International Journal of Advance Research in Science and Engineering Volume No. 14, Issue No. 04, April 2025 www.ijarse.com IJAR ISSUE NO. 04, April 2025

A Review on Deep Learning Approaches for Combined Fake News Detection and Sentiment Analysis

Ananya Mishra¹, Shailja Pandey², Mansi Shukla³

Babu Banarasi Das Institute of Technology and Management Lucknow, India
ananyamishra252@gmail.com, cuteshailja@gmail.com, mansishukla3101@gmail.com

ABSTRACT

The investigation of integrating deep learning meth- ods for sentiment analysis and fake news detection at the same time is the focus of this study. The review aims to develop a unified frame of reference that aims to accurately identify mis- information while also incorporating the emotional tone of news content. The suggested concept uses cutting-edge neural network architectures, such as convolutional neural networks (CNNs), to analyze contextual data, linguistic patterns, and textual features in order to differentiate between real and fake news articles. Synchronously, the system employs sentiment analysis to gauge the emotional impact of the content on readers. The combined approach enhances the accuracy of fake news detection and also provides valuable insights into the potential incentives behind the creation and dissemination of misinformation. Experimental results in existing studies [2][3] demonstrate the effectiveness of this integrated method, achieving higher precision and recall rates compared to traditional single-task models. This research contributes to the incessant efforts of combating the spread of fake news and understand its emotional implications in the digital age.

Index Terms—Sentiment analysis, deep learning models, and text analysis.

I. INTRODUCTION

With the burgeoning amount of news and its sources circu- lating worldwide, it has become crucial to aid the public in determining the credibility of the news at hand with almost no latency. According to previous research [1], there is an emerging trend of people obtaining news from platforms like Facebook, Twitter, and other social media platforms. Remarkably, a sizable portion of people who got their news from social media stated that they anticipated it to be mostly false. Given the proliferation of the internet and social media, the practice of spreading and generating propaganda relating to culture, politics, and religion has also skyrocketed. Owing to the fast-paced nature of this news, its hard to cross-check and verify the sources and credibility in real time. Analyzing user comments to determine their opinions about the news may be crucial in spotting fake news [2-4] and providing insight into the veracity of the news that has been published [5, 6]. In this paper, we aim to present an idea to combine the efficacy of deep learning practices and sentiment analysis to refine the detection of hoaxes, rumors, and misinformation in news. Talked about in detail in this paper are the types of news that can be qualified as fake and its subtle intricacies that differentiate them from each other and the impact and intent they pose to the reader. Then we talk in great detail about the various types of models already existing, their shortcomings, and the efficacy achieved by them. Also explored in depth in the paper is the efficiency of APIs in

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

IJARSE ISSN 2319 - 8354

reducing manual exertion and increasing efficiency.

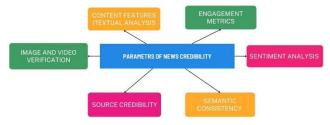


Figure 1. Parameters of News Credibility

In the remainder of the study, we talk in detail about the different concepts employed in deep learning and sentiment analysis and their accuracy and use cases. We will also explore the challenges faced in the process alongside the gaps and inconsistencies we have encountered in the papers we have undertaken so far, finishing the paper with the future implications and addressing all the issues raised throughout.

II. BACKGROUND

2.1 Categorisation of fake and untrustworthy news

Owing to the nature and extent of the deceit and manip- ulation that these news contain, we can actually differentiate between them, and some types of fake news include satire/- parody, false connection, misleading content, false context, imposter content, fabricated content, manipulated content, propaganda, and conspiracy theories. On the basis of the intent, content, and challenges in detection, we have cumulated a table reflecting the differences and nuances of each that pose a threat of complexity while dealing with a bulk dataset of news, since each of them needs a tailored approach to determine the efficiency accurately.

2.2 Sentiment and Emotion Analysis in Fake News Detection

Sentiment analysis (SA) determines the nature of the news displayed, whether textual content conveys positive, negative, or neutral sentiments, while emotion analysis (EA) captures nuanced emotional states such as joy, fear, or anger. These techniques are increasingly applied to evaluate:

- Content-level cues: Fake news often employs emotion- ally charged language to manipulate perceptions.
- User reaction analysis: Comments on fake news articles frequently express anger or fear, distinguishing them
 from reactions to genuine news.

2.3 Challenges in Current Approaches

The focus in current methodologies is often on text-based features, neglecting multimodal signals such as images, videos, or metadata. Furthermore, models trained on datasets like Fakeddit achieve high accuracy in supervised environments but struggle with real-world adaptability, compromising the versatility of the models.

III. METHODOLOGIES

3.1. Sentiment-Based Techniques

Sentiment analysis has been popularly used to extricate content polarity, which indicates the possibility of fake and misleading content evident by the excessive usage of piquant and controversial language and words alike. Bhutani et al. demonstrated improved accuracy using enriched datasets in- corporating sentiment features. Sentiment-aware models often consider the emotional tone of news, including features like the sentiment of headlines versus content, to identify misleading elements. However, they have limitations in handling nuanced or

International Journal of Advance Research in Science and Engineering Volume No. 14, Issue No. 04, April 2025

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

ambiguous contexts [12].

3.2. Emotion-Based Models

Emotion-driven models analyse both publisher content and user comments. For instance, Bi-LSTM networks have shown promise in capturing sequential dependencies in text, enhanc- ing the detection of emotional inconsistencies between news content and audience reactions. Despite their potential, chal- lenges include the complexity of accurately detecting mixed emotions or sarcasm and the dependence on quality datasets for training [12]. Models capture psychological cues linked to fake news but face challenges with mixed emotions [13].

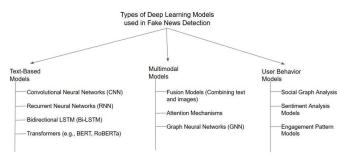


Figure 2. Various models implemented in fake news detection

3.3. Multimodal Approaches

A wide array of research projects demonstrate and analyze the method of linking text elements to image or visual data. A combination of ResNet with BERT facilitates superior performance through the fusion of textual and image features. The joint interpretation of sentiment analysis with visual media analysis improves fake news classification accuracy. These methods encounter two main issues when attempt- ing to harmonize different data sources while also needing large computational power and labeled datasets for successful deployment [12]. The comparison demonstrates that NLP technology processes textual information but convolutional neural networks (CNNs) function for image analysis [14].

IV. TYPES OF DEEP LEARNING MODELS USED IN FAKE NEWS DETECTION APP

4.1 Text-Based Models

4.1.1 Convolutional Neural Networks (CNN):

A text-based data extraction process uses convolutional neural networks for detecting textual news data according to the paper. The study analyzes the word frequency and sentence structure using CNNs and identifies distinct patterns to differentiate between real and fake news [11]. Vaster CNN architectures help resolve model overfitting problems at the same time they provide enhanced text categorization capabil- ities through text-based labeling. Researchers have used big- vasted CNN models because they process data more effectively but these models need very long training durations [12]. The detection system using Text-Image Convolutional Neural Network (TI-CNN) enhances multimodal fake news detection by connecting text with images [13].

4.1.2 Recurrent Neural Networks (RNN):

Recurrent neural networks are used to operate sequential data, such as textual content. RNNs are discussed for sequence analysis in fake news detection. They rely on backpropagation for training but face the vanishing

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

IJARSE ISSN 2319 - 8354

gradient problem, which is mitigated by Long Short-Term Memory (LSTM) [12]. RNNs are mentioned as powerful tools for recognizing **underlying trends**, such as repeated use of specific phrases in fake news articles [13].

Table I Comparative Analysis of Articles And Papers Relating Fake News Detection And Sentiment Analysis

Authors	Year	Gap Analysis	Major Finding	Technology Used
Krishna	2016	Limited in addressing complex	CRF effectively identifies disorders in clin-	Conditional Random Fields
Prasad Chodey		clinical texts where semantics	ical texts. Higher precision and F-score in	(CRF), MetaMap, cTAKES
et al.		are contextually dispersed.	relaxed settings than strict ones.	
Claudio	2023	Lacks integration of user feed-	Integrated model detects fake news and	Multi-approach using Ma-
Marche et al.		back and does not address rapid	evaluates trustworthiness of news sources	chine Learning, Trust Mod-
		fake news spread on newer plat-	with high accuracy using Kaggle datasets.	els, XGBoost
		forms.		
Mingyu Wan	2024	Limited exploration of real-	Found fear and disgust dominate COVID-	Emotion Analysis, Affective
et al.		world application of emotion-	19 fake news; emotion footprints can en-	Computing, NLP Tools
		based fake news detection mod-	hance fake news detection by revealing its	
		els.	persuasive strategies.	
M.F. Mridha	2021	Insufficient exploration of	DL models like CNN, RNN, and GNN	Deep Learning (CNN, RNN,
et al.		emerging architectures like	provide better accuracy than ML models	GNN)
		Transformers for fake news	due to high-dimensional feature extraction.	
		detection. Lack of multilingual		
		dataset focus.		
M. Tajrian et	2023	Limited research into multi-	Deep learning techniques like LSTM and	Deep Learning (RNN,
al.		modal data and early detec-tion	Bi-LSTM are effective in capturing com-	CNN, LSTM, Bi-LSTM),
		systems. Lack of benchmark	plex patterns in data. Bayesian modelling	Bayesian Modelling,
		datasets and preprocessing chal-	offers adaptability for dynamic datasets.	Traditional ML (SVM, NB,
		lenges.		RF)
Bhardwaj et	2024	Lack of cross-platform data test-	Proposed a framework achieving high ac-	Sentiment analysis and ma-
al.		ing and limited cultural and lan-	curacy for fake news detection using sen-	chine learning
		guage adaptability in the pro-	timent scores.	
		posed framework		
Hamed et al.	2023	Insufficient real-world data vali-	Achieved 96.77 accuracy using sentiment	Bi-LSTM with sentiment
		dation and lack of adaptability to	of news and user comments from the	and emotion analysis
		emerging fake news propagation	Fakeddit dataset.	
		techniques.		
Mishra et al.	2022	No real-time system implemen-	Compared ML and DL techniques, em-	Compared ML and DL tech-
		tation; focused more on static	phasizing linguistic and clustering-based	niques,like SVMs, CNNs,
		dataset results.	methods.	and LSTMs
Suhaib Kh.	2023	Limitations in datasets, over-	Identified the need for improved datasets	Machine Learning, Data
Hamed et al.		E	and feature fusion to enhance fake news	Fusion, Multimodal
		representation, and ineffective	detection accuracy.	Approaches
		data fusion.		(textual, visual,
				social contexts).
Humberto	2023			Machine Learning (CNN,
Fernandes				BiRNN, Stacking), Kaggle
Villela et al.		derrepresentation of diverse lan-	for real-time datasets.	and Weibo datasets, accu-
		guages.		racy focus on AI models.

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

Table II Performance of Models on Liar and Fake News Datasets [15]

Models	Liar Dataset		Fake News Dataset	
	Accuracy	F1 Score	Accuracy	F1 Score
SVM	56	48	67	67
Logistic Regression	56	51	67	67
Decision Tree	51	51	65	65
AdaBoost	56	54	72	72
Na"ive Bayes	60	59	86	86
k-NN	54	54	71	71
CNN	58	58	86	86
LSTM	54	38	76	76
Bi-LSTM	58	58	85	85
GAN	57	57	87	87

4.1.3 Bidirectional LSTM (Bi-LSTM):

LSTMs, in particular, are noted for their ability to capture long-term dependencies within the text, making them useful for identifying contextual cues and linguistic patterns in fake news [11]. LSTM architectures discussed can include Bi- LSTM variants for analyzing news context more effectively by considering both past and future states of the text. Studies show that combining BiLSTM with CNN achieves higher precision but increases computational complexity [12]. Com- bining BiLSTM with CNN improves classification accuracy by extracting both local and long-term dependencies [13].

4.1.4 Transformer Models (BERT and ALBERT):

The paper describes the application of **transformer-based models** for advanced textual analysis, such as ALBERT and BERT (Bidirectional Encoder Representations from Trans- formers), which retrieve facts and compute textual comparisons to verify the authenticity of news claims [11]. Trans- former models, including **BERT** (**Bidirectional Encoder Representations for Transformers**), are highlighted for their ability to **extract contextual meaning** from text. Variants such as **fakeBERT** combine BERT with CNN to handle structured and unstructured text more effectively [12].

4.2 Multimodal Models

4.2.1 Fusion Models (Combining Text and Images):

Multimodal approaches integrate **textual and contextual features** with visual analysis (images or videos). These models enhance detection accuracy by jointly analyzing text attributes and accompanying visual content [11]. Used methods like **VGG-19** for models to improve detection accuracy by lever- aging complementary information from both sources [12].

4.2.2 Attention Mechanisms:

Attention mechanisms are referenced as part of transformer models (e.g., BERT). These mechanisms ensure that critical portions of the text and other input modalities are prioritized during classification.

4.2.3 Graph Neural Networks (GNNs):

The study mentions **trust management models** based on analyzing relationships and behaviors among entities, which aligns with GNN applications in social trust systems [11]. GNNs operate on **graph structures** and are employed for **node classification** and analyzing relationships between en- tities. These models capture **global structural features** from user behaviors and connections, which are critical for identi- fying fake news propagation [12]. For example, **Propagation Graph Neural Networks (PGNN)** model information flow and interactions in fake news propagation trees [13].

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

User Behaviour Models

4.3.1 Social Graph Analysis:

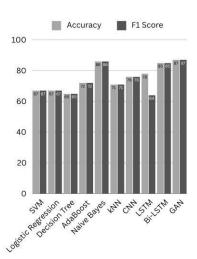
Social graph-based analysis is indirectly discussed in terms of **trust management**, where reputation systems aggregate feedback to determine the reliability of news providers. Con- nections between entities (users or sources) are analyzed for their behavior and credibility [11]. Also another paper discusses **trust and reputation management systems** that analyze social graphs to identify relationships between news providers and users. This analysis helps detect **malicious sources** and evaluate credibility based on user behavior and interactions [12].

4.3.2 Sentiment Analysis Models:

Sentiment analysis is explored as a method to detect fake news by analyzing the tone, polarity, and emotional context of the text. This method is often combined with linguistic features to improve detection accuracy [11]. In the paper, sentiments like anger, fear, and excitement are analyzed as potential indicators of fake news [13].

4.3.3 Engagement Pattern Models:

User engagement patterns, such as **feedback mechanisms** and trust scores, are incorporated into the trust model. The system evaluates user interactions (e.g., ratings and news sharing behavior) to measure the reliability of news sources over time. The paper proposes analyzing the **dissemination** of fake news using the relevance and goodwill of a news source.



Accuracy F1 Score

Figure 3. Model Performance on Fake News dataset

Figure 4. Model Performance on Liar dataset

The **Relevance factor** measures how frequently a news article is consulted, weighted by the interaction it receives from users. This helps in evaluating the **trustworthiness** of a source based on its engagement with readers [12].

Accuracy

Accuracy measures the proportion of correct predictions out of all predictions made. Correct predictions include true positives (TP) and true negatives (TN). The total predictions consist of all positive (P) and negative (N) examples, where

P includes true positives (TP) and false positives (FP), and N includes true negatives (TN) and false negatives (FN).[16]

$$Accuracy = \frac{TN + TP}{TN + FN + TP + FP}$$

Figure 5. Accuracy Formula[16]

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

F1 Score

The F1 score corresponds to the harmonic mean of a classification model's precision and recall. Both metrics hold equal importance in calculating the F1 score, ensuring it accurately reflects the model's reliability.[17]

$$F_1 = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}} = 2 \times \frac{(Precision \times Recall) \times 1}{(Precision \times Recall) \times \frac{Precision + Recall}{Precision \times Recall}} = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Figure 6. F1 Score Formula[16]

V. RESEARCH GAPS

5.1. Cultural and Linguistic Variations

Most detection models often omit the subtle cultural dis- parities in sentiment expression, hindering their cross-cultural applicability [12]. This limitation reduces the applicability in multilingual and culturally distinct environments [13].

5.2. Real-Time Adaptability

Prevailing systems are not optimized for real-time analysis, which is crucial for allevating the rapid spread of fake news. Current systems often rely on static, pre-trained models, which are inapt for detecting emerging trends [13]. Also, adapting to emerging misinformation trends in real time remains a significant challenge [14].

5.3. Limited Utilization of User Reactions

While comments, emojis and other non verbal cues carry significant emotional context, they remain underexplored in detection models. Most detection models fail to integrate these dynamic and user-driven pointers, missing vital insights into the spread and perception of fake news [13]. These dynamic and user-driven aspects are often unrepresented in detection models [14].

VI. FUTURE DIRECTIONS

To address these gaps, future research should:

- Integrate Multimodal Data: Incorporate text, images, and metadata for holistic analysis. Future systems should focus on better integration of multimodal data sources, combining text, image, and even video analysis for a holistic detection approach. Improved feature fusion tech- niques will enhance reliability and accuracy [12].
- **Develop Culturally Adaptive Models**: Train models on diverse datasets to enhance cultural adaptability. In-corporating multilingual datasets and culturally specific features will improve model performance in varied con- texts [13]. Cultural nuances will significantly enhance the global applicability of fake news detection systems [14].
- Leverage Real-Time Analytics: Design systems capable of analyzing and mitigating misinformation as it emerges. These models should focus on detecting fake news patterns as they emerge, ensuring timely intervention [13]. Developing real-time detection systems with scalable architectures, such as streaming models, is crucial for combating the rapid spread of fake news [14].

NewsAPI

NewsAPI is a RESTful API that enables us access to a wide domain of news articles and metadata from various recognized publishers worldwide. It allows developers to fetch real-time or historical news data for integration into applications. It also boasts the availability of multiple languages and regions. By employing the API in

International Journal of Advance Research in Science and Engineering Volume No. 14, Issue No. 04, April 2025

www.ijarse.com

IJARSE ISSN 2319 - 8354

applications and training models, we can readily search articles by keyword, phrase, or title. Also, filter by language, region, or specific publishers as required. It also works to reduce the overhead complexities by retrieving current top news headlines based on country, category, or source as well as providing full-archive search capabilities across news content and lists available news sources.

Google Fact-Checking API Google Fact-Checking API is part of Google's Fact Check Tools, designed to identify and verify claims or articles for their truthfulness. It provides programmatic access to fact-checking results from trusted publishers. Along with access to fact-checking information about specific claims made in articles, news, or social media. Aggregates data from verified fact-checkers like PolitiFact, Snopes, and FactCheck.org.

Allows searching for fact-checked claims by keywords or topic. ClaimReview, retrieves structured fact-checking data about claims in articles. Provides claim information, review ratings (e.g., true, false, misleading), and URLs for detailed explanations.

VII. CONCLUSION

Sentiment and emotion analysis provide powerful tools for fake news detection. However, significant challenges remain in creating scalable, culturally adaptive, and real-time detection systems. By addressing these gaps, future advancements can contribute to safeguarding information integrity in the digital age. By analyzing the emotional content and framing of fake news, the study demonstrates that emotions like fear and dis- gust are prominently used to influence public perception and behavior. Utilizing affective computing and NLP techniques, the findings suggest that emotion footprints can enhance fake news detection by revealing underlying persuasive strategies. This innovative approach emphasizes the need for integrating emotional and contextual analysis into detection frameworks, paving the way for more effective strategies in mitigating the spread of misinformation in the digital age.

VIII. ACKNOWLEDGMENT

The authors would like to extend the most sincere and heartfelt gratitude towards the Department of Information Technology at Babu Banarasi Das Institute of Technology and Management for their support, guidance, and encouragement throughout the course of this research. We would also like to express our deepest reverence to all our mentors, whose invaluable guidance, encouragement, and support have been instrumental in the completion of this work.

REFERENCES

- [1] Bhutani, S., Rastogi, R. (2019). Enriching Sentiment Features for Fake News Detection. *Journal of AI Research*.
- [2] Hamed, S.K., Aziz, M.J., Yaakub, M.R. (2023). Fake News Detection Model on Social Media by Leveraging Sentiment Analysis of News Content and Emotion Analysis of Users' Comments. *Sensors*.
- [3] Bhardwaj, A., Bharany, S., Kim, S. (2024). Fake Social Media News and Distorted Campaign Detection Using Sentiment Analysis & Machine Learning. *Heliyon*.

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

- IJARSE ISSN 2319 - 8354
- [4] Alonso, M.A.; Vilares, D.; Go'mez-Rodr'ıguez, C.; Vilares, J. Sentiment Analysis for Fake News Detection. Electronics 2021, 10, 1348. https://doi.org/10.3390/electronics 10111348
- [5] Shearer, E.; Mitchell, A. News Use Across Social Media Plat- forms in 2020. 2021. Available online: https://www.journalism.org/2 021/01/12/news-use-across-social-media-platforms-in-2020/
- [6] Yaakub, M.R.; Latiffi, M.I.A.; Zaabar, L.S. A review on sentiment analysis techniques and applications. IOP Conf. Ser. Mater. Sci. Eng. 2019, 551, 012070. [CrossRef]
- [7] Santhoshkumar, S.; Babu, L.D. Earlier detection of rumors in online social networks using certainty-factor-based convolutional neural networks. Soc. Netw. Anal. Min. 2020, 10, 20. [CrossRef]
- [8] Tian, L.; Zhang, X.; Wang, Y.; Liu, H. Early detection of rumours on twitter via stance transfer learning. In Advances in Information Retrieval: 42nd European Conference on IR Research
- [9] Liu, Y.; Wu, Y.-F.B. Fned: A deep network for fake news early detection on social media. ACM Trans. Inf. Syst. (TOIS) 2020, 38, 1–33. [CrossRef] Sensors 2023, 23, 1748 24 of 26
- [10] Lin, L.; Chen, Z. Social rumor detection based on multilayer transformer encoding blocks. Concurr. Comput. Pract. Exp. 2021, 33, e6083. [Cross- Ref]
- [11] Marche, C., Cabiddu, I., Castangia, C. G., Serreli, L., & Nitti, M. (2023b). Implementation of a Multi-Approach Fake News Detector and of a Trust Management Model for News Sources. *IEEE Transactions on Services Computing*, 16(6), 4288–4301.
- [12] Mridha, M. F., ASHFIA JANNAT KEYA, MD. ABDUL HAMID, MUHAMMAD MOSTAFA MONOWAR, & MD. SAIFUR RAHMAN. (2021). A comprehensive review on fake news detection with deep learning. In Sergio Consoli, *IEEE Access* (Vol. 9, p. 156151) [Journal- article].
- [13] Tajrian, M., Rahman, A., Kabir, M. A., Islam, Md. R., School of Computing, Mathematics and Engineering, Charles Sturt University, Wagga Wagga, NSW 2678, Australia, & Tajrian, M. (2023). A review of Methodologies for Fake News Analysis. In *School of Computing, Mathematics and Engineering, Charles Sturt University, Wagga Wagga, NSW 2678, Australia* [Journal-article].
- [14] Chodey, K. P., Hu, G., & Department of Computer Science, Central Michigan University. (2016). Clinical text analysis using machine learning methods. In *SemEval-2014 Task 7 on the Analysis of Clinical Text* (pp. 1–6) [Journal-article].
- [15] Mishra, Shubha, Shukla, Piyush, Agarwal, Ratish, Analyzing Ma- chine Learning Enabled Fake News Detection Techniques for Diversi- fied Datasets, Wireless Communications and Mobile Computing, 2022, 1575365, 18 pages, 2022. https://doi.org/10.1155/2022/1575365
- [16] Iguazio. (n.d.). What is model accuracy in machine learning? Iguazio. Retrieved December 20, 2024, from https://www.iguazio.com/glossary/model-accuracy-in-ml/
- [17] Encord. (n.d.). What is the F1 score in machine learning? Encord. Retrieved December 20, 2024, from https://encord.com/blog/f1-score-in-machine-learning/
- [18] Wan, M., Zhong, Y., Gao, X., Lee, Y. M., Huang, C.-R. (2024).
 Fake news, real emotions: Emotion analysis of COVID-19 infodemic in Weibo. IEEE Transactions on Affective Computing, 15(3), 815-825. https://doi.org/10.1109/TAFFC.2023.3295806
- [19] Hamed, S. K., Aziz, M. J. A., & Yaakub, M. R. (2023). A re-view of fake news detection approaches: A critical analysis of rel- evant studies and highlighting key challenges associated with

Volume No. 14, Issue No. 04, April 2025 www.ijarse.com

- the dataset, feature representation, and data fusion. *Heliyon*, 9(10), e20382. https://doi.org/10.1016/j.heliyon.2023.e20382
- [20] Villela, H. F., Correˆa, F., De Arau´jo Nery Ribeiro, J. S., Rabelo, A., & Carvalho, D. B. F. (2023). Fake news detection: a systematic literature review of machine learning algorithms and datasets. *Journal on Interactive Systems*, 14(1), 47–58. https://doi.org/10.5753/jis.2023.3020
- [21] Mahima Shanker Pandey Dr. S.S.Soam Prof. Surya Prakash Tri- pathi (2019). Computerized gender determination from human sternum manubrium X-Ray Measurements. *I*nternational Journal of Advanced Trends in Computer Science and Engineering(IJATCSE) ISSN: 2278- 3091, https://doi.org/10.30534/ijatcse/2019/01862019
- [22] Verma, D., Pandey, M.S. (2022). Computerized Assisted Segmentation of Brain Tumor Using Deep Convolutional Network. In: Gupta, D., Khanna, A., Kansal, V., Fortino, G., Hassanien, A.E. (eds) *P*roceedings of Second Doctoral Symposium on Computational Intelligence. Advances in Intelligent Systems and Computing, vol 1374. Springer, Singapore. https://doi.org/10.1007/978-981-16-3346-1₃7