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ABSTRACT 

Purpose– The purpose of this paper is to investigate the geometrically nonlinear effect caused by the different 

pre-stressed in flat thin membrane structure including static and dynamic condition. The governing equation of 

motion is generated for free transverse vibration of the two dimensional membrane. The finite element approach 

is presented in which the membrane has to be pre-stressed to act as a structural element. 

Design/methodology/approach– This paper presents a simple two dimensional frame formulation to deal with 

structures undergoing large motions due to dynamic actions including very thin inflatable structures using the 

method of separation. Findings– The natural frequencies have been investigated for the circular and 

rectangular shaped flat thin membrane. The result shows that pre-stressed dominates the natural frequency and  

the oscillations become more and more localized around the region of excitation as the excitation frequency 

increases for a given pre-stressed value. A good agreement is observed between the finite element and 

analytical results. Originality/value–In space and terrestrial applications, inflatable membrane structures are 

increasingly used due their light-weight, high strength-to-weight ratio and ease of stowing and deploying 

capacity. The finite element approach is focused to investigate the geometrically non-linearity of the membrane 

model using the advanced smart material called kapton.  

Keywords: Finite Element, Material Property, Mode Shape, Natural Frequency, Pre-Stressed, 

Static Displacement 

I INTRODUCTION AND BACKGROUND 

Inflatable structures have many potential applications both on Earth and in the space. Even in the field of civil 

engineering, temporary or emergency structures had been used for a long time, recently, retractable roofs 

structure of large sports stadia have been made using this light-weight inflatable membrane. These inflatable 

structures are a viable alternative in aerospace structure design, terrestrial applications and space technology. In 

space, the former Soviet Union launched the first satellite Sputnik on October 4, 1957 using inflatable 

deployable structures. In the beginning, all spacecraft were small by virtue of the limited capacity of the launch 

vehicles but as the spacecraft grew bigger, so did the launch vehicles, but not at the same rate. Large space 

structures must be designed to be stowed during launch and deployed once on orbit. Hence, instead of using 

previous electro-mechanical deployment systems, recent efforts of NASA concentrate on the use of inflatable 

structures for space applications [1].  

Over the last few decades, studying the dynamic behaviors of inflatable membrane structures has proven to be a 

challenging job. Membranes stretched in tension are found in a variety of large gossamer space structures in 

order to meet the requirement of future space exploration missions, including the James Webb Space Telescope 

[2]. In recent years many researchers used commercial finite element packages to model and analyze non-linear 

elastic problems of thin-thickness membrane structures [3]. Many researchers have studied the dynamic 
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characterization of membranes using numerical methods and, when possible, experimental approaches. 

Numerical methods such as finite difference and boundary elements were used by some researchers to compute 

vibration modes and frequencies of inflatable dams. The membrane material used in the numerical analysis was 

assumed inextensible and its weight was neglected in the determination of the equilibrium shape. They found 

that the membrane‟s mass density is of little influence on the computed natural frequencies. The effect of 

frequency between membranes and functionally graded spherical shallow shells of polygonal planform helps to 

analysis criteria of the boundary condition for the FE model of membrane [4, 5].  Other researchers used finite 

elements and boundary elements to model and compute natural frequencies and mode shapes of a single-anchor 

inflatable dam [6]. At present, most researches focused on design and construction of membrane structures 

received considerable attention recently due to their applications in several engineering areas, including space 

applications, actuators and sensors; robotics, bio-engineering devices and civil engineering structures [7, 8, 9, 

10, and 11]. Also membranes play a significant role in nature due its high load-carrying capacity per unit 

weight. The analysis of membrane mechanics is an important topic in nonlinear continuum mechanics. 

However, there is little research on the pretension measurement of membrane structures [12, 13]. The main 

methods of the pretension measurement include strain method, frequency method, deflection method and “cable 

analogy” method [14]. If we study the application of frequency method, the vibration theory of membrane must 

be involved. Many scholars studied about the vibration theory of membrane. Their researches involve the 

problem of free vibration of a con-focal composite elliptical membrane [15], the problem of fundamental 

frequency of rectangular membranes with an internal oblique support [16]. 

The membrane theory is fully accounts for geometric non-linearity. Fully non-linear static analysis is performed 

for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular 

membrane under different tension loads at four corners. Finite-element results show that the shell modes 

dominate the dynamics of the inflated tube when the inflation pressure is low and that vibration modes localized 

along four edges dominate the dynamics of the rectangular membrane [17]. Membranes provide for unique 

structural response due to their extreme thinness and typically low modulus. Hence, the communication of 

bending information spatially is very weak due to the resultant vanishing flexural stiffness. A membrane by 

definition has insignificant bending stiffness. From vibration point of view, this in effect decouples domains of 

the membrane from one another in transverse displacement [18]. The equations of motion of the pre-stretched 

membrane are derived from the linearized equations, the natural frequencies and mode shapes of the membrane 

are obtained analytically which show the strong influence of the stretching ratio [19]. The practical occurrences 

of the nonlinear phenomena are explained by Nayfeh et al. in their series of books [20]. The  geometric  and  the  

displacement  stiffness  matrices  for  a general,  thin-walled,   beam--column  element  previously  derived  in 

[21, 22]. A fibre type model for the inelastic post-buckling analysis of   tubular columns of   circular hollow 

section had been adopted. The cross-section of the tube was divided into a number of elementary areas and the 

stress on each area calculated [23]. A  similar method was  presented  by the authors for  treating  geometric and  

material  nonlinear  analysis  of   structures  comprising  rectangular  hollow sections. The  influence of  various 

types of  residual stress, initial  geometric imperfection, load  eccentricity and  in-elastic  behavior  of   material  

including  the  effects  of  strain  unloading were  considered in  the  analysis [24]. 

In this paper, the geometric nonlinear behavior of the general shaped flat thin membrane is analyzed in terms of 

the mode shape and natural frequency using the smart materials named, Kapton. The finite element formulation 
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and the mathematical approach is presented for the two dimensional flat thin membrane. This analysis makes 

more useful in the design of the inflatable structure in space technology. It also discusses the effect of various 

pre-stressed acting on the thin membrane.  

 

II FINITE ELEMENT AND ANALYTICAL FORMULATION 

2.1 Membrane Theory 

The plate in which the ratio a/h  80….. 100 where „a’ is a typical dimension of a plate in a plane and „h’ is a 

plate thickness is maintained such plates are referred to as membranes and they are devoid of flexural rigidity. 

Membranes carries the lateral loads by axial tensile forces (and shear forces) acting in the plate middle surface, 

these forces are called as membrane forces; they produce projection on a vertical axis and thus balance a lateral 

load applied to the plate membrane [25], a load free membrane plate is shown in Fig. 1.  

 

Figure 1:  A load free membrane plate 

The fundamental assumptions for thin membrane are as follows: 

1. The material of the flat thin plate (membrane) remains elastic, homogeneous and isotropic. 

2. The deflection (the normal component of the displacement vector) of the mid-plane remains small as 

compared with the thickness of the membrane structure. 

3. The straight lines, initially normal to the middle plane before bending, remain straight and normal to the 

middle surface during the deformation and the length of such elements is not altered. 

4. The middle surface remains unstrained after bending. 

 

2.2 Geometric, Material, Boundary and Loading Condition of Membrane Structure 

2.2.1 Geometry  

The most commonly used shaped in space technology are circular and rectangular (shown in Fig. 2). The 

geometric dimensions used for the analysis are given in Table 1. 

Table -1: Geometric dimension of flat thin membranes 

SN Membrane Shape Dimension Parameter (m) 

1 Circle: Radius : 0.40 ; Thickness: 0.1e-3 

2 Rectangle: Length : 0.30; Breadth : 0.40 ; Thickness: 0.1e-3 
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                 (a) 1/4
rth

 Circular shaped                                                   (b) Rectangular shaped 

Figure 2 Flat Thin Membrane Model 

2.2.2 Mechanical Properties  

There are several smart materials available, but the Kapton polyimide film possesses a unique combination of 

properties that make it ideal for a variety of applications in many different industries. The ability of Kapton to 

maintain its excellent physical, electrical and mechanical properties over a wide temperature range has opened 

new design and application areas to plastic films. Kapton is synthesized by polymerizing an aromatic 

dianhydride and an aromatic diamine. It has excellent chemical resistance; there are no known organic solvents 

for the film. Kapton does not melt or burn as it has the highest UL-94 flammability rating: V-0. The outstanding 

properties of Kapton (see Table 2) permit it to be used at both high and low temperature extremes where other 

organic polymeric materials would not be functional.  

Table 2: Mechanical properties of the Kapton membrane material 

Material [26] Density Modulus Constant Poisson‟s Ratio 

Kapton 1420 kg/m
3
 2.55e9 N/m

2
 0.34 

 

2.2.3 Boundary and loading conditions  

In case of circular flat thin membrane model, only a quadrant area is taken into consideration and the 

symmetrical boundary conditions applied to the quadrant edges. In case of rectangular thin membrane model, 

the nodes along the consecutive edges are restrained in the Z direction (vertical direction) to simulate simple 

supports, the nodes along the one edge and other edge are restrained in the Y and X direction because of 

symmetric and all other nodes have the three degree of freedom. The finite element and analytical results have 

been compared for both circular and rectangular shaped flat thin membrane for the pre-stress of 10 N/m. The 

effects of various pre-stress have been used to investigate the geometric non-linearity of the flat thin membrane. 

Gravity loads are neglected in the simulation.  

2.3 Membrane Element (Linear Quadrilateral) 

General Membrane Element used in finite element analysis (FEA) tool is M3D4, where „M‟ represent 

membrane, „3‟ signifies three dimensional and „D‟ for degree of freedom and „4‟ for numbers of nodes. For 

general membrane elements the positive normal direction is defined by the right-hand rule going around the 

nodes of the element in the order than that they are specified in the element definition. The rectangular element 

in Fig. 3 has four nodes and this element used for plane strain analysis will be referred to as M3D4. A much 

more practical and useful element would be the so-called quadrilateral element, that can have unparalleled 
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edges. The quadrilateral element is to be mapped into the natural coordinates system to become a square 

element. The shape functions and the integration method used for the rectangular membrane element can be 

utilized.  

 

Figure 3  Four Quadrilateral Element and Positive normal for general membrane  

2.4 Coordinate Mapping 

Fig. 4(a) shows a 2D (two dimensional) domain with the general shape in which a domain quadrilateral element 

is to be divided with four straight but unparallel edges, considering a quadrilateral element with four nodes 

numbered 1, 2, 3 and 4 in a counter-clockwise direction.  

 

Figure 4 (a) 2D domain meshed by quadrilateral element.  (b) Coordinate mapping between coordinate system.  

The coordinates for the four nodes are indicated in Fig. 4(b) in the physical coordinate system. The physical 

coordinate system can be the same as the global coordinate system for the entire structure. As there are two 

DOFs at a node, a linear quadrilateral element has a total of eight DOFs, like the rectangular element. A local 

natural coordinate system (ξ,η) with its origin at the centre of the squared element mapped from the global 

coordinate system is used to construct the shape functions, and the displacement is interpolated using the 

equation. 

    U
h
 (ξ, η) = N(ξ, η)de                                                     

(1) 

Eq. (1) represents a field variable interpolation using the nodal displacements. 

Using a similar concept, the coordinates x and y can be interpolated from the nodal coordinates using the shape 

functions, which are expressed as functions of the natural coordinates. This coordinate interpolation is 

mathematically expressed as 

     X(ξ, η) = N(ξ, η) Xe                             

       (2) 

where, X is the vector of the physical coordinates, 
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and N is the matrix of shape functions  
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where, the shape functions Ni (i = 1, 2, 3, 4) are the shape functions corresponding to the four nodes of the 

quadrilateral element and Xe is the physical coordinates at the nodes of the element, given by 
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(5) 

Eq. (2) can also be expressed explicitly as:  

4

1

( , )
i i

i

x N x 



 
                                                  (6) 

  

4

1

( , )
i i

i

y N y 



 
                                                     (7) 

where, Ni is the shape function. 

2.5 Strain Matrix 

After mapping is performed for the coordinates, the strain matrix B is evaluated. In matrix form written as 

/ /

/ /

i i

i i

N N x
J

N N y





      
   

                                                              (8) 

where J is the Jacobian matrix defined by 

   

/ /

/ /

x y
J

x y

 

 

    
  

                                                            

(9) 

From Eq. (6), (7) and (9), J is: 

   

1 1

31 2 4 2 2

31 2 4 3 3

4 4

// / /

// / /

x y

NN N N x y
J

NN N N x y

x y
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  

 

 
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   
        
 
                               (10) 

The Equation B = LN used to compute the strain matrix B. 
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2.6 Element Matrices 

Once the strain matrix B has been obtained, it can proceed to evaluate the element matrices. The elemental 

stiffness matrix ke for 2D solid elements can be obtained using  

   

1 1

1 1

d e t .
T

e
k h B cB J d d 

 

 

  
                                                     

(11) 

Where, det
T

B cB J  is the fractional and polynomial function of strain matrix.  

Also, the elemental mass matrix me given by  

        

1 1

1 1

d e t .
T

e
m h N N J d d  

 

 

  
                                                   

(12)  

Where, B is strain matrix, Where, det
T

N N J  is the polynomial functions of shape matrix.  

The shape functions [27] used to interpolate the coordinates in Eq. (6) and Eq. (7) are the same as those used for 

interpolation of the displacements. Such an element is called an iso-parametric element.  

 

III MEMBRANE VIBRATION 

A membrane is a thin plate subjected to pre-stress or tension and has negligible bending resistance. Thus, a 

membrane bears the same relationship to a plate as a string bears a beam. Textile covers and roofs, aircraft and 

space structures, parachutes, automobile airbags, sails, windmills, human tissues and long span structures are the 

examples of membrane [28].  

To derive the equation of motion of thin flat membrane, consider the membrane to be bounded by a plane curve 

S in the XY plane, as shown in Fig. 5. Let f(x,y,t) denote the pressure loading acting in the Z direction and P the 

intensity of tension at a point that is equal to product of the tensile stress and the thickness of the membrane.  

 

Figure 5 A membranes under the uniform tension or pre-stressed. 

The magnitude of P is usually constant throughout the membrane. An elemental area is considered as dx dy.  

Forces of magnitude Pdx and Pdy act on the sides parallel to the Y and X axes respectively as shown in Fig. 
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5.The net forces acting along the Z direction due to these forces are 

2 2

2 2
  

w w
P d x d y a n d P d x d y

y x

    

   
     . The 

pressure force along the Z direction is f(x, y, t) dxdy and the inertia force is 
 

2

2
,  

w
x y d x d y

t




 .             

where, ρ (x,y) is the mass per unit area. The equation of motion for free transverse vibration of the membrane 

can be obtained as;  

   

2 2 2

2 2 2

w w w
P

x y t


   
  

                                                                      

(13) 

The above equation can be expressed as; 

   

2

2

2

w
P w

t



 
                                                                             (14) 

Where, 
2 2

2

2 2
x y

 
  

 

 is the Laplacian operator. 

3.1 Non-Linear Boundary Condition 

Since, the equation of motion Eq. (15) involves second order partial derivatives with respect to each of t, x and 

y. it is needed to specify two initial conditions and four boundary condition (boundary condition may varies 

depending on shape and size) to find a unique solution of the problem [29]. Usually, the displacement and 

velocity of the membrane at t=0 are specified as ( , )
o

w x y and ( , )
o

w x y Hence, the initial conditions are given 

by, 

 0
( , , 0 ) ( , )w x y w x y

                                                      (15) 

   0
, , 0 ,

w
x y w x y

t







                                                                                          (16) 

The boundary conditions are as follows: 

1. If the membrane is fixed at any point (x1, y1) on a segment of the boundary, then; 

   
 1 1

, , 0w x y t 
     0t                                                               

(17) 

2. If the membrane is free to deflect transversely (in the z direction) at a different point (x2, y2) of the 

boundary, then the force component in the Z direction must be zero. 

   
 2 2

, , 0
w

P x y t
n




     0t                                                              

(18) 

where, /w n  represents the derivative of w with respect to a direction n normal to the boundary at point (x2, 

y2).  

The free vibration solution of the thin flat membrane can be obtained by using the method of separation of 

variables w(x, y, t) can be assumed as; 
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           , , ,w x y t W x y T t X x Y y T t 

                                                 

(19) 

By using the equation of motion Eq. (15), we obtain, 

  

 
 

2

2

2
0

d X x
X x

d x
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                                                          (20) 
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2
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d Y y
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                                                                                               (21) 

  

 
 

2

2

2
0

d T t
T t

d t
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                                                                                            (22) 

Where and   are constants related to  as follows: 

  

2

2 2

2
C


  

  where,   

2 P
C



 
  
                                                      (23) 

The solutions of the above Eq. (20) to Eq. (22) are given by; 

                         
  1 2

  X x C C os cx C Sin x 
                                                                     (24)

    
  3 4

  Y y C C os y C Sin y  
                                                             (25)

 
      T t A C os t B S in t  

                                           (26) 

Where, the constants C1, C2, C3, C4 and A, B can be determined from the boundary conditions. The various 

constant points (xi,yj) utilized to solve the general flat thin membrane are listed below as shown in Table – 3. 

Table 3 values of constant for points (xi, yi), i= 1, 2, 3…. 

x y   
0 0.1 -  
0 0.2 -  

0.1 0.1   
0.1 0.2   

The results for the various shaped flat thin membrane can be found out by using the MATLAB and tabulated in 

the next section. 

IV RESULTS AND DISCUSSION 

The flat thin membrane of circular shaped having radial dimensions of 0.4 m with the thickness of 0.1e-3 m is 

considered. The membranes were made up of Kapton film due to its outstanding properties at both high and low 

temperature extremes, where other organic polymeric materials would not be functional. Using the above 

mentioned mechanical properties and the boundary conditions, it has been focused on the effects of pre-stressed 

of 10 N/m and the natural frequencies analysis. In the case of circular flat thin membranes, because of the 

uniform thickness and symmetric geometry the mode shapes appear in pairs as shown in the Fig. 6.  From Table 

4, it is observed that in the First Mode#1, the high natural frequency difference appeared when 10 N/m is 

applied compared to the Mode#2 and then the lower natural frequency difference occurs in the successive mode 

shapes. It is happened due to the oscillations become more and more localized around the region of excitation as 

the excitation frequency increases for a given pre-stressed value. In particular, it has been found that under the 
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same pre-stressed value at the particular node, the excitation region is much smaller than the membrane 

dimensions. These frequency disturbances among the nodes varies even due to other factors such added mass or 

atmospheric air pressure. The absolute errors obtained are very much less and tabulated in Table 4. 

 

Table 4 Analytical and FEA result of circular flat thin membrane 

SN 
Mode shape 

No. 

Result of 1/4
th

 model of Circular flat thin membrane using Kapton film with Pre-stressed 

of 10 N/m. 

FE Result (Hz) Analytical (Hz) Absolute error 

1 1 9.289 9.478 0.189 

2 2 13.226 13.986 0.760 

3 3 14.431 14.707 0.276 

4 4 17.316 17.797 0.481 

5 5 17.981 18.169 0.188 

(i) Few mode shape frequency of circular flat thin membrane: 

                                                   

Mode 1 # 9.498 Hz                 Mode 5 # 18.385 Hz               Mode 7 # 21.707 Hz                  Mode 9 # 23.296 Hz 

Figure 6 Mode shape of circular shaped flat thin membrane at 10 N/m pre-stressed. 

 

Table 5 shows the good agreement between the FE results and analytical one of the rectangular flat thin 

membrane using Kapton material with Pre-stressed of 10 N/m. Using the mechanical properties given in the 

Table 2 and the boundary conditions mentioned in section 2.2.3, it has been observed that most nodes are local 

vibration modes around the edges except a few global modes.  

Table 5      Analytical and FEA results of rectangular flat thin membrane. 

SN Mode shape No. 
Result of Rectangular flat thin membrane using Kapton with pre-stressed -10 N/m. 

FE Result (Hz) Analytical (Hz) Absolute error 

1 1 21.511 21.977 0.466 

2 2 29.381 29.970 0.589 

3 3 35.956 36.423 0.467 

4 4 38.770 39.121 0.351 

5 5 41.790 41.961 0.171 

These local modes are due to the non uniform loading condition over the entire membrane as the four edges are 

under the very small pre-stressed value as shown in Fig. 7. In the mode 1, it is appeared the weaker section at 

the centre as the local vibration modes dominates over the global one, where as in the mode 5 or in other 

successive modes it is observed that the oscillations become more and more localized around the region of 

excitation. Hence, the excitation frequency increases for a given pre-stressed value with minimum difference. 

The non uniformity in the mode shapes obtained due to the non-symmetric shape. 

(ii) Few Mode shape frequency of Rectangular flat thin membrane: 
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Mode 1# 21.511 Hz          Mode 5# 41.790 Hz              Mode 7# 48.059 Hz           Mode 9# 56.025 Hz 

Figure 7 Mode shape of Rectangular flat thin membrane at 10 N/m pre-stressed. 

The wave propagation of the rectangular shaped flat thin membrane showing the maximum range of natural 

frequency in 3D form as shown in Fig. 8. 

 

Figure 8 Frequency propagation of the rectangular flat thin membrane model 

The results obtained due to various pre-stressed for the particular shape of the flat thin membrane are given 

Table 6. It is observed that as pre-stressed value increases the difference of natural frequency decreases for the 

successive mode shape except first one.  The enormous frequency difference between the first two mode shapes 

occurs due to the    random oscillations around the region of excitation. The Fig. 9 and Fig. 10 shows the 

variations of the various pre-stressed. 

Table 6 Frequency values using various pre-stressed of general flat thin membrane 

Mode 

No. 

Various Pre-stressed Value (N/m) 

Circular flat thin Membrane (Hz) Rectangular flat thin Membrane (Hz) 

10 20 30 10 20 30 

1 9.498 13.432 16.450 21.511 30.421 37.257 

2 13.524 19.125 23.423 29.381 41.551 50.889 

3 14.755 20.867 25.556 35.956 50.849 62.276 

4 17.705 25.039 30.666 38.770 54.828 67.150 

5 18.385 26.000 31.843 41.790 59.100 72.381 

6 19.971 28.243 34.591 47.737 67.510 82.682 

7 21.707 30.698 37.597 48.059 67.965 83.239 

8 22.243 31.456 38.525 49.466 69.955 85.676 

9 23.396 33.086 40.522 56.025 79.231 97.037 

10 25.075 35.461 43.430 56.651 80.116 98.121 
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The following graphs show the result variations using the different pre-stressed values. 

 
 

Figure 9 Mode shape vs Natural Frequency of 

circular shaped flat thin membrane using various 

pre-stressed loading condition. 

Figure 10 Mode shape vs Natural Frequency of 

rectangular shaped flat thin membrane using various pre-

stressed loading condition. 

 

V CONCLUSION 

In the field of engineering application, inflatable (thin membrane) structures with very light materials are 

demandable due to non flexural stiffness and optimally within structural member subjected to pre-stressed rather 

than bending or moments. In this paper, it has been observed that as the pre-stressed value get increased the 

natural frequency decreases. Since, the natural frequency is the important criteria while designing the inflatable 

structure, the simulation shows the curved profile shaped plays an important role as compared to the straight 

profile structure. The spread of deformation spatially across the membrane depends on the membrane tension 

and local curvature. During the static analysis, it is also found the frequency disturbance among the nodes varies 

even due to other factors such added mass or atmospheric air pressure. In particular, it is found that under the 

same pre-stressed value at the particular node, the excitation region is much smaller than the membrane 

dimensions. The oscillations become more and more localized around the region of excitation as the excitation 

frequency increases for a given pre-stressed value. There is a good agreement between the finite element results 

and analytical results. In this paper, the dynamic behavior of the general shaped flat thin membranes is analyzed 

in terms of the mode shape and natural frequency using the smart materials named, Kapton. This analysis makes 

more useful in the design of the inflatable structure in space technology. 
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