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Abstract 

The object of this paper is to formulate and solve the differential equations for non-uniform axial compression 

in the case of a double-walled cylindrical shell. Numerical results are obtained for deflection and are also 

shown graphically for different values of x/a. The buckling loads are also figured. 
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1. Introduction 

Flügge [10] examines the extensively reported phenomenon of buckling in cylindrical shells made of isotropic 

materials according to traditional shell theory. The advancement of sophisticated structural materials has 

engendered considerable interest in anisotropic cylindrical shells, particularly those fabricated from boron-

epoxy composites or reinforced plastic whiskers, for high-performance engineering applications. 

Several researchers, including Tasi [13], Cheng and Kuenzi [1], Hess [11], Thielemann, Schnell, and Pitchler 

[15], Tasi, Fellmann, and Strange [14], Cheng and Ho [2], and Lei and Cheng [12], have undertaken extensive 

investigations into the buckling behaviour of these anisotropic cylindrical shells. De [14] achieved significant 

advancements in resolving the buckling issue associated with grid-work shells. This study expands upon and 

generalizes prior research by examining double-walled cylindrical shells, utilizing the framework provided by 

Flügge [10]. 

This section seeks to examine the buckling behaviour of double-walled cylindrical shells subjected to non-

uniform axial compression. We employ Flügge's approach [10] to formulate and resolve the governing 

differential equations for this setup. Formulas for deflection are found, and a graph shows how they change 

along the x-axis. A comparison study is conducted, and the dimensionless buckling stresses are graphically 

represented to facilitate comprehension and assessment. 

 

2. Basic equations  

The differential equations for double walled shell are given by [9]  
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Here, x denotes the distance of the point under consideration from a datum plane normal to the generators, and 

φ represents the angular distance of the point from a datum generator. The derivatives with respect to the co-

ordinate’s x/a and φ will be denoted by primes and dots, respectively.  
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As given in Flügge [10, p. 301], the basic stresses depend on one of the coordinates, either x or φ. In this study, 

we consider the case of non-uniform axial compression. 

 

When loads corresponding to this equation are applied to the edges of the Fig-5.6, the force Nxl has the same 

distribution at any cross-section x = constant of the shell, while Nφl = Nxφl = 0. 

Now, we introduce dimensionless load parameters:  

 

and we obtain the differential equations of the problem by replacing q2 in (1) by q0+q1cosφ while dropping the 

original terms with q1 and q3. 

 

Fig.-1: Cylinder under non-uniform axial compression. 

This simple, of course, possible only because we never needed to differentiate any load with respect to   when 

deriving (1). 

The differential equations thus obtained are  
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They are still homogeneous in u, v, w but they contain terms with variable co-efficient. 

 

3. Solution of the problem: 

Let us put 

 

Upon introducing this into (4) we obtain the following set: 
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In the second version of the right-hand sides of these equations, it is understood that A –1 = B0 = C –1 = 0. When 

this second version is used, each of the equations states that two Fourier series in  must be identically equal. 

Such an outcome is possible only if their coefficients are the same, and thus each of the three differential 

equations yields an infinite number of linear algebraic equations for the coefficients Am, Bm, and Cm. There are 

three equations corresponding to each integer m, and the general triplet is as follows: 
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We first introduce an abbreviated notation writing (9) in the following form: 

  

where 

             

 

We then use the first two of these equations to express Am and Bm in terms of Cm and of Am-1 …Bm+1.This 

involves certain determinants of the co-efficient b11, m … etc., and for brevity we shall put the subscript m only 

at the end of these determinants and not at all the individual co-efficient. 
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These equations are used first to eliminate Am and Bm from the third equation of (10). This introduces three 

terms with Am-1, Am+1, Bm-1, Bm+1. The same two equations may now be used again to eliminate these terms. 

This introduces new terms with Am-2, Am, …., but all these terms carry a factor q1
2 and may be neglected. We 

thus arrive at the following equation: 

 

The co-efficient of Cm-1 and Cm+1 which have been indicated by a row of dots, are rather lengthy expressions of 

determinants of b11, …, b33. If they are worked out in detail, it is found that they increase as m4, while the co-

efficient of Cm has the form m8+m6+…. Therefore, if we divide each equation by m4
 and use m4

 Cm as an 

unknown, the determinant will fulfill the convergence requirement. It follows that the infinite determinant of 

(11) must vanish and that this condition is fulfilled with increasing degrees of approximation if finite systems of 

increasing size of the determinants are set equal to zero. Since the co-efficient of (11) contain the load 

parameters q0 and q1, the vanishing of the determinant is a relation between these two quantities so that we may 

assume values of q0 and calculate from the determinantal equation the corresponding values of q1 or vice versa. 

The numerical works may be done in different ways. One may work out the expressions which were indicated 

in (11) by dots and so obtain the elements of the determinant in general form, or one may write a sufficient 

segment of (9), introducing numerical values for everything but q1, and then perform numerically the 

elimination of Am and Bm as described; or one may just use (9) as they stand. In each case, one has to solve the 

eigenvalue problem of a large determinant, and this again can be done in several ways. One may expand the 

determinant and solve the ensuing algebraic equation, or one may fix a value of q0 and find by trial an error in 

the value of q1 which makes the determinant vanish, or one may use the method of matrix iteration. 

After a pair q0, q1 has been found; (11) may be solved for the constants Cm, which, as in all buckling problems, 

are determined except for a common factor. 
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4. Numerical results 

We assume [10]              

 

For a shell with ,
2

l x

a a


= = it was found that 0 0.001q = , 1 0.049q = represent a buckling load. Solving 

(11) and introducing the values Cm thus obtained into (5-c) yield the following deflection: 

 

This suggests that it would be sufficient to use only a four-by-four determinants made up of the co-efficient of 

C1, C2, C3, C4 in four equations (11) for which m=1, 2, 3, 4. 

The buckling displacement as computed from the formula just given is shown in Fig-2 when x/a = /2, /3, /4 

and /6.  Although the deflection is not exactly zero in the tensile zone of the shell, it is there exceedingly small, 

and the largest deflection occurs where Nxl has its largest negative value. For the same shell a number of critical 

pair’s q0, q1 have been computed, and the result of this computation is shown in Fig.-3 When the cylinder is 

considered as a tubular bar subjected to an eccentric axial force, then q0 represents the direct stress and q1 the 

bending stress. The ratio of both has been chosen as the abscissa of Fig-3, while the ordinate q0+q1 represent the 

greatest compressive stress. The diagram shows that the latter does not vary much depend on the former and that 

it increases as the compressive zone of the cylinder decreases in width.  

The plane φ = 0, φ =  is a plane of symmetry for the basic stress pattern (2). From Fig-2 it may be seen that 

buckling deformation has the same symmetry. This is a necessary consequence of the form (5) which we 

adopted for the solution of (4). There exists, however, another solution of these equations, which is anti-

symmetric with respect to the same plane. 

 

Fig.-2 - Buckling deflection of a cylinder under non-uniform axial compression for different values of x/a. 
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Fig.-3: Dimensionless buckling loads for a cylinder with l/a = ,  k1 = 10-6 ,  = 0.378. 

 

4. Conclusion 

From Fig. 2, we observe that the deflection starts from a maximum positive value, gradually decreases to zero, 

and then continues to decrease, reaching a minimum negative value. Subsequently, it increases from this 

minimum, passes through zero again, and rises to a maximum positive value. In other words, the deflection 

exhibits an oscillatory behavior as it tends toward zero. 

As x/a decreases, the corresponding deflection also gradually decreases. From Fig. 3, we observe that the 

buckling loads decrease slowly and progressively. 
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