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ABSTRACT

The paper provides a detailed study of bacterial population models with antibiotic factors using logistic
modeling techniques. A system of differential equations enables us to examine stability including local and
global aspects by means of Jacobian matrices and Lyapunov functions. The effect of antibiotic degradation
together with efficacy on extended bacterial population dynamics is shown through simulation models created
in Python. The study delivers vital knowledge about how bacterial multiplication balances against medical
treatment measures.

1. INTRODUCTION

The emergence and rapid spread of antibiotic-resistant bacteria pose one of the most significant public health
challenges of the 21st century. Treating bacterial infections effectively now requires stronger treatment methods
since traditional antibiotics fail to provide sufficient results leading to the necessity of advanced scientific
knowledge that combines biological and mathematical concepts. Through population-level tests mathematical
models deliver essential knowledge about bacteria population behaviors subject to antibiotic presence which
enhances the development of better medication and outcome prediction.

The analysis reinstates an original ecological model that incorporates environmental growth constraints with
antibiotic inhibition factors. The research examines a logistic growth model that includes an antibiotic term to
show how bacteria populations are affected by inhibition. Reintroducing the nonlinear term produces major
changes both to stability levels and overall dynamics of the system.

The main study conducts stability analysis through analytical procedures combined with numerical methods.
Stability assessments of nearby system regions become possible by evaluating Jacobian matrices computed at
equilibrium points for local stability analysis. Long-term numerical simulations together with Lyapunov
functions contribute to discovering how the system performs widely when subjected to different initial
conditions.

This research develops a complete examination of bacterial growth control with antibiotics as well as population
stabilization methods and unrestricted bacterial growth by using special control parameters and starting values.
The adoption of Python numerical methods allows for persistent observation of pattern changes stemming from
antibiotic decay processes combined with antibiotic effectiveness rates during the evaluation of system behavior
over time.

This method seeks to develop standardized information to improve antibiotic therapeutic decisions and
antibiotic distribution decisions.

1.1 Notations

Let the following denote the variables and parameters in our model:

B(t): Bacterial population at time t

A(t): Antibiotic concentration at time t

rg: Intrinsic growth rate of bacteria.

Keg: Carrying capacity of the bacterial population.
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a: Antibiotic efficacy constant.
da: Antibiotic decay rate.

2. MATHEMATICAL EQUATIONS
The system of equations governing the interaction between bacteria and antibiotics is:

dB B
1). —=r,B|1-—
O [ .

B

J—aAB

dA
2). —=-d,A
(2). 4=~

Bacterial logistic growth takes place through this equation though it has the —aAB operable term which
introduces antibiotic suppression effects.

The presence of antibiotic elements results in the negative value —aAB and thus causes suppression of bacterial
growth.

The natural degradation of antibiotics during time periods is represented within the second mathematical
equation.

The system analysis relies on both analytical and numerical analytical methods. We start by analyzing the
system equilibrium to find its steady states because this reveals how both bacterial populations and antibiotics
may behave over the long run. Solving the system of equations reveals equilibrium points that serve as
fundamental elements for stability analysis to follow. The analysis of local stability for equilibrium points
depends on the Jacobian matrix computation. The Jacobian matrix enables the investigation of small changes at
equilibrium points to determine if the system will stabilize at equilibrium or become unstable. A Lyapunov
function serves to establish global stability analysis for our system when we want to understand its complete
behavioral characteristics. This assessment method shows how system dynamics extend over time by revealing
if all system trajectories originating from any initial state will end up at a stable equilibrium point. The analysis
receives numerical simulation support through the implementation of Euler's method in Python. Through this
method we gain insights about bacterial population along with antibiotic concentration patterns during different
stages of time for diverse initial situations as well as their respective stability behavior. This integrated
framework provides strong foundations to observe how bacteria grow simultaneously while antibiotics reduce
them.

Detailed Discussion on Local Stability of the Logistic Growth Model with Antibiotic Effect. The logistic growth
model with the antibiotic effect describes the dynamics between bacterial growth and the action of antibiotics.
The system allows mathematical analyses which reveal the stability characteristics at its equilibrium states.
Stability analysis provides information about population outcomes where bacterial colonies will stabilize at a
steady state and how they will either grow without control or naturally decrease under particular environmental
conditions.

3. EQUILIBRIUM POINTS
: I _ dA dB
To find the equilibrium points, set — =0 & =

—=0
dt dt

From 95:—dAA
dt

The equilibrium for A is: Ax=0

dB B
From —=r,B|1-— |-aAB:
dt K,
Substituting A+=0: B"=0 or B"=Kpg
Thus, the equilibrium points are:
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(). (B",A") = (0,0): No bacteria, No antibiotics.
(ii). (B*,A") =(Ks,0): Maximum carrying capacity of bacteria with no antibiotics.

4. LOCAL STABILITY ANALYSIS

We analyze the stability of each equilibrium point using Jacobian matrix analysis.

(a) Jacobian Matrix

The Jacobian matrix of the system is derived by computing partial derivatives of the equations:

26 ofue]
oB| dt OA| dt

268 ofw]
oB| dt OA| dt

Substituting the system equations:

. (1_E]_aA 8
= K

B
0 —dA
(b) Evaluate at (B*,A)=(0,0)
j- -, —aK,
0 -d,
The eigen values of the Jacobian matrix J for the system are given by M = -1 & A2 =—da
Both eigen values are negative at A1<0 and A2<0,which indicates that the equilibrium point at (Kg,0) is locally
stable. This means that if the bacterial population is close to its carrying capacity Kg and antibiotics are either
absent or ineffective, the system will naturally settle at this equilibrium point. In other words, in the absence of
antibiotic intervention, the bacterial population will stabilize at the maximum sustainable level determined by
the environmental constraints.
However, the dynamics of the system become more complex when antibiotics are present. The introduction of
the term aAB which represents the interaction between antibiotics and bacterial populations, leads to a
nonlinear effect that alters the system's behavior. In this scenario, numerical simulations become essential to
accurately analyze the stability of the system, as the equations cannot be easily solved analytically due to their
nonlinear nature.
At this equilibrium condition(Kg,0) the bacterial population reaches its highest sustainable number when no
antibiotics exist (B—0). This equilibrium remains stable given nearby system starts although there is no
antibiotic effect. An optimal bacterial population of Kg will remain stable so long as medicine resistance exists
or medication has no effect on bacterial growth.
Antibiotics create a substantial system transformation which affects the population dynamics. The bacterial
population will experience extinction due to antibiotic concentration A when the positive force of antibiotics
exceeds the bacterial growth capacity. The system returns to unstable bacterial growth conditions at point (Kg,0)
when antibiotic decay occurs rapidly or when the antibiotic's effectiveness level (a) proves inadequate. The
careful regulation of bacterial growth in relation to antibiotic suppression illustrates the vital requirement of
keeping appropriate antibiotic levels to successfully eliminate bacteria.
4.1 Biological Implications
This population system has two fundamental equilibrium states which demonstrate different biological effects.
The system establishes (0,0) as its initial condition which signifies complete bacterial sterility without
antibiotics present. The system maintains two equilibrium points although bacteria would multiply
exponentially until external factors intervene whether from antibiotics or environmental constraints or bacterial
introduction discontinues this rapid growth. The second stable condition (Kg,0) shows the highest possible
bacterial numbers when no antibiotics exist. The bacterial population settles at this maximum sustainable level

113 |Page




International Journal of Advance Research in Science and Engineering

Volume No. 14, Issue No. 04, April 2025

www.ijarse.com IJARSE

ISSN 2319 - 8354

when antibiotics do not provide protection against bacteria. A transformation occurs within the system after
adding antibiotics to the environment. Antibiotics generate antibacterial conditions that shift the system from its
equilibrium point (Kg,0) toward total extinction (B—0) of bacterial populations. This variation in bacterial
population depends on the strength of antibiotic substances alongside their treatment effectiveness. The rate of
antibiotic decay and the strength of their efficacy determine whether bacterial suppression remains effective or if
the bacterial population recovers toward its equilibrium value (Kg,0). Therefore we need to manage antibiotic
treatment principles carefully to achieve its therapeutic goals.

5. NUMERICAL SIMULATIONS

The first-order simple numerical technique named Euler's method provides a solution approach to solve ordinary
differential equations while generating approximate values at discrete time steps. The technique provides
powerful solutions to study systems such as bacterial growth under antibiotic exposure that cannot be solved
exactly.

The system simulation in Python uses Euler's method to apply differential equations which enables stepwise
variable value changes between bacterial populations and antibiotic concentrations.

Python Program:

# Parameters for simulation

r_ B=0.1 # Growth rate of bacteria

K_B =1000 # Carrying capacity of bacteria

alpha = 0.05 # Antibiotic efficacy constant

d_A=0.02 # Antibiotic decay rate

# Initial conditions

B0 =100 # Initial bacteria population

A0 =10 # Initial antibiotic concentration
t_ max =100 # Simulation time

dt =0.1 # Time step

# Time array

time = np.arange(0, t_max, dt)

# Initialize arrays for bacteria and antibiotics
B = np.zeros_like(time)

A =np.zeros_like(time)

# Set initial conditions
B[0] =B0
AJ0] = A0

# Numerical integration using Euler's method
for i in range(1, len(time)):
dB=r_B *BJ[i-1] * (1 - B[i-1] / K_B) - alpha * A[i-1] * B[i-1]
dA =-d_A™* AJi-1]
BJi] = B[i-1] + dB * dt
A[i] = AJi-1] + dA * dt

# Plot the results
plt.figure(figsize=(12, 6))

# Plot bacterial population
plt.plot(time, B, label="Bacteria Population (B)", linewidth=3)
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# Plot antibiotic concentration
plt.plot(time, A, label="Antibiotic Concentration (A)", linewidth=3, linestyle="--")

# Add stability indicators
plt.axhline(y=K_B, color="red', linestyle="", linewidth=2, label="Carrying Capacity (K_B)")
plt.axhline(y=0, color="black’, linestyle="-', linewidth=1, label="Extinction Level")

# Plot settings

plt.title("Numerical Simulation of Logistic Growth with Antibiotic Effect"”, fontsize=16)
plt.xlabel("Time", fontsize=14)

plt.ylabel("Population / Concentration”, fontsize=14)

plt.legend(fontsize=12)

plt.grid(True)

plt.show()

Numerical Simulation of Logistic Growth with Antibiotic Effect
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Figure(1): Numerical Simulation of Growth with Antibiotic

# Enhanced Plot for Numerical Simulation
plt.figure(figsize=(14, 8))

# Plot bacterial population
plt.plot(time, B, label="Bacteria Population (B)", linewidth=4, color="blue")

# Plot antibiotic concentration

TJARSE

ISSN 2319 - 8354

plt.plot(time, A, label="Antibiotic Concentration (A)", linewidth=4, linestyle="--", color="orange")

# Add stability indicators
plt.axhline(y=K_B, color="red', linestyle="', linewidth=3, label="Carrying Capacity (K_B)")
plt.axhline(y=0, color="black’, linestyle="-', linewidth=2, label="Extinction Level")

# Additional aesthetic enhancements

plt.title("Enhanced Numerical Simulation: Logistic Growth with Antibiotic Effect", fontsize=18,
fontweight="bold")

plt.xlabel(*Time (t)", fontsize=14, fontweight="bold")

plt.ylabel(*Population / Concentration”, fontsize=14, fontweight="bold")

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)
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plt.legend(fontsize=12, loc="upper right", frameon=True, shadow=True)
plt.grid(True, linestyle="--', alpha=0.7)

# Display the plot

plt.show()

LG

Figure (2) : Interaction between bacterial population (B) and antibiotic concentration (A)
Here is the numerical simulation showing the interaction between bacterial population (B) and antibiotic
concentration (A):
5.1 Special Features of the Diagram
The graph depicts how antibiotic concentration A affects bacterial population B while demonstrating critical
system behavior patterns. Under logistic growth conditions the bacterial population intensifies rapidly until
antibiotic effects start to suppress cellular growth. The bacterial population decreases because antibiotics
prevent its growth after the introduction of antibiotics. The bacterial population will decline completely when
antibiotic concentrations remain strong enough or achieve sufficient effectiveness thus reaching zero values of
B. During its natural degradation process the antibiotic concentration A diminishes its power to inhibit bacterial
growth. The bacterial population achieves stability near the carrying capacity KB when antibiotic strength
declines while the direct control on bacterial growth fails to persist. Under no antibiotic treatment conditions the
carrying capacity KB defines bacteria's maximum continuous thriving numbers which cannot surpass their
established threshold. The carrying capacity KB operates as a natural barrier to halt bacterial expansion to
become a stable equilibrium when antibiotics are not administered for control.
5.2 Conclusions
The system demonstrates how bacterial resources and antibiotic solutions fight against each other continuously.
Bacterial extinction becomes probable when effective antibiotics persist for a long period since it results in
bacterial population numbers decreasing to zero. The reduction of antibiotics either before they fully decay or
when their effectiveness becomes insufficient allows bacterial populations to increase until reaching a state near
the carrying capacity KB. The successful treatment with antibiotics depends on maintaining perfect balance in
antimicrobial levels because bacterial populations can reemerge if these levels do not remain high enough.
6. Global Stability of the Logistic Growth Model with Antibiotic Effect
It is observed global stability by evaluating how the system behaves and how all system trajectories approach
equilibrium points during extended periods even after any initial condition. The examination of system behavior
over extended periods supplies supplementary knowledge about its long-term behavior after completing the
local stability investigation.

The system of equations for bacterial population (B(t)) and antibiotic concentration (A(t)) is:

dB B
). —=r,B|1-— |-aAB
O [ KJ a

B

dA
2). —=-d,A
(2). 4=~
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Here:

rs: Intrinsic growth rate of bacteria.

Kg: Carrying capacity of the bacterial population.

a: Antibiotic efficacy constant.

da: Antibiotic decay rate.

B: Bacterial population.

A :Antibiotic concentration.

6.1 Equilibrium Points

The equilibrium points were derived as:

(B",A) =(0,0), (B"A") =(Ks,0):

(. (B",A") = (0,0) : Sterile system (no bacteria, no antibiotics).

(ii).(B",A") =(Kg,0) : Maximum carrying capacity of bacteria, no antibiotics.

The global stability analysis determines whether trajectories originating from any initial condition (B(0),A(0))
converge to one of these equilibrium points.

6.2 Lyapunov Function for Global Stability

A Lyapunov function is a scalar function used to prove global stability. For global stability, we construct a

. dv
function V(B,A) that decreases over time (|.e E < 0) and satisfies the following conditions:
(1).V(B,A) >0 for all B,A and V(B,A)=0 only at the equilibrium point.
dv
(ii).dV/dt <0 for all B,A with E = 0 only at the equilibrium point.

(a).Consider Lyapunov Function:

1, 1.,
Let V(B,A)==B"+=A
et V(B, A) ;B3

This function represents the total "energy" of the system, combining bacterial population and antibiotic
concentration.
(b).Time Derivative of V:

vV _pgdB, ,0A
dt dt dt

Substitute(jlj—lii and d—A

dt

dv B
=B rBB(l—K—]—aAB) +A(-d,A)

B

N g [1—£j —aAB? —d,A
dt
B

dv

(c). Behavior of dt :

2 2
The terms —@AB” and —d, A

r,B? (1—3

KB ] is positive for 0< B < Kg and negative for B>K.

Near B=Kg and A=0, dV/dt—0 indicating a steady state.

6.3 Global Stability at each Equilibrium Point

The evaluation of global stability reveals essential information about system long-term conduct at all
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equilibrium points.
6.3.1 Equilibrium (B*,A*)=(0,0)
The system maintains no bacteria while also having no antibiotics detected at this equilibrium point. This
biological point signifies an environment free of bacterial multiplication together with an absence of antibiotic
functions. Bacterial and antibiotic presence cannot disrupt the system equilibrium since it exists only in
environments with no trace of either bacteria or antibiotics. The system demonstrates unstable behavior over the
complete domain. The bacterial population will expand rapidly unless antibiotics control their growth following
bacterial introduction. Since antibiotic introduction immediately begins antibiotic suppression of bacteria
growth the equilibrium state at (0,0) becomes destabilized thereby making this equilibrium globally unstable for
the system.
6.3.2 Equilibrium (B*,A*)=(Ks,0):
The bacterial population achieves its highest possible level at carrying capacity Kg and stays there when
antibiotic concentrations remain zero. This equilibrium point becomes more reachable because when antibiotics
decay fast (i.e. dA is high) or antibiotics do not work well (i.e. low a value) Under such circumstances
antibiotics fail to control bacterial growth effectively which maintains the population at its maximum carrying
capacity Kg. The bacterial population maintains a stout stability at Kg during situations when antibiotics fail to
work effectively and exposure to antibiotics does not extend beyond normal limits. The system achieves stable
status when the bacterial population reaches its carrying capacity value because dV/dt approaches zero. The
bacterial system automatically achieves stable rest at the carrying capacity whenever antibiotics prove non-
effective or rapidly lose their potency.
6.4 Biological Interpretation
Global Stability of (0,0) :
Making the bacteria extinct requires maintaining high and prolonged levels of antibiotic presence throughout
time at (0,0). The concentrations of antibiotic A need to stay higher than a specified minimum value and the
bacterial efficacy o needs to maintain an effective level in order to stop bacterial reproduction. A combination of
antibiotic decay rates that are too quick (dA is high) plus antibiotic weak potency (low o) will prevent the
system from eliminating bacteria. The bacterial population will maintain its presence while the system develops
toward equilibrium point (Kg,0) which establishes bacterial numbers at the carrying capacity threshold.
Global Stability of (Ks,0):
The bacterial population will move toward and eventually settle at the carrying capacity Kg no matter what
values initial conditions take when antibiotics become ineffective or naturally decay too quickly or are
withdrawn. Medical authorities utilize this equilibrium point to maintain confident bacterial growth because
bacteria continue to thrive without the addition of antibiotics. Present conditions suggest that lasting bacterial
control depends on ongoing antibiotic administration since the system automatically moves toward this
equilibrium point.
6.5 Numerical Simulation
Let me simulate the system to illustrate the global stability behavior under different initial conditions and
parameters.
Python Program:
# Parameters for numerical simulation (exploring global stability)

r_ B=0.1 # Growth rate of bacteria

K_B =1000 # Carrying capacity of bacteria

alpha = 0.05 # Antibiotic efficacy constant

d_A=0.02 # Antibiotic decay rate

# Initial conditions for multiple scenarios

initial_conditions = [
{"B0": 100, "AQ0": 10, "label": "Scenario 1: Moderate Initial Values"},
{"B0": 500, "AQ0": 20, "label": "Scenario 2: High Initial Antibiotics"},
{"B0": 900, "AQ0": 5, "label": "Scenario 3: Near Carrying Capacity"},
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# Initialize figure
plt.figure(figsize=(14, 8))
# Loop through initial conditions
for condition in initial_conditions:
# Extract initial values
BO = condition["B0"]
AQ = condition["A0"]
label = condition["label"]

# Initialize arrays for bacteria and antibiotics
B = np.zeros_like(time)

A = np.zeros_like(time)

# Set initial conditions

B[0] =B0

A[0] = A0

# Numerical integration using Euler's method
for i in range(1, len(time)):
dB =r_B * BJ[i-1] * (1 - B[i-1] / K_B) - alpha * A[i-1] * B[i-1]
dA=-d_A=* A[i-1]
B[i] = B[i-1] + dB * dt
Ali] = A[i-1] + dA * dt

# Plot bacterial population

plt.plot(time, B, label=f"{label} - Bacteria (B)", linewidth=3)

# Plot antibiotic concentration

plt.plot(time, A, label=f"{label} - Antibiotics (A)", linestyle="--", linewidth=3)

# Add stability indicators

plt.axhline(y=K_B, color="red', linestyle="', linewidth=2, label="Carrying Capacity (K_B)")
plt.axhline(y=0, color="black’, linestyle="-', linewidth=2, label="Extinction Level")

# Additional plot settings

plt.title("Global Stability: Logistic Growth Model with Antibiotic Effect”, fontsize=18,
fontweight="bold")

plt.xlabel("Time (t)", fontsize=14, fontweight="bold")

plt.ylabel("Population / Concentration”, fontsize=14, fontweight="bold")
plt.legend(fontsize=12, loc="upper right", frameon=True, shadow=True)

plt.grid(True, linestyle="--', alpha=0.7)

# Display the plot
plt.show()
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Global Stability: Logistic Growth Model with Antibiotic Effect

1000+ Scenario 1: Moderate Initial Values - Bacteria (B) |,

= = Scenario 1: Moderate Initial \ 3
= Scenario 2: High Initial A
Scenario 2: High Initial - Antibiotics (A)
Scenario 3: Near Carrying Capacity - Bacteria (8)
80D = = Scenario 3: Near Camying Capacity - Antibictics (A)
-+ Camrying Capacity (K_B)
= Extinction Level

6001

400+

Population / Concentration

0 =

0 20 40 60 80 100
Time (t)

Figure (3) : Global Stability of the Model with Antibiotic Effect
Here is the simulation illustrating the global stability behavior of the system under different initial conditions:

7. CONCLUSIONS:

Different simulation variables in this model generate essential information regarding antibiotic interactions with
bacterial populations.

(i). The system tracks Bacterial count and Antibiotic presence under Condition 1 while initial measurements
remain reasonable before reaching the KB value. The population stabilizes at KB values because antibiotic
deterioration rates lower antibiotic toxicity toward bacteria.

(ii). Bacterial expansion faces extreme inhibition at Condition 2 onset because the starting antibiotic levels are at
their peak. The bacterial numbers increase as antibiotics decay but their expansion stops because the antibiotic
levels are too low to keep the population fewer than the carrying capacity KB. In

(iii). The population of bacterial cells starts at elevated numbers close to their ecosystem maximum in Condition
3 making antibiotics essentially ineffective. During antibiotic decline the system quickly stabilizes at the value
KB until the bacterial numbers achieve equilibrium.

Experimental characteristics constitute vital components for acquiring valuable information regarding the
system's continuous operational character. The bacterial population exhibits coherent movement toward (KB,0)
equilibrium resulting from inactive antibiotic administration at proper dosages. This conduct causes bacterial
populations to achieve their carrying capacity. When long-lived antibiotics and eradication-resistant compounds
do not work effectively bacteria reach the carrying capacity KB. Standard environmental conditions reject the
possibility of zero bacterial population (B—0) from occurring. Bacterial elimination requires extended antibiotic
preservation levels according to research simulations but bacteria maintain survival despite such full population
removal.
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