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ABSTRACT 

 In this paper I am going to present the main applications of divide and conquer approach to design algorithms 

to solve some specific problems and the impact on the time complexity of the algorithm. Basic of this approach 

is to break the big problem in to small sub problems and conquer means overcome by effort these sub problem 

by find the solutions for all the small sub problem after finding all sub solutions it recombine them in order to 

find the solution to the original problem. Using such approach most of the time it reduces the time complexity of 

the algorithm for a given problem.. 
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I. INTRODUCTİON  

 

Algorithm design and analysis plays a vital role in study of computer. In context to this paper a algorithm is a 

set of finite steps or instruction to solve a specific problem. For a specific problem there may be more than one 

algorithm this expresses that a specific problem can be solve in different ways but as per the context of 

computer the efficiency is a important factor  so a efficient algorithm means “a algorithm which takes less time 

and space on computer while executing which is analyzed after designing”. In theory of study of algorithm for 

designing some algorithm some standard approaches are defined. Such approaches are mainly- 

a. Divide and conquer approach. 

b. Greedy approach. 

c. Dynamic approach.  

In this paper I am focusing on the first approach which is divide and conquer. This approach is used to find 

solution for problems which need an exact solution in shorter time basically the optimization problems are not 

solved using this approach. Divide and conquer approach is a three step approach to design a algorithm for a 

given problem. 

a. Divide.  

b. Conquer. 

c. Combine. 

 In first step divide and conquer approach make algorithm to divides the big problem into small sub Problems it 

may repeatedly do this division till finding the smallest sub problem which can be solved(conquered) easily. 
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After finding the smallest sub problem in the second step it make algorithm to solve (conquer) that sub problem 

recursively and return solution recursively. In the last step it make algorithm to it combines the solution of sub 

problems or solved sub problems in the same manner it divided to get the solution to the given big problem. 

 

1.1 Control Abstraction of Divide and Conquer Approach  

Following control abstraction shows the divide and conquer approach. 

           DAC(p,q) 

        { 

  if( small(p, q)) 

 {  

  return (solution(p, q)); 

  } 

  else 

  { 

     m=divide(p, q);   

     DAC(p, m); 

     DAC(m+1, q); 

             combine(DAC(p, m) DAC(m+1, q));    

              } 
 

1.2 Applications of Divide and Conquer Approach 

Algorithm is a vast aria to study and analysis so there are many algorithms which can be seen as application of 

divide and conquer approach. All these algorithms cannot be  in described  in a single paper so here in this paper 

I am going to discus some fundamental and basic algorithms using the divide and conquer approach. Which are.   

a. Finding the power of an element  

b. Searching an element in a sorted array  

c. Sorting an unordered array 

d.  Matrix multiplication 
 

 

II. FINDING THE POWER OF AN ELEMENT  

The problem given is 

 Input: An integer element a>1 and another  integer n>1. 

 Output: Finding a
n 
(n power of a) 

 

 

2.1 Algorithm without Using Divide and Conquer Approach 

Power(a,n) 

   { 

          int i ,j=1; 

          for(i=1;i<=n;i++) 

            {   
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                 j=j*a; 

                 return j; 

              } 

      }  

In above algorithm for loop runs n time so the time complexity of the algorithm without using DAC is O(n). 

 
 

2.2 Algorithm using Divide and Conquer Approach 

While we use the divide and conquer approach th problem a
n 

 is divided in to a
n/2 

and  a
n/2  

where we found the 

value of a
n/2 

using further dividing and conquer once we get a
n/2 

there is no need to find other sub problem a
n/2  

. 

a
n 

can be found by squaring a
n/2. 

Mathematically 
 
a

n
= a

n/2
*a

n/2
 =(a

n/2
)

2
.The problem of size n is divided into two 

n/2 sized problems algorithm need to spent its computing resources to find  just a
n/2

. As shown in algorithm 

below-
 

 Power(a,n) 

{  

   int  mid, f=; 

   if(n==1) 

     return a; 

  else 

        { 

            mid=n/2; 

           f=Power(a,n/2); 

           f=f*f; 

           return f; 

         } 

    } 

This algorithm shows the recurrence relation as 

                  1            if n=1   

T(n)=      

               T(n/2)+c  if  n>1 

 

T(n)= T(n/2
2
)+c+c 

. 

. 

……k times running 

T(n)= T(n/2
k
)+kc 

   Let 2
k
=n 

         K= log2
n
 

T(n)= 1+ c.log2
n 

 i.e. Time complexity T(n)=log2
n 
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from above analysis it is clear that using divide and conquer approach reduces the time complexity. 
 

 

III. SEARCHING AN ELEMENT IN A SORTED ARRAY 

 

The problem is given as  Input: a sorted array with n element Output : an element from the array which key 

value is „x‟  

 

3.1 Algorithm without using Divide and Conquer Approach 

As it is known for finding a element in a sorted array of size n we have to traverse the array at least once and 

compare. Whether the element with key „x‟ is first or last or in between. So maximum computing time is n and 

minimum is 1 so the time complexity is Ω(1) in best case and O(n) in worst case. This is also known as linear 

search. 

 

3.2 Algorithm using Divide and Conquer Approach 

While we use divide and conquer approach the array is divided into two part as the array is sorted we compare 

mid element to the key x if it is x then return the index of mid if the mid element is less then x we will traverse 

the right sided array with n/2 elements if grater will go with left half of array in both case only half of the array 

is traversed. This is also called as binary search. As shown in following  algorithm. 

Binary search(a, i, j,x)        /* i and j are index of array  

  { 

     int mid ; 

     if (i==j) 

       {  if(a[i]==x) 

           return i; 

         else  

           return -1; 

          } 

     Else 

     { mid=(i+j)/2; 

        if (a[mid]==x ) 

           return mid; 

        else 

          {  if(a[mid]>x) 

              Binary search(a,i,mid-1,x); 

             Else 

                Binary search(a,mid+1,j,x);  

             } 

          } 

        } 

The above algorithm gives the recurrence relation as 
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1 if n<=1 

T(n)=     

               T(n/2)+c   if n>1 

                      

Which gives the time complexity T(n)= log2
n
  

 

 

IV. SORTING AN UNSORTED ARRAY  

 

One of the fundamental issues in computer science is ordering a list of items. Although there is a huge number 

of sorting  algorithms. Such insertion sorting selection sorting and many others but all sorting algorithm based 

on comparisons having time complexity O(n
2
) except quick and merge sort. Quick sort and merge sort are the 

most popular applications of the divide and conquer approach I am going to discus about the quick sort in this 

paper. 

 

4.1 Review of Quick sorting 

Quick Sort is a sorting algorithm that is efficient in   regards to both space and time complexity. It sorts in place 

for an optimal θ(n) space complexity and runs generally in θ(nlog2n) time, though θ(n²) in worst case.  

 

4.2 Algorithm 

Quicksort is compost of two methods:  

1. 'QUICKSORT(A,p,r)'and  

2.„PARTITION(A, p, r)‟. 

 QUICKSORT(A, p, r) 

{ 

  if p < r 

  q=PARTITION(A, p, r); 

  QUICKSORT(A, p, q-1 ); 

  QUICKSORT(A, q+1, r); 

} 

PARTATION(A, p, r) 

{ 

  x = A[r]; 

  i = p-1; 

  for j = p to r-1 

   { 

    if A[j] <= x 

    i = i+1; 

   exchange A[i] with A[j]; 

} 
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exchange A[i+1] with A[r]; 

return i+1; } 
P6 

 

4.3 Analysis 

 According to the algorithm there may be two conditions as follows. 

1. The pivot is the largest or smallest  element in the given sub-array 

 2. The pivot is the middle element in the given array. 

 It depends on the nature of the elements of that array. Either array is already sorted in increasing or decreasing  

order or it is randomly unsorted. Over these condition the array is divided into sub arrays  (Large problem to 

small sub problems *D&C).This division may be in two ways according to first condition T(n)=T(n-1)+1 (n is 

the size of array). And   according to second condition  T(n)=T(n/2)+T(n/2).The time taken by partition 

algorithm is „n‟. So recurrence relation for quick sort is- 

1 if n<=1; 

T(n)=          T(n-1)+n.                          

                          Or                           if n>1 

                  T(n/2) +T(n/2)+n  

T(n)=2T(n/2)+n; 

Appling substitution method 

T(n)=2
2
 T(n/2

2
 )+n/2

1
+n/2

0 

       =2
3
T(n/2

3
) +n/2

2
+n/2

1
+n/2

0 

. 

. 

.    K  times continuing the substitution 

     = 2
k
T(n/2

k
)+n+n+……..+n      = 2

k
T(n/2

k
)+nk 

     = 2
k
T(n/2

k
)+ kn 

          Let 2
k
=n 

                K= log2n. 

      = n.1+n.k     i.e.   n+nlog2n   i.e.     Ω(nlog2n) 

This shows the best case time complexity. Where every time when problem divided into sub problem  the pivot 

element is middle element. Or we can say every divided into two half arrays .  

Now for 

T(n)=T(n-1)+n 

Appling substitution method 

T(n)=T(n-2)+n-1+n 

. 

. 

.K times 

T(n)=T(n-k)+n-(k-1)+….+n 

Let k=n-1 

T(n)= T(1)+(2+3+4+….+n) 
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        = 1+2+3+……+n 

        =  

        =n(n+1)/2 

        =n
2
/2+n/2    i.e.    O(n

2
) 

This shows the worst case time complexity where every time the pivot element is the smallest or largest element 

or we can say array always divided into two parts of size n-1 and one. Basically the worst case condition is 

occur whenever the array is already sorted in either ascending or descending order. For average case time 

complexity we assume at  every alternative step we got division as two same size  array and for remaining we 

get division as n-1 and 1.  

Let 

T(n)=2T(n/2) +n  is named lucky 

     T(n)=T(n-1)+n    is named unlucky 

So for an average case 

We got  

T(n)= lucky+unlucky+ lucky+unlucky+….…+lucky . 

T(n)=2T(n/2)+n 

        = 2T(n/2-1)+n/2+n 

        =  2
2
T((n/2-1)/2)+(n/2-1)+n/2+n 

        . 

        . 

        .……. Will give nlog2n  i.e.      Ɵ (nlog2n) 

  

V. MATRIX MULTIPLICATION 

 

Matrix multiplication is a well known application of divide and conquer approach for understanding this 

problem. 

 Input: Two matrix of order nxn 

 Output : A matrix of order nxn
 
(multiplication of two matrix) 

 

5.1 Algorithm without using Divide and Conquer 

Let Anxn and Bnxn then  

      Cnxn= Anxn*Bnxn 

C having n
2 

element and each element require n multiplication so all n
2 

element require requires n*(n
2
) 

operation. Let time taken by one operation is unit then total time require for all multiplication is n
3 

that implies 

the time complexity of matrix multiplication is O(n
3
).     

MM(A[n][n],B[n][n]) 

 { 

     int  i, j,k,C[n][n]; 

for(i=0;i<=n;i++) 
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 { 

   for(j=0;j<=n;j++) 

     {  C[i][j]=0 

         } 

   } 

 for(i=0;i<=n;i++) 

   { 

     for(j=0;j<=n;j++) 

       { 

          for(k=0;k<=n;k++) 

            { 

 C[i][j]=C[i][j]+A[i][k]+b[k][j] 

                } 

           } 

     } 

} 

Due to three level nested loop the time complexity is O(n
3
). 

 

5.2 Algorithm using Divide and Conquer 

To understand this algorithm we need to take an example. 

M_M_algo (Two matrix to be multiplied ) 

 Step1.If given matrices size are <= 2x2 problem is small so stop. If not then 

 Step2. Assume given two matrices are square matrices for example. 

                  A11                A12                                                         B11                B12 

     1      2       3       4                                 a       b           c       d                                

              5      6        7         8                               e       f            g       h                       C11       C12 

A=          A21          A22                          B=            B21                B22                   C=       

   9      10      11     12                                i        j            k      l                        C21    C22     4x4 

            13      14      15    16     4x4                      m     n            o      p  4x4 

Here  

C11=A11*B11+A12*B21 

C12=A11*B12+A12*B22 

C21=A21*B11+A22*B21 

C22=A21*B12+A22*B22 

The above shows that a n size problem is broken in to eight n/2  size problem and each n/2 size problem require 

4 times of (n/2)
2 
of time. Which gives the recurrence relation as: 

               c                           if n<=2x2   

T(n)=   

              8 T(n/2)+4(n/2)
2
     if  n>2x2 
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i.e. the time complexity T(n)=O(n
3
). 

In the matrix multiplication the time complexity using DAC and with out using DAC is same. But Strassen 

found that using DAC the number of multiplications can be reduce 7 from 8 so the no. of sub problems is 

reduced and the improved recurrence relation is 

                c                           if n<=2x2   

T(n)=     

               7 T(n/2)+4(n/2)
2
     if  n> 2x2       

Using this recurrence relation the time complexity is reduced O(n
2.81

) from O(n
3
). Strassen‟s matrix 

multiplication is also an application of DAC 
 

 

VI. CONCLUSION 

 

This paper is a study divide and conquers approach to design a algorithm and its application. There are many 

application of divide and conquer approach some fundamental applications of them are described here. The 

entire described algorithm are analyzed as when using DAC and without using DAC. The time complexity of 

the application is reduced when the divide and conquer approach is used to design the algorithm for example the 

searching sorting and power of an element. This is not true all the time some time the time complexity to any 

algorithm remains same whether using DAC or not. For example the matrix multiplication. But most of the time 

it reduces the complexity. In this paper a well known and very popular application of divide and conquer 

approach Quick sort algorithm is described as its designing and the analysis as well. This paper will help to 

understand the scenario of divide and conquer approach to design algorithm t the fundamental level. 
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