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Abstract

The object of this paper is to formulate and solve the differential equations for non-uniform axial compression
in the case of a double-walled cylindrical shell. Numerical results are obtained for deflection and are also
shown graphically for different values of x/a. The buckling loads are also figured.
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1. Introduction

Fliigge [10] examines the extensively reported phenomenon of buckling in cylindrical shells made of isotropic
materials according to traditional shell theory. The advancement of sophisticated structural materials has
engendered considerable interest in anisotropic cylindrical shells, particularly those fabricated from boron-
epoxy composites or reinforced plastic whiskers, for high-performance engineering applications.

Several researchers, including Tasi [13], Cheng and Kuenzi [1], Hess [11], Thielemann, Schnell, and Pitchler
[15], Tasi, Fellmann, and Strange [14], Cheng and Ho [2], and Lei and Cheng [12], have undertaken extensive
investigations into the buckling behaviour of these anisotropic cylindrical shells. De [14] achieved significant
advancements in resolving the buckling issue associated with grid-work shells. This study expands upon and
generalizes prior research by examining double-walled cylindrical shells, utilizing the framework provided by
Fligge [10].

This section seeks to examine the buckling behaviour of double-walled cylindrical shells subjected to non-
uniform axial compression. We employ Fliigge's approach [10] to formulate and resolve the governing
differential equations for this setup. Formulas for deflection are found, and a graph shows how they change
along the x-axis. A comparison study is conducted, and the dimensionless buckling stresses are graphically

represented to facilitate comprehension and assessment.

2. Basic equations

The differential equations for double walled shell are given by 1
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Here, x denotes the distance of the point under consideration from a datum plane normal to the generators, and

¢ represents the angular distance of the point from a datum generator. The derivatives with respect to the co-

ordinate’s x/a and ¢ will be denoted by primes and dots, respectively.
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As given in Fliigge [10, p. 301], the basic stresses depend on one of the coordinates, either x or ¢. In this study,

we consider the case of non-uniform axial compression.

N_\_JZ—PZ—PO—PICOSQ) (2)

When loads corresponding to this equation are applied to the edges of the Fig-5.6, the force Nw has the same
distribution at any cross-section x = constant of the shell, while Ngpr= Nxpi = 0.
Now, we introduce dimensionless load parameters:
P, P, ()
D D
and we obtain the differential equations of the problem by replacing q, in (1) by qotqicosp while dropping the

original terms with q; and qs.

-
\ A
J..]

—v_

Po Py
Fig.-1: Cylinder under non-uniform axial compression.
This simple, of course, possible only because we never needed to differentiate any load with respect to ¢ when
deriving (1).

The differential equations thus obtained are
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They are still homogeneous in u, v, w but they contain terms with variable co-efficient.

3. Solution of the problem:

Let us put

u = Cosﬁ_x % A, cos (m co) —|
a m=0

v = sinl—x % B,sin (mo) (5a-c)
a m=1

. A x
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a m=0 J

Upon introducing this into (4) we obtain the following set:
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In the second version of the right-hand sides of these equations, it is understood that A _; = By = C ;= 0. When
this second version is used, each of the equations states that two Fourier series in @ must be identically equal.
Such an outcome is possible only if their coefficients are the same, and thus each of the three differential
equations yields an infinite number of linear algebraic equations for the coefficients Am, Bm, and Cn. There are

three equations corresponding to each integer m, and the general triplet is as follows:
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We first introduce an abbreviated notation writing (9) in the following form:
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We then use the first two of these equations to express An and Bm in terms of Cr, and of Am.i ...Bm+1.This
involves certain determinants of the co-efficient bii m ... etc., and for brevity we shall put the subscript m only

at the end of these determinants and not at all the individual co-efficient.
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These equations are used first to eliminate Ay and B from the third equation of (10). This introduces three
terms with Am-1, Am+1, Bm-1, Bm+1. The same two equations may now be used again to eliminate these terms.
This introduces new terms with Am.2, Am, ..., but all these terms carry a factor qi? and may be neglected. We

thus arrive at the following equation:

by by by

1
by Dy by .C‘,,:—qui [ ot - Crrg | = 0 (11)
by by by,

The co-efficient of Cy.1 and Cm+1 which have been indicated by a row of dots, are rather lengthy expressions of
determinants of by, ..., bss. If they are worked out in detail, it is found that they increase as m*, while the co-
efficient of Cy, has the form m®+m®+.... Therefore, if we divide each equation by m* and use m* Cy, as an
unknown, the determinant will fulfill the convergence requirement. It follows that the infinite determinant of
(11) must vanish and that this condition is fulfilled with increasing degrees of approximation if finite systems of
increasing size of the determinants are set equal to zero. Since the co-efficient of (11) contain the load
parameters qo and qi, the vanishing of the determinant is a relation between these two quantities so that we may
assume values of qo and calculate from the determinantal equation the corresponding values of q; or vice versa.
The numerical works may be done in different ways. One may work out the expressions which were indicated
in (11) by dots and so obtain the elements of the determinant in general form, or one may write a sufficient
segment of (9), introducing numerical values for everything but q;, and then perform numerically the
elimination of A, and Bp, as described; or one may just use (9) as they stand. In each case, one has to solve the
eigenvalue problem of a large determinant, and this again can be done in several ways. One may expand the
determinant and solve the ensuing algebraic equation, or one may fix a value of qo and find by trial an error in
the value of q; which makes the determinant vanish, or one may use the method of matrix iteration.

After a pair qo, qi has been found; (11) may be solved for the constants Cr,, which, as in all buckling problems,

are determined except for a common factor.
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4. Numerical results

We assume [

ty=3cm, t,=2cm, t=1 +2t, =7 cm,
k1=10_6. a=50cm, b=2cm. b =5b=10cm.
E=128x10° psi . v=10378

/ X
For a shell with — =7, — = 7 it was found that g, =0.001, g, = 0.049 represent a buckling load. Solving
a a

(11) and introducing the values Cy, thus obtained into (5-c) yield the following deflection:

w = sini(—0.23559 cos@ +0.42093cos2e +0.48630cos3g@
a

+0.66180cosde —0.00055c055¢'+...)x ll]8

This suggests that it would be sufficient to use only a four-by-four determinants made up of the co-efficient of
Ci, Cy, Cs, Cy4 in four equations (11) for which m=1, 2, 3, 4.

The buckling displacement as computed from the formula just given is shown in Fig-2 when x/a = n/2, n/3, n/4
and 7/6. Although the deflection is not exactly zero in the tensile zone of the shell, it is there exceedingly small,
and the largest deflection occurs where Ny has its largest negative value. For the same shell a number of critical
pair’s qo, q1 have been computed, and the result of this computation is shown in Fig.-3 When the cylinder is
considered as a tubular bar subjected to an eccentric axial force, then qo represents the direct stress and q; the
bending stress. The ratio of both has been chosen as the abscissa of Fig-3, while the ordinate qo+q; represent the
greatest compressive stress. The diagram shows that the latter does not vary much depend on the former and that
it increases as the compressive zone of the cylinder decreases in width.

The plane ¢ = 0, ¢ = m is a plane of symmetry for the basic stress pattern (2). From Fig-2 it may be seen that
buckling deformation has the same symmetry. This is a necessary consequence of the form (5) which we
adopted for the solution of (4). There exists, however, another solution of these equations, which is anti-

symmetric with respect to the same plane.

Xa=m2 @

g 15 Xa=m/3 =

o x/a=m2

90 x/a=n/4 a

b=

2 1 x/a=m/3

[-] - x/a=n/6 @

3 x/a=m/4

05
x/a=n/6 m
3n/4
¢ \ \ I \
0 4 w2 n

(0 tom)

Fig.-2 - Buckling deflection of a cylinder under non-uniform axial compression for different values of x/a.
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Fig.-3: Dimensionless buckling loads for a cylinder with a ==, k;=10°,0 =0.378.

4. Conclusion

From Fig. 2, we observe that the deflection starts from a maximum positive value, gradually decreases to zero,

and then continues to decrease, reaching a minimum negative value. Subsequently, it increases from this

minimum, passes through zero again, and rises to a maximum positive value. In other words, the deflection

exhibits an oscillatory behavior as it tends toward zero.

As x/a decreases, the corresponding deflection also gradually decreases. From Fig. 3, we observe that the

buckling loads decrease slowly and progressively.

References

1]

2]

131

[4]

5]

[6]

[7]

Cheng, S., and Kuenzi, E. W. (1963), ‘Buckling of an orthotropic or plywood cylindrical shell under external
radial pressure’, Proceeding of the Fifth International Symposium on Space Technology and Science Tokyo,
pp-527-542.

Cheng, S. and Ho, B.P.C. (1963), ‘Stability of heterogeneous aeolotropic cylindrical shells under combined
loading” ATAA Journal, Vol.1, No.7, pp.1603-1607.

De, A. (1983), ‘Buckling of anisotropic shells-I’, Aplikace Matematiky (Czechoslavakia), Vol.28, No. 2,
pp-120-128.

De, A. (1983), ‘Buckling of anisotropic shells-II’, Aplikace Matematiky (Czechoslavakia), Vol.28, No.2, pp.
129-137.

De, A. (1986), ‘Buckling of beam-column problem of anisotropic cylindrical shells’ Aplikace Matematiky
(Czechoslavakia), Vol. 31, No.2, pp.180-189.

De, A. (1987) ‘Buckling of anisotropic cylindrical shells’ Journal of structural Engineering, Vol.14, No.3,
pp-100-107.

De, A. (1989) ‘Buckling of anisotropic cylindrical shells subject to axial pressure’, Journal of Structural
Engineering, Vol.15, No.4, pp.127-132.

9|Page

10.5281/zenodo.16760111




International Journal of Advance Research in Science and Engineering
Volume No. 14, Issue No. 08, August 2025

Wwww.ijarse.com

8]

91

[10]
[11]

[12]

[13]

[14]

[15]

[16]

TJARSE
ISSN 2319 - 8354

De, A. (1989) ‘Effect of imperfection of shape on buckling of anisotropic cylindrical shells’, Journal of
Structural Engineering, Vol.17, No. 2., pp.61-64.

De, A. and Chaudhuri, M. (2008) “Buckling of double walled cylindrical shell without shear load” Journal of
Calcutta Mathematical Society, Vol.100.

Fliigge, W., (1973) Stresses in Shell’, 2" Edn. Springer Verlerg, Berlin, NewY ork.

Hess, T. E. (1961) ‘Stability of orthotropic cylindrical shell under combined loading’, ARS Journal, Vol. 31,
No.2, pp.237-246

Lei, M. M. and Cheng, S. (Dec.1969) ‘Buckling of composite and homogeneous isotropic cylindrical shells
under axial and radial loading’, Journal of Applied Mechanics, Vol.8, pp.791-798.

Tasi, J. (1966) ‘Effect of heterogeneity on the stability of composite cylindrical shells under axial
compression’, AIAA Journal, Vol.4, No.6, pp.1058-1062.

Tasi, J., Feldmann, A. and Strang, D. A. (1965) ‘Buckling Strength of filament wound cylinders under axial
compression’, NASA, CR-266.

Thielemann, W.E., Sehnell, W. and Pischer, G. (1960) ‘Buckling and post-buckling behaviour of orthotropic
circular cylindrical shells subject to combined axial and internal pressure’, Zeitchift Flugwiss. Vol. 8, Herf
10/11, pp.284-293.

Timoshenko, S. and Woinowsky Krieger, S. (1983) ‘Theory of plates and shells’ 2™ Edn. Mc. Graw Hill Book
Co. New York, pp.379-380, 115.

10|Page

10.5281/zenodo.16760111




