Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

MALWARE DETECTION AND PREVENTION USING ARTIFICIAL INTELLIGENCE TECHNIQUES

Candidate Name: - Dileep Singh Kushwah

Research Scholar, Deartment of Computer Science, Vikrant University, Gwalior

Guide Name: - Dr. Shashank Swami

Research Supervisor, Deartment of Computer Science, Vikrant University, Gwalior

ABSTRACT

Cybersecurity is facing serious problems due to the ever-growing sophistication and number of malicious software programs that target individuals, businesses, and essential infrastructure systems. Threats like polymorphic malware, zero-day attacks, and ransomware have evolved to the point that traditional detection systems based on signatures and rules are sometimes inadequate. Machine learning (ML), deep learning (DL), and hybrid models are some of the most effective AI techniques for detecting and preventing malware. Artificial intelligence-based systems are able to accurately detect harmful trends, categorize risks, and forecast possible attack vectors by evaluating massive amounts of system logs, network traffic, and file activities. Deep learning architectures, such as convolutional and recurrent neural networks, are able to detect intricate temporal and spatial patterns in malware behavior, while machine learning algorithms, like ensemble models, decision trees, and support vector machines, automate classification. Anomaly-based monitoring, adaptive access control, and dynamic sandboxing are proactive preventative measures made possible by AI that lessen the likelihood of infection and damage. Increased trust in automated decision-making is a byproduct of explainable AI frameworks and continuous learning, which both improve AI's adaptability and interpretability. To protect contemporary digital ecosystems from ever-evolving cyber threats, this article investigates AI-driven malware detection and prevention techniques, describing their advantages, disadvantages, and future prospects.

Keywords: Artificial Intelligence, Malware Detection, Machine Learning, Deep Learning, Cyber security.

I. INTRODUCTION

Malicious software, which can infect both private companies and government agencies, has grown in importance as a cyber-security concern in today's increasingly digital society. When we talk about viruses, worms, Trojan horses, ransomware, spyware, and adware, we're talking about malicious software, which is an umbrella term for a broad variety of harmful programs. Malicious software can destroy systems, steal critical data, interrupt services, and drain funds or hamper operations. The attack surface for malware has grown substantially due to the exponential growth of the Internet, cloud computing, mobile devices, and the Internet of Things (IoT), rendering traditional techniques of prevention and detection based on rules and signatures increasingly insufficient. Security solutions need to be smarter, more flexible, and more proactive to deal with the vast amount of malware types and their more sophisticated evasion strategies. With its cutting-edge capabilities for detecting and preventing malware, artificial intelligence (AI) has become a game-changer in the

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

realm of cyber security. Artificial intelligence (AI) methods examine massive datasets for trends that can indicate harmful activity by using ML, DL, and hybrid models. Artificial intelligence (AI) systems can continually adapt to changing attack patterns and learn from historical data, unlike traditional methods that depend only on predetermined signatures. This allows them to identify zero-day assaults, polymorphic malware, and other previously undiscovered dangers. Decision trees, support vector machines, ensemble methods, and random forests are all examples of machine learning algorithms that may automatically categorize files, network traffic, and system actions as either benign or malicious. In addition, RNNs and CNNs are examples of deep learning models that can improve malware attack detection by capturing complex geographical and temporal patterns in program behavior, network interactions, and system logs.

Malware prevention relies heavily on AI approaches, which are essential for both detection and prevention. Security frameworks powered by AI may anticipate attack pathways and identify susceptible systems, allowing for proactive defense. Together, these measures lessen the likelihood of malware infection; they include adaptive access controls, anomaly-based monitoring, dynamic sandboxing, and automated patch management. By combining ML and DL with conventional rule-based systems, hybrid techniques can further increase robustness by utilizing both human knowledge and AI. One advantage of AI systems over traditional detection approaches is their ability to learn continuously from real-time data. This allows them to react quickly to new threats and reduces the occurrence of false positives. Enterprise networks, cloud computing settings, and IoT ecosystems are just a few areas where recent developments in AI-driven malware detection have shown encouraging outcomes. As an example, classification accuracy has been enhanced while computing overhead has been reduced through the use of feature selection approaches and ensemble learning. Improving decisionmaking and adaptation in ever-changing situations has also prompted research into reinforcement learning and transfer learning. In addition, security analysts are able to comprehend the reasoning behind detection and prevention decisions because to the explainable AI (XAI) methods that are being more and more incorporated into malware detection frameworks. Critical systems, where responsibility and trust are of the utmost importance, highlight the significance of this.

The field of artificial intelligence (AI) malware detection and prevention has come a long way, but there are still many obstacles to overcome. Malware developers are always coming up with new ways to circumvent AI models, such adversarial attacks that change input properties to avoid detection, and there aren't always enough labelled datasets to train supervised models. Furthermore, big-scale systems may struggle to handle the computational demands of deep learning models, and when incorporating AI solutions into current security infrastructures, concerns like latency, privacy, and interoperability must be carefully considered. Improving algorithms, developing stronger feature extraction techniques, creating hybrid intelligence frameworks, and finding ways to deploy in real-time are all necessary problems to solve. There has been a sea change in cyber defense with the introduction of AI for malware identification and prevention. An intelligent and proactive defense mechanism against the growing threat of malware is provided by AI-enabled systems through the combination of automated pattern detection, predictive modeling, and adaptive decision-making. In addition to boosting detection accuracy, this method also makes systems more resilient, speeds up responses, and encourages ongoing learning and improvement. Artificial intelligence approaches are on the verge of becoming a game-changer in cyber security measures, guaranteeing strong defense for individuals, businesses, and

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

essential infrastructure against ever-increasing malware attacks.

II. LITERATURE REVIEW

Jabeen, Zahra et al., (2024) As a powerful tool, artificial intelligence (AI) helps cyber security teams strengthen their defenses against a wide range of threats and assaults. Malicious software (or malware) is designed to access a device without the owner's consent. Many firms have found odd records acquired by their antiviral security monitoring systems, according to forensics investigations. A lot of their deals include passing sensitive diplomatic material through illegitimate means that make malware detection more difficult. But there are a lot of restrictions on these methods that necessitate an unnecessary investigation into the track. The intricate connection between AI and malware detection is investigated in this work. Performance evaluation measures are the focus of this article, which also addresses other research concerns that limit the usefulness of current methods. In addition to serving as a useful resource for those already engaged in malware detection research, the paper suggests avenues for further investigation.

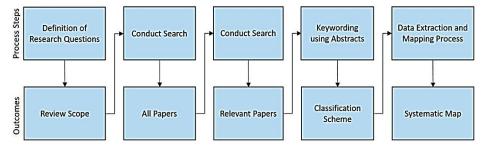
Fadare, Adedoyin et al., (2024) Due to the ever-increasing sophistication and scope of cyber attacks, the effectiveness of conventional cybersecurity measures has been steadily declining. A game-changer in cybersecurity, artificial intelligence (AI) can automate response mechanisms, improve threat detection, and even stop attacks in their tracks. Automated response systems, cybersecurity threat detection, and AI-driven methodologies are the main topics of this review, which delves into the ways AI is influencing cybersecurity. The article goes on to outline potential avenues for further study and addresses some of the difficulties associated with using AI in cybersecurity, such as ethical concerns and adversarial assaults.

Gaber, Matthew et al., (2023) our investigation delves into the latest advancements in AI-powered malware detection and examines the fundamental obstacles in this rapidly growing industry. We comprehensively review current approaches in five key areas of developing a reliable AI-powered malware detection model: malware complexity, analysis methodologies, malware repositories, feature selection, and machine learning vs. deep learning. The features used to train an AI model determine how effective the model will be. Finally, the dataset quality and analytic tool suitability determine the authenticity and quality of these attributes. The extensive use of obfuscation limits static analysis, despite its speed. While obfuscation has no effect on dynamic analysis, anti-analysis tactics are everywhere and dynamic analysis needs greater processing capacity to succeed. Combining low-quality datasets with sophisticated and evasive malware makes it difficult to extract genuine discriminatory characteristics, which can cause a model to obtain high accuracy with just one dataset.

Komarudin, Komarudin et al., (2023) the capacity of malware to penetrate computer networks, steal sensitive data, and inflict significant harm to computer systems has made it a significant cyber security concern. The researchers set out to determine whether AI may be useful in bolstering computer networks' defenses against infection. The percentage of successful malware attacks prevented by applying AI-based technologies on computer networks. The amount of time required to identify and stop malware attacks on computer networks utilizing cyber defense solutions based on artificial intelligence. In addition, a simulation system was used to assess the selection of two malware kinds commonly discovered on computer networks, namely Trojans and Worms, and the data sampling process. To identify malicious software on computer networks, this research used three distinct AI methods: Support Vector Machine, Neural Network, and Decision Tree.

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

Djenna, Amir et al., (2023) Cybercriminals' deadly weapon, malware, is getting smarter, deploying itself faster and faster, and spreading itself more and more. Furthermore, contemporary malware is among the most destructive types of cybercrime due to its anti-detection capabilities, the impossibility of conducting digital forensics investigations in near real-time, and the severe and far-reaching consequences of sophisticated evasion tactics. Because of this, effective analysis requires its timely and autonomous detection. This paper presents a novel way for systematically detecting and classifying five types of contemporary malware: adware, Radware, rootkits, SMS malware, and ransomware. The method is based on dynamic deep learning techniques and incorporates heuristic approaches. In order to build cyber systems that can withstand cyber threats, our symmetry research in AI and cyber security analytics will improve our capacity to identify, analyze, and mitigate malware. To show that the model accomplishes its objectives and efficiently and effectively responds to real-world needs, we verified it using a dataset that includes new dangerous malware. When compared to static deep learning methods, the experimental results show that a mix of heuristic-based and behavior-based approaches performs better when it comes to malware identification and classification.


Kandala, Kalyana et al., (2022) the most effective countermeasure to cyberattacks is emerging as a result of recent advances in artificial intelligence. When it comes to fighting cyberattacks, experts are turning to artificial intelligence (AI) and machine learning. As it is, security analysts are saving time and money by using this technology to spot irregularities. In this digital age, cyber experts confront difficult times, particularly due to the proliferation of the internet of things (IoT) and other linked devices. In order to respond to attacks and prevent attacks, the professionals need all the resources that are at their disposal. When faced with an increasing number of sophisticated cyber threats, conventional security measures may be inadequate, but artificial intelligence solutions can boost overall security execution and offer better protection. We examine the potential of AI and human thinking to strengthen cyber defenses in this research. The primary objective of this study is to provide an overview of the current state of the art in the area of artificial intelligence methods used to counter cyberattacks.

III. RESEARCH METHODOLOGY

We use a systematic literature review to conduct the study on AI-based malware detection techniques. Finding, studying, and investigating the most appropriate current methods is the primary goal of the systematic review. Starting with a "Search Process" that included pre-selected search strings like "Artificial Intelligence" AND ("Malware" AND "Detection" OR "Prevention") OR "AI," we scoured the scientific databases for possible research articles. These search phrases were hand-picked from the most popular synonyms, abbreviations, and derivatives of topics linked to malware and artificial intelligence in order to weed out irrelevant research articles. In addition, we drew from three digital database sources, which included (i) IEEE Xplore, (ii) Science Direct, and (iii) Springer Link, among others, when conducting our research. Our objective in selecting these three bibliographic databases is to locate research articles published in respectable books, journals, and conferences.

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

Figure 1: Paper Classification Process

Table 1: Generalized Table for Search Criteria

Database	Initial Search	Total Inclusion
IEEE Xplore	42	8
Science Direct	111	5
Springer Link	35	3
Total	196	16

Table 2: Overview of Exclusion and Inclusion

Condition of Exclusion and Inclusion		
Category	Condition (Inclusion)	Condition (Exclusion)
Type of	Malware Detection, Preven-	Other studies than afore-
Papers	tion, Artificial Intelligence	mentioned topics
Duplicate	Papers are not duplicated in	Similar papers in different
Papers	different databases	databases
Relativity	Papers and proposed ap-	Studies that do not depict
	proaches are similar aspects	expected aspects
Text	Studies that are available in	Studies are not available
Avail-	the full format	fully
ability		-

Figure 1 depicts the paper classification procedure that we adopt. In order to find published studies, we used a filter that restricted the search to papers published between 2016 and 2022. We additionally sifted through publishing subjects, such as Computer Science and Security for Science Direct, publishing Topics for IEEE Explore, and Systems and Data Security for Springer Link. The first search yielded a total of 196 studies. After finishing the search, we go through a screening procedure to locate suitable papers based on the title. Then, we read and understand the articles' abstracts and conclusions. Tables 1 and 2 indicate the exclusion criteria that were set up in order to help with the inclusion and exclusion process. These criteria include things like (i) papers that are duplicates, (ii) papers that do not have full-text available, and (iii) articles that are not connected to malware detection and prevention.

IV. RESULT AND DISCUSSION

Malware Detection Using AI

Malware detection methods based on artificial intelligence, the shortcomings of existing approaches, and

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

potential solutions are covered in this section.

Malware Detection Techniques

Malware detection systems are created by researchers who monitor both harmful and benign applications in order to analyze them in the proper sequence. One may classify malware detection techniques as signature-based, anomaly-based, or heuristic-based. Presented below are the results and potential limits of the malware detection systems, as well as a discussion of the systems themselves.

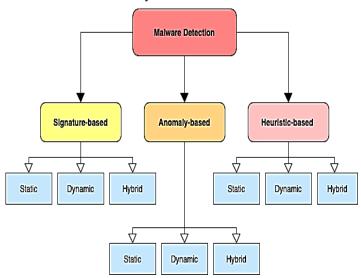


Figure 2: Classification of malware detection techniques

Data processing, feature selection, classifier training, and malware detection are the steps in the malware detection process flow, as shown in Fig. 2. The first step is to gather datasets, which might include both malicious and benign web applications, via the Kaggle website. In order to process malware datasets and analyze malware to comprehend its features, malware detection systems that use AI will be developed. A total of twenty features are chosen using the following statistical methods: Uncertainty Symmetric (US), Information Gain (IG), Chi-Square (CS), and Fisher Score (FS). For the purpose of training the classifier to identify unknown malware, the system will compare various classifiers on FS, CS, IG, GR, and US.

The use of artificial intelligence (AI) will greatly improve malware detection and prevention systems, and the implementation of various classifiers will yield superior results. We show a flow diagram of AI-based unknown malware detection in Fig. 3. In this section, we will go over each Malware Detection method in depth.

Identification Method Based on Signatures: The four-part signature-based detection method, shown in Fig. 4, aids in the identification and detection of attacks through the examination of particular patterns. A signature-based approach involves engineers scanning a file and comparing the results to a database that contains viral signatures in order to identify malicious software. If the data is in agreement with what is in the database, it indicates that the file is infected. While this approach excels at identifying known malware, it falls short when it comes to identifying unexpected threats. Looking at Figure 5, we can observe In order to determine if incoming traffic is harmful, Intrusion Detection Systems (IDS) compare it to a statistical model of traffic that may be accessed from a database. The system then notifies administrators of the results.

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

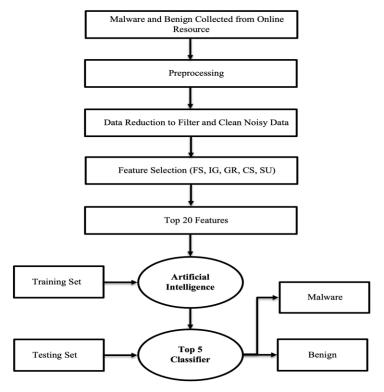


Figure 3: Flow chart of AI Based Unknown Malware Detection Techniques

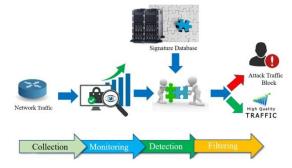


Figure 4: Methodology used in Signature based IDS

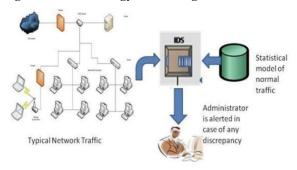


Figure 5: Signature based Intrusion Detection System (IDS)

Anomaly-based Detection Method: When it comes to fixing security flaws and keeping networks safe from harmful activity, anomaly-based network intrusion detection is crucial. By applying classification techniques across a malware detection system's actions, anomaly-based methods overcome the shortcomings of signature-based techniques and can identify both known and unknown malware. An advantage in detecting malware activity has emerged from the shift from pattern-based detection to a classification-based method to identify

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

IJARSE ISSN 2319 - 8354

normal or anomalous behavior.

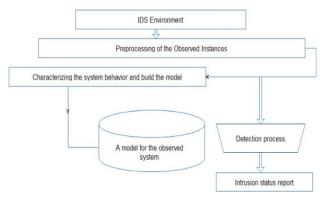


Figure 6: Common anomaly-based network IDS

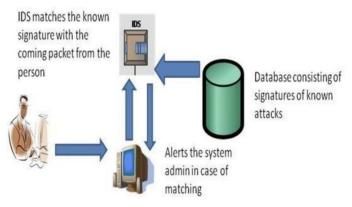
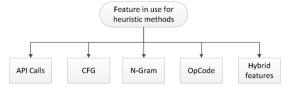



Figure 7: Anomaly Based IDS

In Figure 6, we can see an example of an anomaly-based network intrusion detection system (ANIDS) that typically uses the functional stages. However, as shown in Figure 7, there is a database that contains the signatures of known attacks. The common signatures come from various packets that are connected to that database. If an unknown signature matches with a known signature, it means malware has been detected. An alert is sent to the system administrator in this case.

Method for Detection Based on Heuristics: Malware detection is made more efficient by using AI to signature and anomaly-based detection methods. However, a genetic algorithm and a neural network were introduced to the malware detection system to enhance the classification approach, allowing it to adapt to changes in the environment and increase its prediction abilities. Without knowing anything about the system beforehand, the algorithm uses features like inheritance, selection, and combination to its advantage, allowing it to obtain optimal solutions from numerous directions. When coupled with mathematical and statistical methodologies, the heuristic method outperforms its predecessors. The characteristics of heuristic methods are shown in Figure 8.

Figure 8: Heuristic Methods Features

Malware Detection by Adopting AI

Current security measures are inadequate to counter the ingenuity and adaptability of cybercriminals, who pose

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

IJARSE ISSN 2319 - 8354

a constant danger to modern systems due to the proliferation and variety of malware. Furthermore, AI is developing at a rapid pace, and recent advancements in the field have enabled remarkable results in numerous application areas. These developments will play a significant role in the creation of effective anti-malware systems, helping to overcome the limitations of current prevention technology. Here we'll go over the AI malware detection method, show you the results, and talk about any restrictions that might be there.

To increase assault resistance, an architectural framework was implemented (Fig. 9) that keeps the host-based intrusion detection system (IDS) transparent while keeping it removed from the host. Based on the results, it seems that virtual machine monitor is a great tool for controlling how the host and main programs communicate with one another. Nevertheless, the suggested method has the drawback of being susceptible to mistakes and tamper resistance.

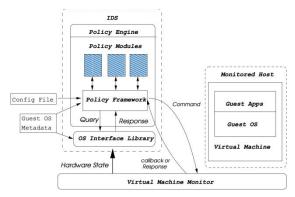


Figure 9: A High-Level View of our VMI-Base

This method takes the API call sequence extracted from malware code and turns it into a directed cycle graph. Then, it uses principal component analysis and Markov chains to build a graph convolutional network classifier. The feature map of this graph is extracted. The procedure also compares and evaluates the procedure's performance. Figure 10 shows the architecture of the malware detection system that is based on GCN. The evaluation result shows that 98.32 is the maximum level of accuracy.

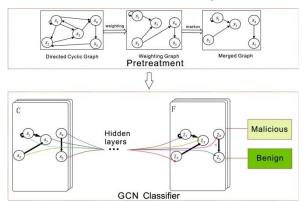


Figure 10: GCN-based malware detection system framework

The suggested method uses both static and dynamic analysis to extract characteristics. In addition, the researchers present PCA-RELIEF, a novel feature selection approach for discarding raw data. The structure of Android malware detection using machine learning is shown in Fig. 11. A greater detection rate and lower error detection were achieved in the demonstration, leading to better overall performance, the methods that were offered, along with recommendations about how to address their shortcomings.

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

IJARSE ISSN 2319 - 8354

The inability to identify unknown malware activity is the main drawback of the static signature-based strategy. Some viruses can alter the code after infecting any machine, thus it's a good idea to update the database often to temporarily fix the issue. Although the Generic signature scanning-based approach can detect unknown viruses, it cannot remove the afflicted files from the directory. This is an issue that has been addressed in the method. Code mapping is an involved procedure in heuristic analysis, which is split into static and dynamic components. This is because there are multiple possible implementations of certain pathogen features. Although it takes more time than static analysis, dynamic heuristic analysis still outperforms static analysis. The inability to identify

specific active viruses in certain contexts is a drawback of dynamic processes. For example, the heuristic dynamic analysis might be interrupted by the user doing any operation. Dynamic heuristic analysis has a track record of failure, but it can discover infections with confidence if accuracy is ignored. Integrity checking could be the solution to this problem. Aside from that, integrity verification is based on the assumption that a file's initial state is unaffected, which isn't always the case.

In order to identify harmful software programs, malware detection algorithms are actively functioning in tandem. Improving current restrictions is crucial for making malware detection techniques more efficient. We also need dynamic solutions to shorten the time it takes to analyze malware features and more advanced methods to identify malicious activity. To combat the proliferation of intelligent malware in recent years, there has to be a greater investment in AI-powered malware detection and prevention tools.

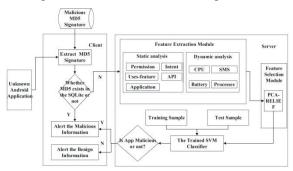


Figure 11: The architecture of machine learning-based Android malware detection

V. CONCLUSION

A crucial tactic in contemporary cyber security, malware detection and prevention employing AI algorithms offers capabilities much beyond conventional signature-based approaches. Even when confronted with unknown threats, computers may recognize and classify malicious programs with high accuracy using AI-based methodologies such as deep learning, hybrid models, and machine learning. These methods enable the proactive avoidance of malware assaults by utilizing automated pattern identification, anomaly detection, and predictive modeling. This safeguards sensitive data, vital infrastructure, and digital assets from potential harm. In addition, explainable AI increases openness and confidence in automated decision-making, and continual learning mechanisms make sure that it can adapt to changing attack techniques. Improving performance and reliability are continuous goals in artificial intelligence (AI), feature extraction, and hybrid frameworks, despite obstacles such adversarial evasion, limited labeled data, and computing complexity. A more robust cyber security posture, faster response times, less damage, and more resilient systems are all outcomes of implementing AI-driven

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

IJARSE ISSN 2319 - 8354

malware detection and prevention. The importance of artificial intelligence in maintaining secure and resilient digital ecosystems cannot be overstated, especially in light of the increasing sophistication and size of cyberattacks.

REFERENCES

- [1] Fadare, O. Fagbo, V. Ejiofor, and A. Fabusoro, "The role of Artificial Intelligence in enhancing cybersecurity: A comprehensive review of threat detection, response, and prevention techniques," *Int. J. Sci. Res. Arch.*, vol. 13, no. 2, pp. 310–316, 2024.
- [2] Z. Jabeen, K. Mishra, M. Mishra, and B. Mishra, "Malware Detection Using Artificial Intelligence: Techniques, Research Issues and Future Directions," *Int. J. Eng. Adv. Technol.*, vol. 14, no. 1, pp. 1–5, 2024.
- [3] J. K. J. Joshma and V. S. P. Sankar, "Phishing Website Detection," *Indian J. Data Min.*, vol. 4, no. 1, pp. 38–41, 2024.
- [4] M. G. Gaber, M. Ahmed, and H. Janicke, "Malware Detection with Artificial Intelligence: A Systematic Literature Review," *ACM Comput. Surv.*, vol. 56, no. 6, Art. 148, pp. 1–33, Jan. 2024.
- [5] A. Djenna, A. Bouridane, S. Rubab, and I. Marou, "Artificial Intelligence-Based Malware Detection, Analysis, and Mitigation," *Symmetry*, vol. 15, no. 3, pp. 2–7, 2023.
- [6] M. Gaber, M. Ahmed, and H. Janicke, "Malware Detection with Artificial Intelligence: A Systematic Literature Review," *ACM Comput. Surv.*, vol. 56, no. 6, pp. 1–6, 2023.
- [7] K. Komarudin, I. Maulani, T. Herdianto, M. Laksana, and D. Syawaludin, "Exploring The Effectiveness of Artificial Intelligence in Detecting Malware and Improving Cybersecurity in Computer Networks," *Eduvest – J. Univ. Stud.*, vol. 3, no. 4, pp. 836–841, 2023.
- [8] R. Rathore and N. Shrivastava, "Network Anomaly Detection System using Deep Learning with Feature Selection Through PSO," *Int. J. Emerg. Sci. Eng.*, vol. 11, no. 5, pp. 1–6, 2023.
- [9] M. Abdullahi, Y. Baashar, H. Alhussian, A. Alwadain, N. Aziz, L. F. Capretz, and S. J. Abdulkadir, "Detecting cybersecurity attacks in internet of things using artificial intelligence methods: A systematic literature review," *Electronics*, vol. 11, no. 2, p. 198, 2022.
- [10] K. Kandala, D. V. Sai, N. Saketh, I. Neelima, and B. Alekhya, "Artificial Intelligence Techniques for Prevention of Cyber Attacks and Detection of Security Threats," *Int. J. Eng. Res. Appl.*, vol. 12, no. 6, pp. 37–44, 2022.
- [11] S. Gupta, A. S. Sabitha, and R. Punhani, "Cyber Security Threat Intelligence using Data Mining Techniques and Artificial Intelligence," *Int. J. Recent Technol. Eng. (IJRTE)*, vol. 8, no. 3, pp. 6133–6140, 2019.
- [12] R. S. Devi and M. M. Kumar, "Cyber Security Affairs in Empowering Technologies," *Int. J. Innov. Technol. Explor. Eng.*, vol. 8, no. 10S, pp. 1–7, 2019.
- [13] M. M. Saudi, S. Sukardi, N. A. A. Abd Aziz, A. Ahmad, and M. 'Afif Husainiamer, "Malware Classification for Cyber Physical System (CPS) based on Phylogenetics," *Int. J. Eng. Adv. Technol.*, vol. 9, no. 1, pp. 3666–3670, 2019.
- [14] Z. Arsic and B. Milovanovic, "Importance of computer technology in realization of cultural and

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

educational tasks of preschool institutions," *Int. J. Cogn. Res. Sci. Eng. Educ.*, vol. 4, pp. 9–15, Jun. 2016.

- [15] A. P. Gilakjani, "A detailed analysis over some important issues towards using computer technology into the classrooms," *Univ. J. Educ. Res.*, vol. 2, pp. 146–153, 2014.
- [16] Khan, "An introduction to computer viruses: Problems and solutions," *Library Hi Tech News*, vol. 29, pp. 8–12, Sep. 2012.
- [17] O. Asaolu, "On the emergence of new computer technologies," *Educ. Technol. Soc.*, vol. 9, pp. 335–343, Jan. 2006.
- [18] S. Subramanya and N. Lakshminarasimhan, "Computer viruses," *IEEE Potentials*, vol. 20, pp. 16–19, Nov. 2001.