
International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

28 | P a g e  

 

EFFICIENT MINING OF HIGH UTILITY ITEMSETS 

FROM TRANSACTIONAL DATABASES 

Mr. Vivek J. Jethe
1
, Prof. Manoj D. Patil

2
, Prof. Sachin Chavan

3 

1 ,2,3
Computer Department, MGMCET, Mumbai university, (India) 

ABSTRACT 

In this paper, we would like to show you the working of Hadoop and MapReduce in terms of Data mining. There 

were many methods proposed earlier for this purpose. Data mining is concerned with analysis of large volumes 

of data to automatically discover interesting regularities or relationships which in turn leads to better 

understanding of the underlying processes. The primary goal is to discover hidden patterns, unexpected trends 

in the data. Data mining activities uses combination of techniques from database technologies, statistics, 

artificial intelligence and machine learning. Methods like Apriori algorithm, Frequent pattern mining were 

implemented for this purpose which were not very efficient in terms of time, space and certain parameters like 

weighted items. These limitations were overcome by bringing into picture the  concept of Hadoop and 

MapReduce. 

Keywords : Hadoop, Mapreduce, Data Mining, Utility of Itemsets, Weight 

I. INTRODUCTION 
To provide the efficient solution to mine the large transactional datasets, recently improved methods are 

presented in [1]. In [1], authors presented propose two novel algorithms as well as a compact data structure for 

efficiently discovering high utility itemsets from transactional databases. Experimental results show that UP-

Growth and UP-Growth+ outperform other algorithms substantially in terms of execution time. But these 

algorithms further needs to be extend so that system with less memory will also be able to handle large datasets 

efficiently. The algorithms presented in [1] are practically implemented with memory 3.5 GB, but if memory 

size is 2 GB or below, the performance will again degrade in case of time. As when the size of the database 

increases and if the memory is low, problem arises. We cannot expect the database to be of limited size at least 

in the real world where commercial aspects are taken into consideration. In the real commercial world, 

customers are increasing in numbers and their transactions are also increasing and if our database is limited then 

we are limiting our business which is a shear considerable loss in terms of customer relationship, finance, etc. 

So to meet such a demand we should be using such a technology that without upgrading the hardware 

configuration of our systems, we should be able to meet the ever increasing needs of the business growth. Small 

up gradation would not matter a much for a small business but when it comes to upgrading the whole system, it 

costs a lot. In this project we are presenting new approach which is extending these algorithms to overcome the 

limitations using the MapReduce framework on Hadoop. 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

29 | P a g e  

 

II. UP-GROWTH ALGORITHM 

To generate these high utility itemsets mining recently in  2010, UP - Growth (Utility Pattern Growth) algorithm 

[2] was proposed by Vincent S. Tseng et al. for discovering high utility itemsets and a tree based data structure 

called UP - Tree (Utility Pattern tree) which efficiently maintains the information of transaction database related 

to the utility  patterns. Four strategies (DGU, DGN, DLU, and DLN) used for efficient construction of UP - Tree 

and the processing in UP - Growth [11]. By applying these strategies, can not only efficiently decrease the 

estimated utilities of the potential high utility itemsets (PHUI) but also effectively reduce the number of 

candidates. But the problem with this algorithm is that this algorithm takes more execution time for phase II 

(identify local utility itemsets) and I/O cost. 

 Efficient discovery of frequent itemsets in large datasets is a crucial task of data mining. Lately, several 

approaches have been proposed for generating high utility patterns; they lead to the problems of producing a 

large number of candidate itemsets for high utility itemsets and probably degrade mining performance. Mining 

high utility itemsets from a transactional database refers to the discovery of itemsets with high utility like 

profits. Though a number of relevant approaches have been proposed in recent years, they lead to the problem of 

producing a large number of candidate itemsets for high utility itemsets. If there is such a large number of 

candidate itemsets, it degrades the mining performance in terms of execution time and space requirement. This 

situation may become worse when the database contains lots of long transactions or long high utility itemsets.  

Existing studies applied overestimated methods to facilitate the performance of utility mining. In such methods, 

potential high utility itemsets (PHUIs) are found first, and thus an additional database scan is performed for 

utilities’ identification. However, existing methods often generate a huge set of PHUIs and their mining 

performance is degraded consequently. This would become worse when databases contain many long 

transactions or low thresholds are set. The large number of PHUIs forms a challenging problem to the mining 

performance since the more PHUIs the algorithm generates, the processing time consumed is very high.. 

III. OVERVIEW OF HADOOP AND MAP/REDUCE ARCHITECTURE 

 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

30 | P a g e  

 

As shown above, is the architecture of the Hadoop and Map/reduce. There’s a heap of data in the first stage as 

shown in the figure. This data is then processed by the hadoop cluster where we have some mappers and there’s 

a reducer. For each DFS blocks, a mapper is assigned and the result of all the mappers is computed in the 

reducer. In the reducer stage, the results are computed. So the desired result is achieved. 

IV. PERFORMANCE COMPARISON 

To understand it better, we will consider a particular dataset as shown in the flowchart. After that, we will apply 

up-growth and up-growth+ and then calculate the time required. Then apply up-growth and up-growth+ with 

Hadoop and then calculate its time. Compare the results in terms of time. 

 

V. THE MAPREDUCE FRAMEWORK FOR HANDLING BIG DATASETS 

MapReduce is a programming model for processing large data sets with a parallel, distributed algorithm on 

a cluster. A MapReduce program consists of a Map() procedure that performs filtering and sorting (such as 

sorting students by first name into queues, one queue for each and every name) and a Reduce() procedure that 

performs a summary operation (such as counting the number of students in each queue, which yields name 

frequencies). The "MapReduce System" (also called "infrastructure" or "framework") orchestrates 

by marshalling the distributed servers, running the various tasks in parallel, which manages all communications 

and data transfers between the various parts of the system, which provides  redundancy and fault tolerance. 

"Map" step: The master node takes the input, and then divides it into smaller sub-problems, and distributes 

them to worker nodes. A worker node repeats this step in turn, leading to a multilevel tree structure. The worker 

node processes the smaller problem, and passes the answer back to its master node. 

"Reduce" step: Master node then collects the answers to all the sub-problems and combines them in some way 

to form the output – the answer to the problem it was originally trying to solve. 

 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

31 | P a g e  

 

VI. HADOOP OVERVIEW 
When data sets go beyond a single storage capacity, then distributing them to multiple independent computers 

becomes important. Trans-computer network storage file management system is called A distributed file system 

is Trans-computer network storage file management system . A typical Hadoop distributed file system contains 

thousands of servers, where each server stores partial data of file system. 

Hadoop enables a computing solution that is: 

 Scalable– New nodes can be added as needed, and added without needing to change data formats, how 

data is loaded, how jobs are written, or the applications on top. 

 Cost effective– Hadoop brings massively parallel computing to commodity servers. The result is a 

sizeable decrease in the cost per terabyte of storage, which in turn makes it affordable to model all your 

data. 

 Flexible– Hadoop is schema-less, and can absorb any type of data, structured or not, from any number 

of sources. Data from multiple sources can be joined and aggregated in arbitrary ways enabling deeper 

analyses than any one system can provide. 

Fault tolerant– When you lose a node, the system redirects work to another location of the data and continues 

processing without missing a beat. 

VII. EXPERIMENTAL SETUP 

 

The above screenshot is of the eclipse screen where we have just started and trying to run the code. 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

32 | P a g e  

 

 

The above screen appears when you run the Map/Reduce on eclipse which consists of the code.On this console, 

we are going to run the test on the datasets with and without Hadoop with Up-growth and Up-Growth+. 

VIII. TESTING WITHOUT HADOOP 

 
The first screen is the loading of the dataset on the console. The first attempt of ours would be to perform data 

mining without Hadoop and just with Up-Growth and Up-Growth+. 
The next step would be to find out the transaction weighted utility by pressing on the respective button on the 

console. After pressing the button, we get the following output on the screen. 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

33 | P a g e  

 

 

The next step would be to take out the sorted transactions. After clicking on that respective button, we get the 

following output on the screen. 

 

After this, we will generate the Up-Growth tree. 

 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

34 | P a g e  

 

The next step is to find out the number of PHUIs generated and also to calculate the time required for this whole 

process. The following screen shows, 

 

 

   

The next step is to calculate the number of PHUIs generated with Up-Growth+ and also to calculate the time 

required. 

 

 

     

  In both of the above screens shown, were the output of PHUIs generation with Up-Growth and also Up-

growth+, but that was without Hadoop. The time required for Up-Growth is 72088 milliseconds and the time 

required for the whole process in Up-growth+ is 59404 milliseconds which is less than the previous one. 

Though the difference is not so high, but it would be of greater concern when it comes to a dataset which is of 

large size. The time difference would matter a lot and consequently it would also matter to the amount of 

resources consumed in this process. 

 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

35 | P a g e  

 

IX.  TESTING WITH HADOOP 

In this section, we are going to calculate transaction weighted utility with Hadoop. 

 

 

Next step is to find out the sorted transactions. 

 

 

 

The next step is to observe the PHUIs generation with UP-Growth which is shown in the screen below. 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

36 | P a g e  

 

 

 

The next step is to observe the PHUIs generation with UP-Growth+. 

 

 

 

From the above screens, we can see that with hadoop data mining is very efficient as compared to data mining 

without hadoop. As you can see, the time required for the whole process for Up-Growth with Hadoop is 31525 

milliseconds and the time required for the whole process for Up-Growth+ with Hadoop is 18437 milliseconds 

which is the least. 

So we can conclude from these outputs that the time required for the whole process for Up-Growth without 

Hadoop is the highest whereas the time required for the whole process for Up-Growth+ with Hadoop is the 

least. 

Following screen shows the graph which compares the amount of PHUIs generated in Up-Growth and in Up-

Growth+. 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

37 | P a g e  

 

 

 

 

Following screen shows the full comparison of the performance i.e. Up-Growth and Up-Growth+ with and 

without Hadoop. 

 

 

 

X.  CONCLUSION 

As shown above, the time required for the processing of data in Hadoop with UP-Growth+ is very less which 

proves that it is very efficient as compared to the earlier papers. 

 

REFERENCES 

[1] Vincent S. Tseng, Bai-En Shie, Cheng-Wei Wu, and Philip S. Yu, Fellow, IEEE, “Efficient Algorithms for 

Mining High Utility Itemsets from Transactional Databases”, IEEE TRANSACTIONS ON KNOWLEDGE 

AND DATA ENGINEERING, VOL. 25, NO. 8, AUGUST 2013. 

[2] V incent . S. Tseng, C. W. Wu, B. E. Shie, and P. S. Yu.: UP – Growth : An Efficient Algorithm for High 

Utility Itemset Mining. In Proc. of ACM-KDD, Washington, DC, USA, pp. 253- 262, July 25– 28, 2010.  

[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. 20th Int’l Conf. Very 

Large Data Bases (VLDB), pp. 487-499, 1994. 



International Journal of Advance Research In Science And Engineering           http://www.ijarse.com 

IJARSE, Vol. No.4, Special Issue (02), February 2015                                     ISSN-2319-8354(E) 

38 | P a g e  

 

[4] C.F. Ahmed, S.K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, “Efficient Tree Structures for High Utility Pattern 

Mining in Incremental Databases,” IEEE Trans. Knowledge and Data Eng., vol. 21, no. 12, pp. 1708-1721, 

Dec. 2009. 

[5] C.H. Cai, A.W.C. Fu, C.H. Cheng, and W.W. Kwong, “Mining Association Rules with Weighted Items,” 

Proc. Int’l Database Eng. and Applications Symp. (IDEAS ’98), pp. 68-77, 1998. 

[6] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,” Proc. ACM-SIGMOD 

Int’l Conf. Management of Data, pp. 1-12, 2000. 

[7] S.C. Lee, J. Paik, J. Ok, I. Song, and U.M. Kim, “Efficient Mining of User Behaviors by Temporal Mobile 

Access Patterns,” Int’l J. Computer Science Security, vol. 7, no. 2, pp. 285-291, 2007. 

[8] H.F. Li, H.Y. Huang, Y.C. Chen, Y.J. Liu, and S.Y. Lee, “Fast and Memory Efficient Mining of High Utility 

Itemsets in Data Streams,” Proc. IEEE Eighth Int’l Conf. on Data Mining, pp. 881- 886, 2008. 

[9] Y.-C. Li, J.-S. Yeh, and C.-C. Chang, “Isolated Items Discarding Strategy for Discovering High Utility 

Itemsets,” Data and Knowledge Eng., vol. 64, no. 1, pp. 198-217, Jan. 2008. 

[10] C.H. Lin, D.Y. Chiu, Y.H. Wu, and A.L.P. Chen, “Mining Frequent Itemsets from Data Streams with a 

Time-Sensitive Sliding Window,” Proc. SIAM Int’l Conf. Data Mining (SDM ’05), 2005. 

[11] Y. Liu, W. Liao, and A. Choudhary, “A Fast High Utility Itemsets Mining Algorithm,” Proc. Utility-Based 

Data Mining Workshop, 2005. 

[12] F. Tao, F. Murtagh, and M. Farid, “Weighted Association Rule Mining Using Weighted Support and 

Significance Framework,” Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD ’03), 

pp. 661-666, 2003. 

[13] J. Han and Y. Fu, “Discovery of Multiple-Level Association Rules from Large Databases,” Proc. 21th Int’l 

Conf. Very Large Data Bases, pp. 420-431, Sept. 1995. 

[14] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,” Proc. ACM-

SIGMOD Int’l Conf. Management of Data, pp. 1-12, 2000. 

[15] S.C. Lee, J. Paik, J. Ok, I. Song, and U.M. Kim, “Efficient Mining of User Behaviors by Temporal Mobile 

Access Patterns,” Int’l J. Computer Science Security, vol. 7, no. 2, pp. 285-291, 2007. 

[16] H.F. Li, H.Y. Huang, Y.C. Chen, Y.J. Liu, and S.Y. Lee, “Fast and Memory Efficient Mining of High 

Utility Itemsets in Data Streams,” Proc. IEEE Eighth Int’l Conf. on Data Mining, pp. 881-886, 2008. 

[17] Y.-C. Li, J.-S. Yeh, and C.-C. Chang, “Isolated Items Discarding Strategy for Discovering High Utility 

Itemsets,” Data and Knowledge Eng., vol. 64, no. 1, pp. 198-217, Jan. 2008. 

[18] C.H. Lin, D.Y. Chiu, Y.H. Wu, and A.L.P. Chen, “Mining Frequent Itemsets from Data Streams with a 

Time-Sensitive Sliding Window,” Proc. SIAM Int’l Conf. Data Mining (SDM ’05), 2005. 

[19] Y. Liu, W. Liao, and A. Choudhary, “A Fast High Utility Itemsets Mining Algorithm,” Proc. Utility-Based 

Data Mining Workshop, 2005. 

[20] R. Martinez, N. Pasquier, and C. Pasquier, “GenMiner: Mining nonredundant Association Rules from 

Integrated Gene Expression Data and Annotations,” Bioinformatics, vol. 24, pp. 2643-2644, 2008. 

 


