Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

MICRORNA MODULATION STRATEGIES FOR ENHANCING CHEMOSENSITIVITY IN COLON CANCER

Research Scholar, Department of Pharmacy, P.K. University, Shivpuri (M.P.)

NADEEM KHAN

DR. SHAILESH JAIN

Research Supervisor, Department of Pharmacy, P.K. University, Shivpuri (M.P.)

ABSTRACT

Chemo resistance remains a major obstacle in the effective treatment of colon cancer, limiting the long-term success of standard drugs such as 5-fluorouracil, oxaliplatin, and irinotecan. Recent advances in molecular oncology highlight the critical role of microRNAs (miRNAs), small non-coding RNAs that regulate gene expression, in determining tumor sensitivity or resistance to chemotherapy. Dysregulated miRNAs function either as oncogenes, promoting resistance, or as tumor suppressors, enhancing sensitivity to therapy. Modulation strategies therefore focus on two main approaches: inhibition of oncogenic miRNAs using antisense oligonucleotides, locked nucleic acid (LNA) inhibitors, or miRNA sponges; and restoration of tumor-suppressive miRNAs through synthetic mimics, viral vectors, or nanoparticle-mediated delivery systems. Preclinical studies demonstrate that targeting miR-21 or restoring miR-34a, for example, significantly improves responsiveness to conventional drugs by reactivating apoptotic pathways and reducing epithelial-mesenchymal transition. Combination strategies involving co-delivery of miRNA modulators with chemotherapeutics further enhance treatment efficacy. However, challenges such as offtarget effects, immune activation, and delivery inefficiency limit clinical translation. Nevertheless, with advances in nanotechnology-based delivery and integration of miRNA profiling into precision medicine, miRNA modulation holds significant promise for overcoming chemoresistance and improving therapeutic outcomes in colon cancer patients.

Keywords: microRNA, colon cancer, chemo sensitivity, modulation strategies, drug resistance.

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

I. INTRODUCTION

Colorectal cancer (CRC), particularly colon cancer, remains one of the leading causes of cancer-related morbidity and mortality worldwide. Despite significant advances in surgical resection, chemotherapy, and targeted therapies, resistance to chemotherapeutic drugs continues to pose a major challenge in effective management. Conventional drugs such as 5fluorouracil (5-FU), oxaliplatin, and irinotecan constitute the backbone of colon cancer treatment; however, many patients experience intrinsic or acquired chemo resistance, leading to treatment failure, recurrence, and poor prognosis. In recent years, molecular oncology has highlighted the importance of microRNAs (miRNAs) as promising regulators of drug response in cancer therapy. These small, non-coding RNA molecules (approximately 18-25 nucleotides long) function as post-transcriptional regulators of gene expression by binding to complementary sequences on target mRNAs, thereby repressing translation or promoting degradation. Their dysregulation has been strongly associated with tumor initiation, progression, metastasis, and importantly, chemo resistance. MiRNAs can act as oncogenes (oncomiRs) or tumor suppressors depending on the cellular context. In colon cancer, altered expression of specific miRNAs influences pathways involved in DNA repair, apoptosis, epithelial-mesenchymal transition (EMT), drug transport, and cell cycle regulation. For instance, miR-21, often upregulated in colon cancer, has been linked with resistance to 5-FU and oxaliplatin through its suppression of tumor suppressor genes such as PTEN and PDCD4. Conversely, miR-34a, a p53-regulated tumor suppressor miRNA, enhances chemo sensitivity by promoting apoptosis and inhibiting EMT-related pathways. Such dual roles make miRNAs attractive molecular targets for therapeutic modulation to overcome drug resistance.

MicroRNA modulation strategies broadly fall into two categories: (1) inhibition of oncogenic miRNAs, and (2) restoration of tumor-suppressive miRNAs. OncomiR inhibition can be achieved using antisense oligonucleotides (antagomiRs), locked nucleic acid (LNA)-modified inhibitors, or miRNA sponges, which block the function of overexpressed miRNAs contributing to drug resistance. For example, targeting miR-21 using LNA-modified antisense oligonucleotides has been shown to sensitize colon cancer cells to 5-FU and oxaliplatin. On the other hand, replacement of downregulated tumor-suppressor miRNAs involves the use of synthetic miRNA mimics, viral vectors, or nanoparticle-mediated delivery systems. Restoring miR-34a levels, for instance, has been demonstrated to improve chemosensitivity by reactivating apoptotic pathways and suppressing multidrug resistance

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

proteins. Emerging research also emphasizes the role of nanotechnology and delivery systems in enhancing the therapeutic potential of miRNA modulation. Nanoparticle-based carriers provide stability to miRNA mimics or inhibitors, facilitate targeted delivery to tumor sites, and minimize off-target effects. Lipid nanoparticles, polymer-based carriers, and exosome-mediated delivery systems are being extensively explored for clinical translation. Moreover, combining miRNA modulation with conventional chemotherapy holds significant promise. For example, co-delivery of miR-200c mimics with 5-FU has been shown to reverse EMT-associated resistance, while inhibition of miR-135b enhances the efficacy of oxaliplatin by modulating the Wnt/β-catenin pathway.

Another promising approach involves the use of miRNA signatures as predictive biomarkers to guide patient-specific therapy. By profiling miRNA expression patterns in tumor tissues or circulating exosomes, clinicians can identify patients likely to respond or resist specific chemotherapeutic agents, thereby enabling precision medicine. Furthermore, integrating CRISPR/Cas9 technology with miRNA modulation may offer more specific and durable regulation of miRNA expression, though this remains largely at a preclinical stage. Despite these advances, several challenges hinder the clinical application of miRNA-based modulation strategies. Off-target effects, immune activation, instability in circulation, and inefficient tumor-specific delivery remain critical hurdles. Moreover, the redundancy and complexity of miRNA-mRNA interactions mean that targeting a single miRNA may not be sufficient, necessitating combination strategies that modulate multiple miRNAs or integrate miRNA therapy with existing chemotherapeutic regimens. Clinical trials investigating miRNA-based therapeutics, such as MRX34 (a miR-34a mimic), have highlighted both the potential and limitations of this approach, with issues such as immune-related toxicities underscoring the need for optimized delivery systems. In conclusion, miRNA modulation represents a frontier in the battle against colon cancer drug resistance. By inhibiting oncogenic miRNAs and restoring tumor-suppressor miRNAs, it is possible to reprogram cellular pathways, enhance apoptosis, reduce EMT, and improve sensitivity to standard chemotherapeutic agents. With further advances in targeted delivery systems, safety optimization, and integration with personalized medicine approaches, miRNA-based therapies hold the potential to transform colon cancer management and improve patient outcomes.

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

II. THE ROLE OF MICRORNAS IN COLON CANCER CHEMORESISTANCE

• Oncogenic miRNAs and Drug Resistance

Oncogenic microRNAs, also referred to as oncomiRs, are a class of small, non-coding RNAs that are upregulated in many cancers, including colon cancer. Their overexpression contributes directly to the development of drug resistance by modulating multiple signaling pathways, gene networks, and cellular processes. Unlike protein-coding oncogenes, oncomiRs do not encode proteins but regulate gene expression at the post-transcriptional level, often by binding to the 3' untranslated region (UTR) of messenger RNAs (mRNAs) and inhibiting their translation or inducing degradation. One of the most well-studied oncomiRs in colon cancer is miR-21, which is consistently overexpressed in colon cancer tissues and cell lines. miR-21 exerts its pro-tumorigenic effects by targeting several tumor suppressor genes. A key target is PTEN (phosphatase and tensin homolog), a negative regulator of the PI3K/AKT signaling pathway. Normally, PTEN acts as a brake on cell survival and proliferation by inhibiting PI3K/AKT activity. However, when miR-21 suppresses PTEN, the PI3K/AKT pathway becomes hyperactivated, leading to enhanced cell survival, growth, and resistance to apoptosis, even in the presence of chemotherapeutic drugs such as 5-fluorouracil (5-FU) and oxaliplatin. Additionally, miR-21 targets PDCD4 (programmed cell death protein 4), a pro-apoptotic gene involved in regulating programmed cell death. Its downregulation by miR-21 reduces apoptosis and increases survival of cancer cells during chemotherapy, further undermining drug efficacy.

Another oncogenic miRNA, miR-135b, is known to regulate multiple pathways associated with stemness and epithelial—mesenchymal transition (EMT). EMT is a biological program in which epithelial cells lose their polarity and adhesion properties, acquiring mesenchymal traits that promote invasion, metastasis, and therapy resistance. Overexpression of miR-135b enhances the expression of stemness-associated transcription factors such as SOX2 and OCT4, giving cancer cells stem cell—like properties that make them more adaptable to hostile conditions like drug exposure. By driving EMT and stemness, miR-135b helps generate a pool of highly plastic, drug-resistant cells that can repopulate tumors after treatment. miR-155 represents another key oncomiR contributing to colon cancer chemoresistance. Unlike miR-21 and miR-135b, miR-155 plays a prominent role in immune regulation and DNA repair mechanisms. Elevated miR-155 expression promotes resistance by enhancing DNA repair capacity, thereby enabling cancer cells to rapidly repair drug-induced DNA damage

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

caused by agents like oxaliplatin. Moreover, miR-155 affects immune evasion by modulating cytokine signaling and suppressing immune-mediated cytotoxicity. This dual role enables tumor cells not only to survive chemotherapy but also to evade immune-mediated destruction, creating a highly resistant tumor microenvironment. Taken together, these oncomiRs—miR-21, miR-135b, and miR-155—cooperate to inhibit apoptosis, promote drug efflux, enhance DNA repair, sustain stemness, and drive EMT. The combined effect is a cellular milieu that favors tumor cell survival and undermines the efficacy of frontline chemotherapeutic regimens, making colon cancer treatment particularly challenging.

• Tumor-Suppressor miRNAs and Sensitivity

In contrast to oncomiRs, tumor-suppressor microRNAs are often downregulated, deleted, or epigenetically silenced in chemoresistant colon cancer cells. These miRNAs normally function as natural brakes on oncogenic signaling, promoting apoptosis, inhibiting uncontrolled proliferation, and preventing EMT. Their loss therefore removes critical inhibitory checkpoints, allowing tumors to progress unchecked and acquires resistance to chemotherapy. A key example is miR-34a, a direct transcriptional target of the tumor suppressor p53. In healthy cells, p53-induced miR-34a regulates multiple downstream genes involved in apoptosis (e.g., BCL-2), cell cycle arrest (e.g., CDK6, cyclin D1), and stress responses (e.g., SIRT1). When miR-34a is lost or silenced, anti-apoptotic proteins such as BCL-2 are overexpressed, allowing cells to resist programmed cell death in response to chemotherapy. Similarly, elevated SIRT1, normally inhibited by miR-34a, deacetylates p53 and other targets, weakening stress-induced apoptosis. Restoring miR-34a expression in colon cancer models has been shown to reactivate apoptotic pathways, reduce BCL-2 levels, and resensitize cells to drugs like 5-FU, underscoring its therapeutic importance.

Another critical tumor-suppressor miRNA is miR-200c, which plays a central role in controlling EMT. MiR-200c suppresses the EMT-driving transcription factors ZEB1 and ZEB2, which repress epithelial markers such as E-cadherin. Loss of miR-200c thus enables EMT, increasing cellular invasiveness, motility, and resistance to chemotherapy. In experimental models, reintroducing miR-200c restores epithelial characteristics, reduces invasive behavior, and significantly enhances sensitivity to chemotherapeutic agents. Moreover, miR-200c contributes to regulating cancer stem cell properties, further diminishing the capacity of tumors to regenerate after treatment. Restoration of tumor-suppressor miRNAs such as miR-34a and miR-200c not only reverses EMT and stemness but

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

also limits drug efflux, reactivates apoptotic pathways, and inhibits metastatic potential. This highlights the therapeutic potential of miRNA replacement therapy, where synthetic miRNA mimics or delivery systems are used to restore lost tumor-suppressor miRNAs

III. STRATEGIES FOR INHIBITING ONCOGENIC MIRNAS

• AntagomiRs and LNA-modified Oligonucleotides

One of the most widely studied strategies for inhibiting oncogenic miRNAs is the use of antagomiRs, which are chemically modified, single-stranded RNA molecules designed to bind specifically to complementary sequences of oncogenic miRNAs. Once bound, they prevent the miRNA from interacting with its natural mRNA targets, thereby neutralizing its pathological effects. To improve their therapeutic viability, antagomiRs are chemically engineered with modifications such as cholesterol conjugation, phosphorothioate linkages, and 2'-O-methyl substitutions. These modifications enhance their cellular uptake, nuclease resistance, and overall stability, ensuring that they remain active long enough to exert therapeutic effects within tumor tissues. A parallel approach involves locked nucleic acid (LNA)-modified oligonucleotides, which are synthetic RNA analogs containing a unique bicyclic structure that locks the ribose sugar into a rigid conformation. This structural modification dramatically increases binding affinity, specificity, and stability against degradation. LNAs can form highly stable duplexes with target miRNAs, often with fewer bases than unmodified oligonucleotides. This makes them especially effective at sequestering highly abundant oncogenic miRNAs in cancer cells.

In colon cancer, antagomiRs targeting miR-21 have been extensively studied. By binding and neutralizing miR-21, these inhibitors restore the expression of critical tumor suppressors such as PTEN (a negative regulator of PI3K/AKT signaling) and PDCD4 (a pro-apoptotic protein). The restoration of these genes reactivates apoptotic pathways and reduces survival signaling, ultimately re-sensitizing cancer cells to chemotherapeutic agents like 5-fluorouracil (5-FU) and oxaliplatin. Similar results have been reported for LNAs designed against miR-135b and miR-155, highlighting the broad applicability of these inhibitors. Given their high specificity and promising preclinical data, antagomiRs and LNA-modified oligonucleotides represent some of the most advanced inhibitory strategies currently being evaluated for clinical translation. However, challenges remain in terms of delivery systems, potential off-target

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

effects, and cost-effective synthesis, which must be addressed before widespread clinical application.

• miRNA Sponges and Decoys

Another innovative strategy to suppress oncogenic miRNA activity is the use of miRNA sponges and decoys. Unlike antagomiRs, which bind to a single miRNA sequence, sponges are artificial RNA constructs engineered with multiple tandem binding sites for specific miRNAs. When expressed in cells, these sponges act as competitive inhibitors, binding excess oncogenic miRNAs and preventing them from interacting with their natural mRNA targets. In effect, they function as "molecular traps" that reduce the intracellular availability of disease-driving miRNAs. For example, a sponge engineered to capture miR-21 or miR-155 can effectively reduce their oncogenic influence, thereby restoring the expression of tumor suppressors such as PTEN, PDCD4, or mismatch repair genes. This restoration enhances apoptotic sensitivity, reduces EMT progression, and increases responsiveness to chemotherapy. In preclinical studies, miRNA sponges have been shown to not only reduce tumor growth but also enhance the efficacy of standard chemotherapeutics, suggesting strong synergy with existing treatments.

An important advantage of sponge-based therapy is its versatility. Unlike antagomiRs, which usually target a single miRNA, sponges can be engineered to capture multiple miRNAs simultaneously; addressing the fact that chemoresistance in colon cancer often arises from the combined action of several oncomiRs. This multi-target capacity makes sponges especially promising in tackling the redundancy and complexity of miRNA networks in cancer. Decoys represent a similar concept, typically consisting of engineered nucleic acid sequences that mimic the natural miRNA-binding sites of target genes. By providing an excess of decoy binding sites, they competitively sequester oncogenic miRNAs away from their true targets, thus restoring normal gene regulation. Despite their potential, the clinical development of sponges and decoys is still in relatively early stages. Challenges include ensuring efficient delivery into tumor tissues, long-term stability, and minimizing immune responses. However, their adaptability and ability to address multi-miRNA-driven resistance make them a promising complement to conventional chemotherapy and precision medicine approaches

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

IV. STRATEGIES FOR RESTORING TUMOR-SUPPRESSOR MIRNAS

• Synthetic miRNA Mimics

One of the most direct methods for restoring the activity of downregulated tumor-suppressor miRNAs is the use of synthetic miRNA mimics. These are chemically engineered, double-stranded RNA molecules designed to resemble endogenous miRNAs. Once inside the cell, the mimic is processed by the RNA-induced silencing complex (RISC), allowing it to regulate the same target genes as the natural tumor-suppressor miRNA. This effectively restores lost regulatory functions in resistant cancer cells.

For instance, miR-34a mimics have shown potent therapeutic effects in colon cancer by reinstating apoptotic pathways. miR-34a directly targets BCL-2, an anti-apoptotic protein often overexpressed in chemoresistant tumors. By downregulating BCL-2, miR-34a mimics promote apoptosis and increase the sensitivity of colon cancer cells to drugs like 5-fluorouracil (5-FU) and oxaliplatin. Similarly, miR-143 mimics inhibit tumor growth by targeting KRAS, a well-known oncogene driving proliferation and metabolic reprogramming in colon cancer. Suppression of KRAS signaling reduces uncontrolled cell division and glucose metabolism, making cells more vulnerable to cytotoxic agents.

• Viral and Nanoparticle Delivery Systems

A major challenge in miRNA-based therapies is delivering these fragile RNA molecules efficiently and safely to tumor tissues. Naked miRNA mimics are prone to rapid degradation by nucleases in the bloodstream and often fail to penetrate tumor cells effectively. To address this, advanced delivery systems have been developed:

- a. Viral vectors (such as adenoviruses and lentiviruses) provide high transduction efficiency and sustained expression of therapeutic miRNAs. They integrate or persist within tumor cells, ensuring long-term restoration of tumor-suppressor miRNAs. However, concerns remain regarding insertional mutagenesis, immunogenicity, and safety in humans, limiting their clinical translation.
- b. Nanoparticle-based systems offer a safer and more versatile alternative. Lipid nanoparticles (LNPs), polymeric nanoparticles, and inorganic carriers can encapsulate miRNA mimics, protecting them from degradation in circulation. Nanoparticles can be surface-modified with tumor-targeting ligands (such as antibodies or peptides), enabling selective delivery to cancer cells while sparing healthy tissues. Once internalized, they release the miRNA mimics in a controlled manner, ensuring intracellular activity.

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

V. COMBINATION APPROACHES IN CHEMOTHERAPY AND MIRNA THERAPY

• Co-delivery with Chemotherapeutic Agents

The most promising strategy to maximize therapeutic benefit is co-delivery of miRNA-based drugs with conventional chemotherapeutics. Chemo resistance often arises from deregulated molecular pathways that miRNAs can directly modulate, making them ideal partners for standard drugs.

For example:

- a. MiR-200c mimics combined with 5-FU have been shown to reverse epithelial—mesenchymal transition (EMT), a key driver of resistance and metastasis. Restoring miR-200c reestablishes epithelial traits, enhances chemo sensitivity, and improves treatment response.
- b. Anti-miR-21 inhibitors administered with oxaliplatin restore pro-apoptotic signaling by rescuing PTEN and PDCD4 expression. This reinstates apoptosis in resistant colon cancer cells and significantly reduces tumor growth.

Such synergistic interactions not only improve the immediate cytotoxicity of chemotherapy but may also prevent recurrence by targeting resistant cancer cell subpopulations.

• Targeting Multiple miRNAs Simultaneously

Because colon cancer chemoresistance is a multifactorial process, often involving the dysregulation of multiple miRNAs across interconnected pathways, single-target strategies may not be sufficient. To address this complexity, researchers are now exploring multimiRNA modulation approaches.

For example:

- Dual targeting of miR-21 (oncogenic, inhibited) and miR-34a (tumor-suppressor, restored) simultaneously blocks survival pathways while activating apoptosis. This dual modulation achieves stronger chemo sensitization effects than either intervention alone.
- Multi-miRNA strategies can be implemented using combinatorial miRNA mimics and inhibitors or advanced delivery systems capable of carrying multiple miRNA payloads in a single nanoparticle.

This comprehensive reprogramming of cellular signaling provides a next-generation therapeutic approach, capable of overcoming tumor heterogeneity, adaptive resistance, and relapse—major limitations of conventional chemotherapy

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

VI. CONCLUSION

Chemo resistance remains one of the greatest barriers to effective colon cancer therapy, limiting the long-term success of current chemotherapeutic regimens. MicroRNAs, as master regulators of gene expression, play a pivotal role in determining cellular sensitivity or resistance to drugs. Modulation strategies—either by silencing oncogenic miRNAs or restoring tumor-suppressor miRNAs—offer a rational and powerful approach to enhance chemo sensitivity. Advances in nanotechnology-based delivery, combination strategies with standard chemotherapy, and patient-specific miRNA profiling are accelerating the translation of these discoveries into clinical practice. However, challenges such as off-target effects, immune responses, and delivery efficiency must be addressed before widespread clinical adoption. Importantly, miRNA modulation does not merely serve as an adjunct to existing therapies but represents a paradigm shift toward precision medicine in oncology. By integrating miRNA-based therapeutics with conventional regimens, it is possible to personalize treatments, minimize toxicity, and overcome the persistent challenge of chemo resistance. Ultimately, the promise of microRNA modulation strategies lies in their ability to not only improve therapeutic response in colon cancer but also to illuminate broader mechanisms of drug resistance across cancers, thereby shaping the future landscape of cancer therapy.

REFERENCES:

- Anding, A. L., & Baehrecke, E. H. (2015). Autophagy in cell life and cell death. *Current Topics in Developmental Biology*, 114, 67–91.
- Barnard, R. A., Wittenburg, L. A., Amaravadi, R. K., Gustafson, D. L., Thorburn, A., & Thamm, D. H. (2014). Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. *Autophagy*, 10(8), 1415–1425.
- Gozuacik, D., Akkoc, Y., Ozturk, D. G., & Kocak, M. (2017). Autophagy-regulating microRNAs and cancer. *Frontiers in Oncology*, 7, 65.
- Jiang, K., Zhang, C., Yu, B., Chen, B., Liu, Z., Hou, C., et al. (2017). Autophagic degradation of FOXO3a represses the expression of PUMA to block cell apoptosis in

Volume No. 12, Issue No. 08, August 2023 www.ijarse.com

cisplatin-resistant osteosarcoma cells. *American Journal of Cancer Research*, 7(7), 1407–1422.

- Liang, X., Tang, J., Liang, Y., Jin, R., & Cai, X. (2014). Suppression of autophagy by chloroquine sensitizes 5-fluorouracil-mediated cell death in gallbladder carcinoma cells.
 Cell & Bioscience, 4(1), 10.
- Liu, P. F., Tsai, K. L., Hsu, C. J., Tsai, W. L., Cheng, J. S., Chang, H. W., et al. (2018). Drug repurposing screening identifies tioconazole as an ATG4 inhibitor that suppresses autophagy and sensitizes cancer cells to chemotherapy. *Theranostics*, 8(3), 830–845.
- Ronan, B., Flamand, O., Vescovi, L., Dureuil, C., Durand, L., Fassy, F., et al. (2014). A
 highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy.

 Nature Chemical Biology, 10(12), 1013–1019.
- Rong, L. W., Wang, R. X., Zheng, X. L., Feng, X. Q., Zhang, L., Zhang, L., et al. (2017).
 Combination of wogonin and sorafenib effectively kills human hepatocellular carcinoma cells through apoptosis potentiation and autophagy inhibition. *Oncology Letters*, 13(6), 5028–5034.
- Rosenfeld, M. R., Ye, X., Supko, J. G., Desideri, S., Grossman, S. A., Brem, S., et al. (2014). A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. *Autophagy*, 10(8), 1359–1368.
- Usman, R. M., Razzaq, F., Akbar, A., Farooqui, A. A., Iftikhar, A., Latif, A., et al. (2020). Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. *Asia-Pacific Journal of Clinical Oncology*, 17(3), 193–208.