
International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Issue No.01, January 2015 ISSN-2319-8354(E)

44 | P a g e
www.ijarse.com

AN EFFICIENT APPROACH TO DETECT

SUSCEPTIBLE COMPONENTS LOADING

Siva Ramavarapu
1
, B Swanth

2
, Betam Suresh

3

1
Pursuing M.Tech(CSE),

2
Asst. Professor in Department of CSE ,

3
HOD

Vikas Group of Institutions, Nunna, Vijayawada. Affiliated to JNTU- Kakinada, A.P, (India)

ABSTRACT

In dynamic loading of the software components like as libraries or the modules are the widely used for the

mechanism to improve the system modularity and the flexibility. The accurate component resolutions are the

critical for the reliable and the safely software execution. Hence the programming mistaken may lead to the

unintentional or the even malicious components being loaded. In this scenario we consider the dynamic loading

which can be hijacked by placing the arbitrary file with the identified name in the directory searched where a

real ready target component is resolving. Even though this issue has become popular, that is why everything is

known for the quite some time, they had not taken the serious reason which is that exploiting needs to access the

local file system on the vulnerable host. Newly the vulnerabilities has been started to achieve the desirable

attention as their remote exploitation has become the realistic. This is currently more important to detect and fix

the vulnerabilities. This scenario says that, we are presently in static analysis that depends on the automated

technique to focus on the vulnerable and the unsafe dynamic component loadings.

Index Terms: -The unsafe component load and the dynamic analysis.

I INTRODUCTION

The dynamic components are loading the important mechanism for the software development. It gives the

permission to the application for the flexibility to the dynamically link the component and used it to exported

the functionalities. These benefits are including the modularity and the generic interfaces for the third party

software plug in are used such as. The reasons of these are the advantages, and the dynamic loading is more

probably used in the designing and the implementing software. In dynamic loading key steps are the

components resolution, i.e., locating the correct component for at runtime it will use. The operating systems are

gradually provided two the resolution methods, either it will specify the complete path neither the filename of a

target component. Total path with the operating systems simply locate target from given complete path.

Filename with the operating systems resolving the target by the searching the sequence of the directories and

determined by runtime directory search order, to detecting the first occurrence of component. While the

possible, this strategy means common component resolution has the inherent security problem. Then only the

file names they given, the unintentional or same malicious files with the even file name can be rectified the

instead. So long for this issue hasn’t been effectively addressed. In the particular way that we show that insecure

component loading represents the common class of the security vulnerabilities platforms on Windows and

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Issue No.01, January 2015 ISSN-2319-8354(E)

45 | P a g e
www.ijarse.com

Linux. The operating systems may be provided the mechanisms to protect the system resources. For the

Microsoft Windows supports are the Windows Resource Protection (WRP) to the prevented system files from it

being replaced. Still those don’t prevent the loading of the malicious component situated in the directory

searched first directory whenever the intended component are resides. The main problem of the unsafe dynamic

loading has been known for a while, but it hasn’t been taking the serious threat reason is that its exploitation the

required local file system to access on the victim host. Started has been problem to receive many attentions

using recently the discovered remote code the execution attacks. Now is the example attack the scenario. The

attacker sends are suppose that the victim archive file containing the document for the vulnerable program

which means as word press program and the malicious DLL. In the sense is, whether the victims are opens the

document then extracting archive file, vulnerable program shall load malicious DLL, sense is leads to the

remote code execution. The current break through with the availability of open the source code directories like

as source fake peoples are download the sources and the use them as the dynamic components integrated with

their code. However trust of that code isn’t for configure and it may have been to severe helpfulness. The

motivated this is to us for current paper the work. These scenarios are considered as we recommend the static

code for the analysis technique to detect the component is safe to the load or unload. The Library users are who

intends to use the dynamic component necessary to provide a source code of a component and his/her the source

code are which uses dynamic component to the tools. These analyses are the use and the point whether any

suspicious vulnerability are present. We will also check for the security violations in the dynamic component

code are using CVC rules.

I RELATED WORK

Software components mostly utilize functionalities exported by another components are such as the shared

libraries at the runtime. This is the operation generally composed of the three phases: first are resolutions,

second are loading, and final are usage. By the way the application resolves the needed target components, loads

them, and the utilizes are the desired functions provided by them. Component interoperation could be achieved

through the dynamic loading provided by the operating systems or the runtime environment Load library and

open systems are calls to use for dynamic loading on the Microsoft windows and UNIX like as operating

systems (os), individually. The dynamic loading is generally done in to the two steps: one is component

resolution second are chained component loading. By the way that the resolve the target component they are

needs to require it is correctly. To the end of the operating systems provide two types of the target component

specifications are: full path and filename. In the full path specification and the operating systems solved the

target component based on the provided full path.

For example, the full path specification is the /lib/libc-2,7. Hence for the libc library are in the Linux

determines targets component are using a specified the full path. For the filename specification and operating

systems are obtains the full path of the target components from the provided the file name and the dynamically

are determined sequence of the search directories. The particular operating system iterates in through a

directories until it is finds a file through the specified file name in which the resolved component. F.e, A target

component suppose that is specified as the midimap.dll and directory search orders are given in𝐶:\

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Issue No.01, January 2015 ISSN-2319-8354(E)

46 | P a g e
www.ijarse.com

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐹𝑖𝑙𝑒𝑠\𝑖𝑇𝑢𝑛𝑒𝑠;𝐶:\𝑊𝑖𝑛𝑑𝑜𝑤𝑠\𝑆𝑦𝑠𝑡𝑒𝑚32 ; . . ; $𝑃𝐴𝑇𝐻 on Microsoft Windows. If the first directory

containing a file with the name midimap.dll is C:\Windows\System32, it resolved the full paths are determined

by this is directory. The full path in dynamic loading of a target components are determined by it is specification

through a resolution process and the component is the united into the hosted software whether this is not

previously loaded. During the process of the incorporating a target components are also loaded time dependent

components. Fig. shows the general procedure of the dynamic loading. Suppose the component B is loaded by

the component A’s and B’s dependent components (e.g., component is C) are also be loaded. The information

obtain usually we can take on B’s dependent components are from the B’s file description.

This is a process of the chained components loading are repeated until all the dependent components had loaded.

II THE OVERVIEW OF THE PROPOSED SOLUTION

In this scenario we represent an overview of the solutions are the proposed software tool will analyzed the

source code and the find the functionalities have expected from dynamic components. This process is called as

the contract construction. The dynamic component code it will check for the full compliance among the contract

and the contract violations. These processes are known as the contract violation checked. It is also check

whether it is there is any security vulnerability in usage of the dynamic components. We will use a CVC

security violation rules are to check for the any security violations are in the code. This is process is known as

security violation checked.

2.1 The Details of the Proposed

The Security Mechanism 4.1: In the Contract Construction Contracts are nothing yet the agreement among the

user of the dynamic component and a dynamic component. The contracts are in the terms of the classes and the

function. Entire the classes and the functions required by a contract should be implemented in the dynamic

component. The contract constructions are fully automated process. Once a source code of our application is too

provided, it shall be check for dynamic components are usage in the code and extract functions are the class’s

usage from dynamic components and builds the contracts. The contracts construction are very more language

specific and in this scenario we will do the contract construction for the java code and JSR 291 specification for

the dynamic components shall be used for the constructing a parser for java code. 4.2 and the contract violation

checking Based on the contract extracted from the user code and the dynamic component codes are parsed and

checked for the violation. The detected of violence is whether is matching class or matching the function on the

class isn’t search into the dynamic components.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Issue No.01, January 2015 ISSN-2319-8354(E)

47 | P a g e
www.ijarse.com

4.3 Security Vulnerability Detection CWE™: In the international in the scope and the free for the public use,

CWE provide the unified, the measurable set of the software weaknesses is that enabling many useful

discussion, the description, the selection, and the use of the software security tools are services that can be find

that strengths in the source code and the operational systems are as well as the better understanding and the

management of the software strengths are related to the architecture and the design. To the assist in the

enhancing security are throughout software development in the lifecycle also to the support the desires of the

developers, the testers and the educators Common Attack Patterned Enumeration and Classifications(CAPEC)

are other of these efforts are sponsored by the DHS CS&C main part of the Software Assurance strategic are

initiative. Objective of these efforts are to provide the publicly available catalog of the attack pattern are along

with the comprehensive schema and the classifications are the taxonomy. The linked with CWE, CAPEC sites

contains are the initial set of the content. The endure will to progress with the public participation and the

contributions to form the standard mechanism for the solving, gathering, purifying, and sharing attack patterns

are between software community. We can use a following Security violation checking on a code

 CWE ID Description

CVE-2002-0466 The server allows the

remote attackers to

brows arbitrary

directories via a full

pathname in the

arguments to the certain

dynamic pages.

CVE-2002-1483 The Remote attacker

can read the arbitrary

file

CWE-2001-400 Resource exhaust

CVE-2001-0255 Suspicious read write

CVE-1999-0674 System call usages

III EVALUATION

In this scenario we can the evaluated the unsafe components are loadings on the Microsoft Windows and the

Linux. We detect unsafe component loadings for every platform in the diverse selection of the applications is

popular. In this we structure our analysis are of the detection results to the answer following research questions

are: RQ1: How are prevalent and the severe the unsafe components loadings on the Microsoft Windows. RQ2:

How are prevalent and the severe are the unsafe component loadings on to the Linux. RQ3: What’s the

implication of our finding? RQ4: How’s does our detection technique associate to the related work.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Issue No.01, January 2015 ISSN-2319-8354(E)

48 | P a g e
www.ijarse.com

IV EXISTING SYSTEM

In the existing system to evaluate our technique, we has been implemented as the set of are tools for detecting

the unsafe components are loadings on Microsoft Windows family like as XP SP3, Vista SP2, and the Windows

7 and another OS are Ubuntu 10.04 is the more popular Linux distribution. An extensive analysis of a

prevalence we conducted and severity of the unsafe components are loadings in the popular software

applications are: 27 for the Windows and 24 for the Linux OS. Results of our shows that unsafe components are

loading prevalent on entire analyzed platforms are in this we found exactly 3,269 the unsafe loadings on the

Windows and 752 on the Ubuntu.

We represent as the effective dynamic analysis to detect vulnerable and the unsafe dynamic components are

loadings. This is work introduces the first automated technique to detect and the analyze vulnerabilities and the

errors related to dynamic components are loading to our knowledge. The problems are of the unsafe dynamic

loading has been known for the while, way is that it haven’t been considering the very serious threats are

because these exploitation requires the local files system access on victims host. Started problem have to receive

much attention due to newly discovered the remote codes

V PROPOSE SYSTEM

In the propose system future works are interested in the developing static binary analysis techniques to the

detection of unsafe components are loadings. While our dynamic analyses are the effective, it may suffer from

standard limitation of the dynamic analysis, namely as the code coverage problems. Exactly, our approach may

be missed the unsafe components are loadings that can happened. We develop to plan sound, practical static

analysis techniques are to the complement the dynamic analysis we introduced here. These are analyzes the

profiles to detect two types of the unsafe components loadings are: the resolution failures are unsafe resolutions,

to the evaluated our techniques, we can implement the tools are to detect unsafe components loadings on the

Microsoft Windows and the Linux in this the evaluation shows that the unsafe components are loadings to

prevalent on both platforms and much severe on the Windows platforms from the security perspective. In

particular way is that, our tools are detected much than the 4,000 unsafe component loadings in the popular

software on the total platforms. It is also discovered the 41 potential remote code execution attack on the

Microsoft Windows.

VI RESULTS

The result of this implemented proposed solutions are in the JAVA. In this we tested out the solution for the

using the 5 libraries are on image processing downloaded from the source forge and entire these used as the

dynamic components in the image applications and we measured number of the contracted violations. The

number of the security violations we can also found. In this we found our solutions are not unable to find out

more than 75% of the compliance faults and the security vulnerabilities

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Issue No.01, January 2015 ISSN-2319-8354(E)

49 | P a g e
www.ijarse.com

VII CONCLUSION

In this scenario we have proposed and the evaluated static analysis solutions to detect the unsafe component

loadings and solve that our solutions are not unable to identify much than 75% vulnerabilities. We propose the

static code analyses technique to detect the component is safe and to the load or to unload. This technique

involves analyzing source code and they point out whether any vulnerability is present.

REFERENCE

[1] “About Windows Resource Protection,” http://msdn.microsoft. com/en-us/library/aa382503(VS.85).aspx,

2011.

[2] “Windows DLL Exploits Boom; Hackers Post Attacks for 40-Plus Apps,”

http://www.computerworld.com/s/article/9181918/

Windows_DLL_exploits_boom_hackers_post_attacks_for_40_ plus_apps, 2011.

[3] “Hacking Toolkit Publishes DLL Hijacking Exploit,”

http://www.computerworld.com/s/article/9181513/Hacking_toolkit_ publishes_DLL_hijacking_exploit, 2011.

[4] T. Kwon and Z. Su, “Automatic Detection of Unsafe Component Loadings,” Proc. 19th Int’l Symp.

Software Testing and Analysis, pp. 107-118, 2010.

[5] “Zero-Day Windows Bug Problem Worse than First Thought, Says Expert,”

http://www.computerworld.com/s/article/9180978/

Zero_day_Windows_bug_problem_worse_than_first_thought_ says_expert, 2011.

[6] “Update: 40 Windows Apps Contain Critical Bug, Says Researcher,”

http://www.computerworld.com/s/article/9180901/ Update_40_Windows_apps_contain_critical_bug_says_

researcher, 2011.

[7] “Researcher Told Microsoft of Windows Apps Zero-Day Bugs 6 Months Ago,”

http://www.computerworld.com/s/article/ print/9181358/Researcher_told_Microsoft_of_Windows_apps_ zero_

day_bugs_6_months_ago, 2011.

[8] “Exploiting DLL Hijacking Flaws,” http://blog.metasploit.com/ 2010/08/exploiting-dll-hijacking-flaws.html,

2011.

International Journal Of Advance Research In Science And Engineering http://www.ijarse.com

IJARSE, Vol. No.4, Issue No.01, January 2015 ISSN-2319-8354(E)

50 | P a g e
www.ijarse.com

 AUTHORS PROFILE

Siva Ramavarapu, pursuing M.Tech(CSE) from Vikas Group of Institutions,

Nunna, Vijayawada. Affiliated to JNTU-Kakinada, A.P., India

B Swanth, working as a Asst. Professor of CSE department at Vikas Group

of Institutions, Nunna, Vijayawada, Affiliated to JNTU-Kakinada, A.P., India

Betam Suresh, is working as an HOD, Department of Computer science

Engineering at Vikas Group of Institutions, Nunna, Vijayawada, Affiliated to

JNTU-Kakinada, A.P., India

