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Abstract:
Main aim of this paper is to prove some fixed point theorems in Fuzzy Metric spaces through
rational inequality. Our results extends and generalizes the results of many other authors

existing in the literature. Some applications are also given in support of our results.
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1. Introduction

The foundation of fuzzy mathematics is laid by Lofti A Zadeh [3] with the introduction of fuzzy
sets in 1965. This foundation represents a ambiguous in everyday life. Subsequently several
authors have applied various from general topology of fuzzy sets and developed the concept of
fuzzy space. In 1975, Kramosil and Michalek [5] introduced concept of fuzzy metric spaces.
In 1988, Mariusz Grabiec [4] extended fixed point theorem of Banach and eldestien to fuzzy
metric spaces in the sense of Kramosil and Michalek. In 1994, George et al. [1] modified the
notion of fuzzy metric spaces with the help of continuous t-norms. A number of fixed point
theorem have been obtained by various authors in fuzzy metric space by using the concept of
compatible map, implicit relation, weakly compatible map, R weakly compatible map. (See

section: [7-14]). Also R.K. Saini and Vishal Gupta [9, 10] proved some fixed points theorems.
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On expansion type maps and common coincidence points of R-Weakly commuting fuzzy maps,
in Fuzzy Metric Space. The present paper extends and generalizes the results of Mariusz

Grabeic [4] and also many other authors existing in the literature.

2. Preliminaries

In this section, we define some important definition and results which are used in sequel.
Definition 1 ([3]): Let X' be any set. A fuzzy set A in X' is a function with domain X' and
values in [0, 1].

Definition 2 (|2]): A binary operation *: [0, 1] x [0, 1] — [0, 1] is a continuous t-norms if ([0,
1]), *) is an abelian topological monoid with the unit 1 such that a * b <c * d whenevera <c
andb<dforalla,b,c,de[O0,1].

Definition 3 ([S]): A triplet (X', M’, *) is a fuzzy metric space if X' is a an arbitrary set, * is
continuous t-norm and M’ is a fuzzy set on X'? x (0, o) satisfying the following conditions, for
all x,y,z € X', such thatt, s € (0, ).

I.M'(x,y,t)>0

2. M'(x,y,t)=1iffx=y

3.M(x,y,t)=M'(y, X, t)

4. M'(x,y,t) * M'(y, z,5) < M'(x, z, t + 5).

5.M'(x,,.):[0,0)— [0, 1] is continuous.

Then M’ is called a fuzzy metric on X’ and M'(x, y, t) denotes the degree of nearness between
x and y with respect to t.

Definition 4 ([4]): Let (X', M’, *) is a fuzzy metric space then a sequence [xn] € X' is said to
be convergent to a point x € X' if limn—o M'(Xn, X, t) =1 for all t > 0.

Definition 5 ([4]): Let (X', M, *) is a fuzzy metric space then a sequence [x,] € X' is called
Cauchy sequence if limn—x M'(Xn+p, Xn, t) =1 for all t > 0 and p > 0.

Definition 6 ([4]): Let (X', M’, *) is a fuzzy metric space then an Fuzzy Metric space in which
every Cauchy sequence is convergent is called complete. It is called compact, if every sequence

contains a convergent subsequence.
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Lemma 1 ([4]): For all, x, y € X', M'(X, y, -) is non-decreasing.

Lemma 2 ([11]): If there exist k € (0, 1) such that M'(x, y, kt) > M(x, y, t) for all x, y € X" and
t € (0, ), then x =y.

Now we prove our main result.

3. Main Results
Theorem 1: Let (X', M, *) be a complete fuzzy metric space and f: X' — X' be a mapping

satisfying

M'(x,y,t)=1 (1.1)
and

M'(fx, fy, kt) > A(X, y, t) (1.2)
where

A(X,y,t) =min { M (y, [fly:rtl)\/[ll(;,l\f/,'t());’ x.0)] M (X, y,t)} (1.3)

forall x,y € X" and k € (0, 1). Then f has a unique fixed point.

Proof: Let us consider x € X' be any arbitrary point in X'. Now construct a sequence [xn] € X’
such that fx, = xp+1 for alln € N.

Claim: {x.} is a Cauchy sequence.

Let us take x = xp-1 and y = Xx in (1.2), we get

M,( Xn, Xn+1, kt) = M’(an—], an, kt) 2 }\1( Xn—], Xn, t) (1.4)
Now
A0ty %,,t) = ming M s DR G B OF gy
[1+M (X, 4, %, )]
M I(Xn’ n+l’t)[1+M (Xn -1 n1t)]

AX, 4, X, 1) = mln{ M (X, 4, n,t)}

[L+M(x, ,, X, )]
= A(Xn-1, Xn, t)
= min{M'(Xn, Xn+1, t), M'(Xn-1, Xn, t)}

Now if M'(Xn, Xn+1, t) < M'(Xn-1, Xn, t), then from equation (1.4)
M’ (Xn, Xn+1, kt) = M'(Xn, Xn+1, t)
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Hence from lemma (2), our claim follows immediately. Now suppose M'(Xn, Xn+1, t) = M'(Xn-1,
Xn, t) then again from equation (1.4),

M’ (Xn, Xn+1, kt) = M'(Xn-1, Xn, t)

Now by simple induction, for all n and t > o, we get

M (X, X,.;, Kt) =M [xxlﬁj (1.5)

Now for any positive integer ‘s’, we have

. . t . t
M (X, X,., 1) =M [Xn,xm,gj*...(s)...*M x(xw_l,xw,gj

Now taking limn—e and using (1.1), we get
limM '(x,, X, t) =1 (1.6)

n—oo

By using equation (1.5), we get

t
n

M (X, X, t) =M '(x, Xi’sli_”j*"'(s)'"* M 'x(x, Xy, o«

This implies, {xa} is a Cauchy sequence. Call the limit v.
Claim: v is a fixed point of f.
Consider

M’ (v, fu, t) > M'(fxa, fu, t) * M'(v, Xn+1, t)
ZAEXn,U,;—k)*M (U, X1, 1) (1.7)

Now

) M '[U, fu,ztk){l+ M '(Xn, fx”’Ztkﬂ )
/{Xmu,x):min M (U’X”’Ej
14 M '(U,Xn,tj
oo

Taking lima—« in above inequality and using (1.1), we get
t . , t
Alv,0,— [=min<M'| v, fo,— |,1
2k 2k
. , t t
Now if M (U, fo,— |21 then /l(u,u,—jzl
2k 2k
Therefore from (1.7) and using definition 3, we get v is a fixed point of f.
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Now if M U,fu,L <1 then A U,u,L =M" U,fu,L )
2k 2k 2k

Hence from equation (1.7), we get

M'(v, fo,t)=M '(U, fu,ij* M (X, .,,0,t) (1.8)

Now taking limp—« in (1.8) and using equation (1.1) and lemma (2), we get fo = v.
Uniqueness: Now we show that v is a unique fixed point of f. Suppose not, then there exist a

point ® € X' such that fo = ®. Consider

le'(a),u,t):M'(fa),u,t)zi(w,u,%) (1.9)

where

PO L e
B i B

PO L e
] e

o) [HM-(Z,U,;H’M(”’”H

=min {1, 1}
= i[a),u,%jzl (1.10)

Use it in (1.9), we get ® = v. Thus v is unique fixed point of f. This completes the proof of
Theorem 1.

Let us define @ = {¢/¢ : [0, 1] — [0, 1]} is a continuous function such that ¢(1) =1, ¢(0) =0,
d(a) >a foreach 0 <a <1.

Example 1: Consider the complete fuzzy metric space (X', M’, *) where X' = {0, 1} and the

fuzzy metric M' is given, for each t € [0, ] by
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Consider the function € A given by

d(e)=¢€/2for e € [0, 1]
Next, define the self-mapping T1 : X' — X' by T1(0) = 1 & Ti(1) = 0. It is a simple matter to
check that T, is a fuzzy Meir-Keeler Contractive mapping with respect to 8. Nowever T does
not have fixed points. Observe that *t > 0

M'(x, T(x),t)=0 forall x € X’
Now, define the self-mapping T»>(1) = 1. It is clear that T> is also a fuzzy Meir-Keeler

Contractive mapping with respect to 6 clearly T> has two fixed points.

Theorem 2: Let (X', M’, *) be a complete fuzzy metric space and f: X' — X' be a mapping

satisfying

M'(x,y, t)=1 (1.11)
and

M'(fx, fy, kt) > ¢ {M(x, y, t)} (1.12)
where

A(X,y,t) =min { M (y[Iertlz/El(J;(Myg(] 0] M (x, y,t)} (1.13)

forallx,y € X', k € (0, 1), ¢ € ®@. Then f has a unique fixed point.
Proof: Since ¢ € ®. This implies that ¢(a) > o for each 0 < o < 1. Thus from (1.12)
M'(fx, fy, kt) > ¢ {A(x, y, 1)} = MX, y, )

Now, applying Theorem 1, we obtain the desired result.

4. Applications

In this section, we gives some application related to our results. Let us define ¥: [0,00] — [0,00],
t
as Y (t) = jo @(t)dt Vt >0, be a non-decreasing and continuous function. Moreover, for each

€>0, o(e) > 0. Also implies that ¢(t) =0 iff t = 0.
Theorem 3: Let (X', M', *) be a complete fuzzy metric space and f: X' — X' be a mapping
satisfying

M, y,t)=1
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A(%,y,1)

o(t)dt > j o(t)dt

M '(fx, fy kt)
J ;

where

M (y, fy, [L+ M '(x, fx,1)]
[1+M(x,y,0)]

A(X,y,t) = min{ M (x, y,t)}

forall x,y € X', ¢ € Y and k € (0, 1). Then f has a unique fixed point.
Proof: By taking ¢(t) = 1 and applying Theorem 1, we obtain the result.
Theorem 4: Let (X', M’, *) be a complete fuzzy metric space and f : X’ — X' be a mapping
satisfying
M'(x,y, t)=1

o0tz ([ o]

M '(x, fy kt)
J :

where

M ‘(y, fy,)[1+ M '(x, fx,1)]
[L1+M(x,y,1)]

A(X,y,t) = min{ ,M(x, y,t)}

forallx,y e X', o € ¥,k € (0, 1) and ¢ € ®. Then f has a unique fixed point.

Proof: Since ¢(a) > a for each 0 < a < 1, therefore result follows immediately from Theorem
3.

Remark 1: Our paper extends and generalizes the result of Mariusz Grabeic [4] and also many
other authors existing in the literature.
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