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ABSTRACT 

The paper provides a detailed study of bacterial population models with antibiotic factors using logistic 

modeling techniques. A system of differential equations enables us to examine stability including local and 

global aspects by means of Jacobian matrices and Lyapunov functions. The effect of antibiotic degradation 

together with efficacy on extended bacterial population dynamics is shown through simulation models created 

in Python. The study delivers vital knowledge about how bacterial multiplication balances against medical 

treatment measures. 

 

1. INTRODUCTION 

The emergence and rapid spread of antibiotic-resistant bacteria pose one of the most significant public health 

challenges of the 21st century. Treating bacterial infections effectively now requires stronger treatment methods 

since traditional antibiotics fail to provide sufficient results leading to the necessity of advanced scientific 

knowledge that combines biological and mathematical concepts. Through population-level tests mathematical 

models deliver essential knowledge about bacteria population behaviors subject to antibiotic presence which 

enhances the development of better medication and outcome prediction. 

The analysis reinstates an original ecological model that incorporates environmental growth constraints with 

antibiotic inhibition factors. The research examines a logistic growth model that includes an antibiotic term to 

show how bacteria populations are affected by inhibition. Reintroducing the nonlinear term produces major 

changes both to stability levels and overall dynamics of the system. 

The main study conducts stability analysis through analytical procedures combined with numerical methods. 

Stability assessments of nearby system regions become possible by evaluating Jacobian matrices computed at 

equilibrium points for local stability analysis. Long-term numerical simulations together with Lyapunov 

functions contribute to discovering how the system performs widely when subjected to different initial 

conditions. 

This research develops a complete examination of bacterial growth control with antibiotics as well as population 

stabilization methods and unrestricted bacterial growth by using special control parameters and starting values. 

The adoption of Python numerical methods allows for persistent observation of pattern changes stemming from 

antibiotic decay processes combined with antibiotic effectiveness rates during the evaluation of system behavior 

over time. 

This method seeks to develop standardized information to improve antibiotic therapeutic decisions and 

antibiotic distribution decisions. 

1.1 Notations  

Let the following denote the variables and parameters in our model: 

B(t): Bacterial population at time t 

A(t): Antibiotic concentration at time t 

rB: Intrinsic growth rate of bacteria. 

KB: Carrying capacity of the bacterial population. 
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α: Antibiotic efficacy constant. 

dA: Antibiotic decay rate. 

 

2. MATHEMATICAL EQUATIONS 

The system of equations governing the interaction between bacteria and antibiotics is: 

(1). 1B

B

dB B
r B AB

dt K


 
   

 
 

(2). A

dA
d A

dt
   

Bacterial logistic growth takes place through this equation though it has the −αAB operable term which 

introduces antibiotic suppression effects.  

The presence of antibiotic elements results in the negative value −αAB and thus causes suppression of bacterial 

growth. 

The natural degradation of antibiotics during time periods is represented within the second mathematical 

equation. 

The system analysis relies on both analytical and numerical analytical methods. We start by analyzing the 

system equilibrium to find its steady states because this reveals how both bacterial populations and antibiotics 

may behave over the long run. Solving the system of equations reveals equilibrium points that serve as 

fundamental elements for stability analysis to follow. The analysis of local stability for equilibrium points 

depends on the Jacobian matrix computation. The Jacobian matrix enables the investigation of small changes at 

equilibrium points to determine if the system will stabilize at equilibrium or become unstable. A Lyapunov 

function serves to establish global stability analysis for our system when we want to understand its complete 

behavioral characteristics. This assessment method shows how system dynamics extend over time by revealing 

if all system trajectories originating from any initial state will end up at a stable equilibrium point. The analysis 

receives numerical simulation support through the implementation of Euler's method in Python. Through this 

method we gain insights about bacterial population along with antibiotic concentration patterns during different 

stages of time for diverse initial situations as well as their respective stability behavior. This integrated 

framework provides strong foundations to observe how bacteria grow simultaneously while antibiotics reduce 

them. 

Detailed Discussion on Local Stability of the Logistic Growth Model with Antibiotic Effect.The logistic growth 

model with the antibiotic effect describes the dynamics between bacterial growth and the action of antibiotics. 

The system allows mathematical analyses which reveal the stability characteristics at its equilibrium states. 

Stability analysis provides information about population outcomes where bacterial colonies will stabilize at a 

steady state and how they will either grow without control or naturally decrease under particular environmental 

conditions. 

 

3. EQUILIBRIUM POINTS 

To find the equilibrium points, set 0 & 0
dA dB

dt dt
 

 

A

dA
From d A

dt
 

 
The equilibrium for A  is: A∗=0 

1 :B

B

dB B
From r B AB

dt K


 
   

 
 

Substituting A∗=0: B*=0 or B*=KB 

Thus, the equilibrium points are: 
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(i). (B*,A*) = (0,0): No bacteria, No antibiotics. 

(ii). (B*,A*) =(KB,0): Maximum carrying capacity of bacteria with no antibiotics. 

 

4. LOCAL STABILITY ANALYSIS 

We analyze the stability of each equilibrium point using Jacobian matrix analysis. 

(a) Jacobian Matrix 

The Jacobian matrix of the system is derived by computing partial derivatives of the equations: 

dB dB

B dt A dt
J

dA dA

B dt A dt

      
         
     
         

 

Substituting the system equations: 

2
1

0

B

B

B
r A B

K

dA

 
  

    
   
    

(b) Evaluate at (B*,A)=(0,0) 

0

B B

A

r K
J

d

  
  

 
 

The eigen values of the Jacobian matrix J for the system are given by λ1 = −rB &   λ2 = −dA 

Both eigen values are negative at λ1<0 and λ2<0,which indicates that the equilibrium point at (KB,0) is locally 

stable. This means that if the bacterial population is close to its carrying capacity KB and antibiotics are either 

absent or ineffective, the system will naturally settle at this equilibrium point. In other words, in the absence of 

antibiotic intervention, the bacterial population will stabilize at the maximum sustainable level determined by 

the environmental constraints. 

However, the dynamics of the system become more complex when antibiotics are present. The introduction of 

the term αAB  which represents the interaction between antibiotics and bacterial populations, leads to a 

nonlinear effect that alters the system's behavior. In this scenario, numerical simulations become essential to 

accurately analyze the stability of the system, as the equations cannot be easily solved analytically due to their 

nonlinear nature. 

At this equilibrium condition(KB,0) the bacterial population reaches its highest sustainable number when no 

antibiotics exist (B→0). This equilibrium remains stable given nearby system starts although there is no 

antibiotic effect. An optimal bacterial population of KB will remain stable so long as medicine resistance exists 

or medication has no effect on bacterial growth. 

Antibiotics create a substantial system transformation which affects the population dynamics. The bacterial 

population will experience extinction due to antibiotic concentration A when the positive force of antibiotics 

exceeds the bacterial growth capacity. The system returns to unstable bacterial growth conditions at point (KB,0)   

when antibiotic decay occurs rapidly or when the antibiotic's effectiveness level (α) proves inadequate. The 

careful regulation of bacterial growth in relation to antibiotic suppression illustrates the vital requirement of 

keeping appropriate antibiotic levels to successfully eliminate bacteria. 

4.1 Biological Implications 

This population system has two fundamental equilibrium states which demonstrate different biological effects. 

The system establishes (0,0) as its initial condition which signifies complete bacterial sterility without 

antibiotics present. The system maintains two equilibrium points although bacteria would multiply 

exponentially until external factors intervene whether from antibiotics or environmental constraints or bacterial 

introduction discontinues this rapid growth. The second stable condition (KB,0) shows the highest possible 

bacterial numbers when no antibiotics exist. The bacterial population settles at this maximum sustainable level 
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when antibiotics do not provide protection against bacteria. A transformation occurs within the system after 

adding antibiotics to the environment. Antibiotics generate antibacterial conditions that shift the system from its 

equilibrium point (KB,0) toward total extinction (B→0) of bacterial populations. This variation in bacterial 

population depends on the strength of antibiotic substances alongside their treatment effectiveness. The rate of 

antibiotic decay and the strength of their efficacy determine whether bacterial suppression remains effective or if 

the bacterial population recovers toward its equilibrium value (KB,0). Therefore we need to manage antibiotic 

treatment principles carefully to achieve its therapeutic goals. 

 

5. NUMERICAL SIMULATIONS 

The first-order simple numerical technique named Euler's method provides a solution approach to solve ordinary 

differential equations while generating approximate values at discrete time steps. The technique provides 

powerful solutions to study systems such as bacterial growth under antibiotic exposure that cannot be solved 

exactly. 

The system simulation in Python uses Euler's method to apply differential equations which enables stepwise 

variable value changes between bacterial populations and antibiotic concentrations. 

Python Program: 

# Parameters for simulation 

r_B = 0.1  # Growth rate of bacteria 

K_B = 1000  # Carrying capacity of bacteria 

alpha = 0.05  # Antibiotic efficacy constant 

d_A = 0.02  # Antibiotic decay rate 

 

# Initial conditions 

B0 = 100  # Initial bacteria population 

A0 = 10   # Initial antibiotic concentration 

t_max = 100  # Simulation time 

dt = 0.1  # Time step 

 

# Time array 

time = np.arange(0, t_max, dt) 

# Initialize arrays for bacteria and antibiotics 

B = np.zeros_like(time) 

A = np.zeros_like(time) 

 

# Set initial conditions 

B[0] = B0 

A[0] = A0 

 

# Numerical integration using Euler's method 

for i in range(1, len(time)): 

    dB = r_B * B[i-1] * (1 - B[i-1] / K_B) - alpha * A[i-1] * B[i-1] 

    dA = -d_A * A[i-1] 

    B[i] = B[i-1] + dB * dt 

    A[i] = A[i-1] + dA * dt 

 

# Plot the results 

plt.figure(figsize=(12, 6)) 

 

# Plot bacterial population 

plt.plot(time, B, label="Bacteria Population (B)", linewidth=3) 
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# Plot antibiotic concentration 

plt.plot(time, A, label="Antibiotic Concentration (A)", linewidth=3, linestyle="--") 

 

# Add stability indicators 

plt.axhline(y=K_B, color='red', linestyle=':', linewidth=2, label="Carrying Capacity (K_B)") 

plt.axhline(y=0, color='black', linestyle='-', linewidth=1, label="Extinction Level") 

 

# Plot settings 

plt.title("Numerical Simulation of Logistic Growth with Antibiotic Effect", fontsize=16) 

plt.xlabel("Time", fontsize=14) 

plt.ylabel("Population / Concentration", fontsize=14) 

plt.legend(fontsize=12) 

plt.grid(True) 

plt.show() 

 
Figure(1):  Numerical Simulation of Growth with Antibiotic 

 

# Enhanced Plot for Numerical Simulation 

plt.figure(figsize=(14, 8)) 

 

# Plot bacterial population 

plt.plot(time, B, label="Bacteria Population (B)", linewidth=4, color='blue') 

 

# Plot antibiotic concentration 

plt.plot(time, A, label="Antibiotic Concentration (A)", linewidth=4, linestyle="--", color='orange') 

 

# Add stability indicators 

plt.axhline(y=K_B, color='red', linestyle=':', linewidth=3, label="Carrying Capacity (K_B)") 

plt.axhline(y=0, color='black', linestyle='-', linewidth=2, label="Extinction Level") 

 

# Additional aesthetic enhancements 

plt.title("Enhanced Numerical Simulation: Logistic Growth with Antibiotic Effect", fontsize=18, 

fontweight='bold') 

plt.xlabel("Time (t)", fontsize=14, fontweight='bold') 

plt.ylabel("Population / Concentration", fontsize=14, fontweight='bold') 

plt.xticks(fontsize=12) 

plt.yticks(fontsize=12) 
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plt.legend(fontsize=12, loc="upper right", frameon=True, shadow=True) 

plt.grid(True, linestyle='--', alpha=0.7) 

# Display the plot 

plt.show() 

 
Figure (2) : Interaction between bacterial population (B) and antibiotic concentration (A) 

Here is the numerical simulation showing the interaction between bacterial population (B) and antibiotic 

concentration (A): 

5.1 Special Features of the Diagram 

The graph depicts how antibiotic concentration A affects bacterial population B while demonstrating critical 

system behavior patterns. Under logistic growth conditions the bacterial population intensifies rapidly until 

antibiotic effects start to suppress cellular growth. The bacterial population decreases because antibiotics 

prevent its growth after the introduction of antibiotics. The bacterial population will decline completely when 

antibiotic concentrations remain strong enough or achieve sufficient effectiveness thus reaching zero values of 

B. During its natural degradation process the antibiotic concentration A diminishes its power to inhibit bacterial 

growth. The bacterial population achieves stability near the carrying capacity KB when antibiotic strength 

declines while the direct control on bacterial growth fails to persist. Under no antibiotic treatment conditions the 

carrying capacity KB defines bacteria's maximum continuous thriving numbers which cannot surpass their 

established threshold. The carrying capacity KB operates as a natural barrier to halt bacterial expansion to 

become a stable equilibrium when antibiotics are not administered for control. 

5.2 Conclusions 

The system demonstrates how bacterial resources and antibiotic solutions fight against each other continuously. 

Bacterial extinction becomes probable when effective antibiotics persist for a long period since it results in 

bacterial population numbers decreasing to zero. The reduction of antibiotics either before they fully decay or 

when their effectiveness becomes insufficient allows bacterial populations to increase until reaching a state near 

the carrying capacity KB. The successful treatment with antibiotics depends on maintaining perfect balance in 

antimicrobial levels because bacterial populations can reemerge if these levels do not remain high enough. 

6. Global Stability of the Logistic Growth Model with Antibiotic Effect 

It is observed global stability by evaluating how the system behaves and how all system trajectories approach 

equilibrium points during extended periods even after any initial condition. The examination of system behavior 

over extended periods supplies supplementary knowledge about its long-term behavior after completing the 

local stability investigation. 

 

The system of equations for bacterial population (B(t)) and antibiotic concentration (A(t)) is: 

(1). 1B

B

dB B
r B AB

dt K


 
   

 
 

(2). A

dA
d A

dt
 
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Here: 

rB: Intrinsic growth rate of bacteria. 

KB: Carrying capacity of the bacterial population. 

α: Antibiotic efficacy constant. 

dA: Antibiotic decay rate. 

B: Bacterial population. 

A :Antibiotic concentration. 

6.1 Equilibrium Points 

The equilibrium points were derived as: 

(B*,A*) = (0,0), (B*,A*) =(KB,0): 

(i). (B*,A*) = (0,0) : Sterile system (no bacteria, no antibiotics). 

(ii).(B*,A*) =(KB,0) : Maximum carrying capacity of bacteria, no antibiotics. 

The global stability analysis determines whether trajectories originating from any initial condition (B(0),A(0)) 

converge to one of these equilibrium points. 

6.2 Lyapunov Function for Global Stability 

A Lyapunov function is a scalar function used to prove global stability. For global stability, we construct a 

function V(B,A) that decreases over time ( . 0)
dV

i e
dt

 and satisfies the following conditions: 

(i).V(B,A) ≥0 for all B,A and V(B,A)=0 only at the equilibrium point. 

(ii).dV/dt ≤0 for all B,A with  0
dV

dt
 only at the equilibrium point. 

(a).Consider Lyapunov Function: 

Let 
2 21 1

( , )
2 2

V B A B A   

This function represents the total "energy" of the system, combining bacterial population and antibiotic 

concentration. 

(b).Time Derivative of V: 

dV dB dA
B A

dt dt dt
   

dB dA
Substitute and

dt dt
 

( 1 ) ( )B A

B

dV B
B r B AB A d A

dt K


 
     

 
 

2 2 21B A

B

dV B
r B AB d A

dt K


 
    

   

(c). Behavior of  

dV

dt :

 
The terms 

2 2and AAB d A 
are always negative or zero. 

2 1B

B

B
r B

K

 
 

   is positive for 0< B < KB and negative for B>KB. 

Near B=KB  and A=0,  dV/dt→0 indicating a steady state. 

6.3 Global Stability at each Equilibrium Point 

The evaluation of global stability reveals essential information about system long-term conduct at all 
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equilibrium points. 

6.3.1 Equilibrium (B∗,A∗)=(0,0) 

The system maintains no bacteria while also having no antibiotics detected at this equilibrium point. This 

biological point signifies an environment free of bacterial multiplication together with an absence of antibiotic 

functions. Bacterial and antibiotic presence cannot disrupt the system equilibrium since it exists only in 

environments with no trace of either bacteria or antibiotics. The system demonstrates unstable behavior over the 

complete domain. The bacterial population will expand rapidly unless antibiotics control their growth following 

bacterial introduction. Since antibiotic introduction immediately begins antibiotic suppression of bacteria 

growth the equilibrium state at (0,0) becomes destabilized thereby making this equilibrium globally unstable for 

the system. 

6.3.2 Equilibrium (B∗,A∗)=(KB,0): 

The bacterial population achieves its highest possible level at carrying capacity KB and stays there when 

antibiotic concentrations remain zero. This equilibrium point becomes more reachable because when antibiotics 

decay fast (i.e. dA is high) or antibiotics do not work well (i.e. low α value) Under such circumstances 

antibiotics fail to control bacterial growth effectively which maintains the population at its maximum carrying 

capacity KB. The bacterial population maintains a stout stability at KB during situations when antibiotics fail to 

work effectively and exposure to antibiotics does not extend beyond normal limits. The system achieves stable 

status when the bacterial population reaches its carrying capacity value because dV/dt approaches zero. The 

bacterial system automatically achieves stable rest at the carrying capacity whenever antibiotics prove non-

effective or rapidly lose their potency. 

6.4 Biological Interpretation 

Global Stability of (0,0) : 

Making the bacteria extinct requires maintaining high and prolonged levels of antibiotic presence throughout 

time at (0,0). The concentrations of antibiotic A need to stay higher than a specified minimum value and the 

bacterial efficacy α needs to maintain an effective level in order to stop bacterial reproduction. A combination of 

antibiotic decay rates that are too quick (dA is high) plus antibiotic weak potency (low α) will prevent the 

system from eliminating bacteria. The bacterial population will maintain its presence while the system develops 

toward equilibrium point (KB,0) which establishes bacterial numbers at the carrying capacity threshold. 

Global Stability of (KB,0): 

The bacterial population will move toward and eventually settle at the carrying capacity KB no matter what 

values initial conditions take when antibiotics become ineffective or naturally decay too quickly or are 

withdrawn. Medical authorities utilize this equilibrium point to maintain confident bacterial growth because 

bacteria continue to thrive without the addition of antibiotics. Present conditions suggest that lasting bacterial 

control depends on ongoing antibiotic administration since the system automatically moves toward this 

equilibrium point. 

6.5 Numerical Simulation 

Let me simulate the system to illustrate the global stability behavior under different initial conditions and 

parameters. 

Python Program: 

# Parameters for numerical simulation (exploring global stability) 

r_B = 0.1  # Growth rate of bacteria 

K_B = 1000  # Carrying capacity of bacteria 

alpha = 0.05  # Antibiotic efficacy constant 

d_A = 0.02  # Antibiotic decay rate 

 

# Initial conditions for multiple scenarios 

initial_conditions = [ 

    {"B0": 100, "A0": 10, "label": "Scenario 1: Moderate Initial Values"}, 

    {"B0": 500, "A0": 20, "label": "Scenario 2: High Initial Antibiotics"}, 

    {"B0": 900, "A0": 5, "label": "Scenario 3: Near Carrying Capacity"}, 
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] 

 

# Initialize figure 

plt.figure(figsize=(14, 8)) 

# Loop through initial conditions 

for condition in initial_conditions: 

    # Extract initial values 

    B0 = condition["B0"] 

    A0 = condition["A0"] 

    label = condition["label"] 

 

    # Initialize arrays for bacteria and antibiotics 

    B = np.zeros_like(time) 

    A = np.zeros_like(time) 

    # Set initial conditions 

    B[0] = B0 

    A[0] = A0 

 

    # Numerical integration using Euler's method 

    for i in range(1, len(time)): 

        dB = r_B * B[i-1] * (1 - B[i-1] / K_B) - alpha * A[i-1] * B[i-1] 

        dA = -d_A * A[i-1] 

        B[i] = B[i-1] + dB * dt 

        A[i] = A[i-1] + dA * dt 

 

    # Plot bacterial population 

    plt.plot(time, B, label=f"{label} - Bacteria (B)", linewidth=3) 

    # Plot antibiotic concentration 

    plt.plot(time, A, label=f"{label} - Antibiotics (A)", linestyle="--", linewidth=3) 

 

# Add stability indicators 

plt.axhline(y=K_B, color='red', linestyle=':', linewidth=2, label="Carrying Capacity (K_B)") 

plt.axhline(y=0, color='black', linestyle='-', linewidth=2, label="Extinction Level") 

# Additional plot settings 

plt.title("Global Stability: Logistic Growth Model with Antibiotic Effect", fontsize=18, 

fontweight='bold') 

plt.xlabel("Time (t)", fontsize=14, fontweight='bold') 

plt.ylabel("Population / Concentration", fontsize=14, fontweight='bold') 

plt.legend(fontsize=12, loc="upper right", frameon=True, shadow=True) 

plt.grid(True, linestyle='--', alpha=0.7) 

 

# Display the plot 

plt.show() 
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Figure (3) : Global Stability of the Model with Antibiotic Effect 

Here is the simulation illustrating the global stability behavior of the system under different initial conditions: 

 

7. CONCLUSIONS: 

Different simulation variables in this model generate essential information regarding antibiotic interactions with 

bacterial populations.  

(i). The system tracks Bacterial count and Antibiotic presence under Condition 1 while initial measurements 

remain reasonable before reaching the KB value. The population stabilizes at KB values because antibiotic 

deterioration rates lower antibiotic toxicity toward bacteria.  

(ii). Bacterial expansion faces extreme inhibition at Condition 2 onset because the starting antibiotic levels are at 

their peak. The bacterial numbers increase as antibiotics decay but their expansion stops because the antibiotic 

levels are too low to keep the population fewer than the carrying capacity KB. In  

(iii). The population of bacterial cells starts at elevated numbers close to their ecosystem maximum in Condition 

3 making antibiotics essentially ineffective. During antibiotic decline the system quickly stabilizes at the value 

KB until the bacterial numbers achieve equilibrium. 

Experimental characteristics constitute vital components for acquiring valuable information regarding the 

system's continuous operational character. The bacterial population exhibits coherent movement toward (KB,0) 

equilibrium resulting from inactive antibiotic administration at proper dosages. This conduct causes bacterial 

populations to achieve their carrying capacity. When long-lived antibiotics and eradication-resistant compounds 

do not work effectively bacteria reach the carrying capacity KB. Standard environmental conditions reject the 

possibility of zero bacterial population (B→0) from occurring. Bacterial elimination requires extended antibiotic 

preservation levels according to research simulations but bacteria maintain survival despite such full population 

removal. 
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