structure
of fuzzy graphs obtaining analogs of several graph theoretical concepts. Later, Bhattacharya [5] gave some
remarks on fuzzy graphs, and some operations on fuzzy graphs were introduced by Mordeson and Peng [19].
The complement of a fuzzy graph was defined by Mordeson [18] and further studied by Sunitha and
Vijayakumar [24]. Bhutani and Rosenfeld introduced the concept of M-strong fuzzy graphs in [7] and studied
some properties. The concept of strong arcs in fuzzy graphs was discussed in [8]. Hongmei and Lianhua gave
the definition of interval-valued graph in [12].

In this paper, we define the operations of Cartesian product, composition, union and join on interval-valued
fuzzy graphs and investigate some properties. We study isomorphism (resp. weak isomorphism) between
interval-valued fuzzy graphs is an equivalence relation (resp. partial order). We introduce the notion of interval-
valued fuzzy complete graphs and present some properties of self complementary and self weak complementary
interval-valued fuzzy complete graphs.

The definitions and terminologies that we used in this paper are standard. For other notations, terminologies and
applications, the readers are referred to [1, 2, 3, 4, 9, 13, 14, 17, 20, 21, 28].
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Il PRELIMINARIES

A graph is an ordered pair G* = (V, E), where V is the set of vertices of G* and E is the set of edges of G*. Two
vertices x and y in a graph G* are said to be adjacent in G* if {Xx,y} is in an edge of G*. (For simplicity an edge
{x,y} will be denoted by xy. A simple graph is a graph without loops and multiple edges. A complete graph is
a simple graph in which every pair of distinct vertices is connected by an edge. The complete graph on n
vertices has n vertices and n(n — 1)/2 edges. We will consider only graphs with the finite number of vertices and

edges.

By a complementary graph G * of a simple graph G* we mean a graph having the same vertices as G* and
such that two vertices are adjacent in G * ifand only if they are not adjacent in G*.

An isomorphism of graphs G, and G, is a bijection between the vertex sets of G, and G, such that any two
vertices v; and v, of G, are adjacent in G, if and only if f(v,) and f (v,) are adjacent in G,. Isomorphic graphs
are denoted by G, ~ G, .
Let G, = (v,,E,) and G, = (V,,E,) be two simple graphs, we can construct several new graphs. The first
construction called the Cartesian product of G: and G; gives a graph Gl* x G; =(V,E) withV=V;xV,
and

E={(x,x,)(x,y,)IxeV,,x,y, e E,}U{(x,,z2)y,,2)Ix,y, € E,,zeV,}

The composition of graphs G and G | isthe graph G [G,]= (v, xV,,E°), where

0

E :EU{(Xl'Xz)(y11y2)|X1y1eEl'Xz;tyz}
and E is defined asin G, x G, . Notethat G, [G,]= G [6.].
The union of graphs G, and G, isdefinedas G, + G, = (V,UV,,E,UE,).

The join of G, and G, is the simple graph G, + G, = (v, UV,,E, U E, U E'), where E'is the set of all
edges joining the nodes of V; and V,. In this construction it is assumed that V,; N V, # @.

By a fuzzy subset ponaset X ismeanamap p: X —[0,1]. Amapv: X x X — [0,1] is called a fuzzy relation
on X if v(x, y) < min(u(x), u(y)) for all x,ye X. A fuzzy relation v is symmetric if v(x, y) = v(y, x) for all x,
ye X.

An interval number D is an interval [, 2] with 0 <a <a’ < 1. The interval [a, a] is identified with the
number ae [0,1]. D[O, 1] denotes the set of all interval numbers.

For interval numbers D, = [a;,,b,"] and D, = [a,,b%,], we define

. rmn (D,,D,)=rmn ([a, b }[a,,b;])=[mn {a  a,},mn {0, b},
. rmex (D,,D,)=rmx ([a, b }[a, b ])=[max {a, a, ) mx {o, b, ],
o Dl+DZ:[al'+a2_—a1'.a2',b1++b2+—b1+.b2+],

o D,<D,< a, <a,and b <b,,

. D,=D, < a, =a,and b/ =b,,
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. D,<D,o D,<D,and D,#D,= a, <a, ,b, <b,
. kD, = k[a, ,b, | = [ka, ,b, ] where 0 <k <1.

Then, (D[0,1], <, V, A) is a complete lattice with [0, 0] as the least element and [1,1] as the greatest.

The interval-valued fuzzy set A in V is defined by

A = (., (0 (0D x e v ),

where x, (x) and u, (x) are fuzzy subsets of V such that x, (x) < u, (x) forall x e v . For any two
interval-valued sets A =[x, (x), z (x)] and B = [, (x), . (x)] in V we define:

. AU B = {(x,max (u, (x), 5 (x)) mex (u; (x)uy (x))): x eV},

. AN B ={(x,min (u, (x), zy (x))min (u"(x)u;(x)):xeV}.

If G* = (V, E) is a graph, then by an interval-valued fuzzy relation B on a set E we mean an interval-valued

fuzzy set such that

wg Oy )< min (u, (), 1, (y)
oy )< min (w0 (x), 2, (y))
forall xy € E .

If G* =(V,E) is a graph, then by A strong interval valued fuzzy graph, we mean

g (xy)=min (u, () uy(y)), ag(xy)=min (u;(x)u (y))

111 OPERATIONS ON INTERVAL-VALUED FUZZY GRAPHS

Throughout in this paper, G* is a crisp graph, and G is an interval-valued fuzzy graph.

Definition 3.1. By an interval-valued fuzzy graph of a graph G* = (V, E) we mean a pair G = (A, B), where
A= [y; 7 ] is an interval-valued fuzzy seton V and B = [,u 7N ] is an interval-valued fuzzy relation on

E.
Definition 3.2. The Cartesian product G; x G, of two lattice graphs G, = (A;,B,) and G, = (A,,B,) of the

graphs G, = (V4, Ey) and G, = (Vy, Ey) is defined as a pair (A; x Ay, By x By) such that
i j(u,;l X g Xy, X,) = min( g, (X)), 1, (X))
) | (e, > (g0 x,) = min( gy (%)), 4, (X,)
for all (xq, X2) € V,
(g, x pg Y(X%,)(X,Y,)) = min( g, (X), 5 (X,Y,))

| (g, = g J(x0%,), (X, y,) = min(p, (), g (X,Y,))
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forall X e Vi, and xpy, € Ey,
i j(u; x pg (X, 2)(,02)) = min gy (%,Y,), 1, (2))
iii
[(u; X prg )%, 2) (Y, 2) = min( g (X,Y,)p, (2))

forallz e V, ,and x;y; € E;.

Definition 3.3 The complement of an interval-valued fuzzy graph G=(A,B) of G"=(V,E) is an interval-valued
fuzzy graph

G = (A,B)onG", where A= A= [, 1,1 and B - [u,,u,] isdefined by

— 0,ifu, (xy)>0.
Mg (Xy) = ) ) )
min( u, (x), 4 (y),itug (xy) = 0

X 0,ifu,(xy)>0
pe(Y) =19 A A .
min( g, (X), 1, (), ifug(xy)=0
Definition 3.4 An interval valued fuzzy graph is self complementary,
ifG =G
Example 3.5: Consider a graph G” =(V,E) such that V={a,b, c},
E={ab,bc }, then an interval valued fuzzy graph G=(A,B), where

A= (e[ b ) >,B:<(i be (b bi\>

0102 03 10304 05) L0.1 0.2 )03 0.4)

is self complementary.

Solution: x4 _(ab) =0, x,(ab) =0, u,(bc) =0, u, (bc) =0 (by definition)

4y (a) = 0.1= py(ab), ) (ab) = 0.3= ] (ab),

E(bc) =0.2=pu,(bc), u,(bc)=0.4=u_(bc)

Definition 3.6
Let G; and G, are Interval Valued Fuzzy Graphs

G=G,+G,=(vV,UV,,E,UE, U E") defined by

(g + a0 )J0) = (U Jv)  ifvev,UY,

(ro+ 7)) =, Uz V) ifvev, Uy,

(e, + vy, ) = (1, U sy v,v,) if vy, < E,UE,

:(/ul(vi).,ull(vj)) if Vv, e E’
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Theorem 3.7

Let G, = (v,.E,) and G, = (v, E,) be two Interval Valued Fuzzy Graphs. Then

(i) ,+6,26,UG

()
+

(i) G,UG,=G,+
Proof
Consider the identity map 1: v, UV, > V, UV,,

To prove (i) it is enough to prove

@0 a4 Upv,)=,Upu(v,)

(”) 7/1+71V(Vi)=7_1u7/1v(vi)

) Q) 2, Up,lviv,) =, Upylv,v))

Gy 7, +7.(v,)=r,Ur, (v,,v,)

@ @) (g, 0, )v,) = (i, + u. Xv,), by Definition 4.1

f,ul(vi) if v, eV,

L (v,) ity eV,

,u_l(vi) if v, eV,

Lsv,) it v, eV,
=, U s )
) [, +7.v,)=(r, + 7.Xv,), by Definition 4.1

(71(Vi) if v, eV,

(v,) ifv, eV,

(7
|
l

(v,) ifv,ev,
7i(v;) it v eV,

=l Uz )

OYORN PN T B PR (R TIPARSP V0 R RS VIR

[l U v M, U e v ) = e, U e v it (v,,v,)e E,UE,
Ly U s ) M, U M) = o, (v ), (v ) it (v,,v,)e E’
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[(;ul)(vi)'lul(vj)_/uz(vi’vj) if (Vi‘vj)e E,
= dag (v ) (V) = vyv ) it (v,.v,)e E,

<
<

—
m
m

0 )ael(o,) it G,

®) (i), + 72 )v,v,) = (s + 700 + 700 = (s + 7 v,

) J(n Uy vy, U n')(vj)—(m Uz, Nvi.v,) it (v,v,)eE,UE,
[ Ur v, Ur vy )= 7, (v ) () it (v,,v,)e E’
()7, (v,)=7,(v,.v)) it (v,,v,)eE,

s ) e,

hyl)(vi).y;(v,.)—y1<vi>.y;<v,.> it (v,v )e E

o
=
—_
=
<
~—
m
m

s
|
l
AT

To prove (ii) it is enough to prove

@0 (o, U )= (i, U Jv,)

@ (L Uurv)=0,+r)v)

6 (U s vov,) =l + s fv,.v,
@ Gourviv)=6,0r)v.v)

Consider the identity map 1 :vV, UV, - V, UV,

@0 (i, Uz v) = (1, U e N

(u,(v,) if v, eV, jy_l(vl) if v, eV,
= -
L’ul(vi) if v eV, [,ull(vi) if v, eV,
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= (e, U s )
(i) (71 U 71)( Uz X

(y,(v,) ifv, eV,

Lyi(vi) if v, eV,

7,(v) it vev,

jy_l(vi) if v, eV,
L_
(

®) ) (s Uy Jv,ov,)= (g U e o, My U o )= ey U v ov)

[(‘ul)(vi)'ﬂl(vj)_/uz(vi’vj) if (Vi'Vj)e E,
:Jﬂi(vi)'ﬂi(vj)fﬂé(vi’\/]) if (Vi‘vj)e E,
{yl(vi).y;(vj)—o ifv, e v,,v, eV,
fy_z(vi,vj) if (vi,vj)e E,
_Jlu_;(vi’vj) if (Vi'vj)G Ez

| :
[#1(Vi)'ﬂ1(vj) if vieV,,v, eV,

j,u_ZU y;(vi,vj) if (vi,vj)e E,or E,
l

py (v )y (vy) if (v,,v,)e E'

:( H, +/u; )(vi’vj)

o) (i), U s Jviv,) = (o Ur o) U 7 v, )= G, U 7 v, v,
[(71)(Vi)-71(vj)_72(Vilvj) if (Vi’vj)e E.

b)) ),
{yl(vi).y;(vj)—o ifv, e v,,v, eV,
f;:(vi,vj) if (vi,vj)e E,

_JZ(VPV]) if(\/i'vj)G Ez

[71(vi).}/1l(vj) if vieV,,v, eV,
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ZU}:(Vi:V,-) if(vi,vj)e E,or E,
72v,)71(v,) it (v, v,) < E

Theorem 3.8
Let G, = (v,,E,) and G, = (v, E,) betwo Strong Interval Valued Fuzzy Graphs. Then G, - G, is

a strong Interval Valued Fuzzy Graph.

Proof
Let G, oG, =G = (V,E) where V=V, x V,and
E ={(u,u,)(u,v,)iueVv,u,v,eE, }U{(u,w):(v,,w):weV,,uyv, eE,}
U {(u,,u, )(v,,v,):u,v, € Eu, = v, ).
() o A(u o, Yuyv, b= (), (uyv,)
= 4ty (u)p, (u, s, (v, ), since Gy is strong
=y (W) (U oy (u) s, (v,)
= (o Juu, May o fuv,)
7 Aluu, )u,v, b=y, (u)y, (u,y,
= 7,(u)r,(u, )7, (v,), since G, is strong
= 7,y (uy)r, (), (v,)
= (oo v uiu)rs o v Nuy,)

W)y (g w)lvy w)) = s (W), (uy,v,)
= u,(w).p (u,)u,(v,),since G, is strong
= gy (W) (u )y (W) ()

gy oy Ny, W)y ooy vy, w)

7o (U w)(vy,w))= 7, (w)y, (ug.vy)
=7,(w)y,(u,).r,(v,), since G is strong
=7, W)y (v )y (W), (v,)
= (oo r Jup w0 7 v, w)
i) o, (g u vyv, ) = ey (v, o (U )py (v,)

=, (uy )pt, (v, )t  (u, )pzy (v, ), since Gy is strong
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=y ()l opag (0 )opay (v, oty (V)
= (g o Ny ou, My oo, v, v,)
7o (uu vy v, ) = 7, (U ), (ug vy ) (v,)
= 7:(u;)7,(v,)7,(u, )7, (v, ), since Gy is strong
= 7, ()7 (U, )7, (v, )y (v,)

= (71 ° 7;)(u1'u2)'(71 ° 71)(\/1'\/2)

From (i), (ii), (iii), G; 0 G, is a strong Interval valued Fuzzy Graph.

IV CONCLUSION
It is well known that interval-valued fuzzy sets constitute a generalization of the notion of fuzzy sets. The
interval-valued fuzzy models give more flexibility and compatibility to the system as compared to the classical
and fuzzy models. So, we have introduced interval-valued fuzzy graphs and have presented several properties in
this paper. The further study of interval-valued fuzzy graphs may also be extended with the following projects.
e Data base theory
e Expert systems
o Neural Networks
e Shortest paths in networks
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