

287 | P a g e

DESIGN OF EFFICIENT 32-BIT FLOATING POINT

MULTIPLIER USING STANDARD IEEE 754

Prof. Sachin S Patil1, Miss. Sanjana B Patil2, Miss. Chaitrashri M Badiger3,

Mr. Aditya Sajane4, Mr. Balu Chougale5
Assistant Professor1 , UG Student2,3,4,5

Department of Electronics & Communication Engineering,

 Hirasugar Institute of Technology, Nidasoshi, India

sachinpatil.ece@gmail.com1 sanjapatil27@gmail.com2 chaitrabadiger49@gmail.com3

adityasajane456@gmail.com4 baluchougale364@gmail.com5

ABSTRACT
The IEEE 754 standard provides the format for representation of Binary Floating-point numbers. The Binary

Floating-point numbers are represented in Single and Double formats. The Single consists of 32 bits and the

Double consist of 64 bits. The formats are composed of 3 fields: Sign, Exponent and Mantissa. In case of

Single, the Mantissa is represented in 23 bits and 1 bit is added to the MSB for normalization, Exponent is

represented in 8 bits which is biased to 127, the Exponent is represented in excess 127-bit format and MSB of

Single is reserved for Sign bit. When the sign bit is 1 that means the number is negative and when the sign bit is

0 that means the number is positive. In 64 bits format the Mantissa is represented in 52 bits, the Exponent is

represented in 11 bits which is biased to 1023 and the MSB of Double is reserved for sign bit. The main object

of this paper is to reduce power consumption and to increase the speed of execution by implementing certain

algorithms for multiplying two floating point numbers.

These Lab-Oriented Implementation and Activities have been carried out into two parts. First Half is the

Floating-Point Representation Using IEEE-754 Format (32 Bit Single Precision) and second Half is simulation,

synthesis of Design using HDLs and Software Tools. The Binary representation of decimal floating-point

numbers permits an efficient implementation of the proposed radix independent IEEE standard for floating-

point arithmetic.

Keywords— IEEE-754 Format, Simulation, Synthesis

I. INTRODUCTION

The Floating point numbers are one possible way of representing real numbers in binary format; the IEEE 754

standard presents two different floating point formats, Binary interchange format and Decimal interchange

format. Multiplying floating point numbers is a critical requirement for DSP applications involving large

dynamic range. This paper focuses only on single precision normalized binary interchange format. Fig. 1.1

shows the IEEE 754 single precision binary format representation; it consists of a one bit sign (S), an eight bit

exponent (E), and a twenty three bit fraction (M or Mantissa). An extra bit is added to the fraction to form what

is called the significand 1. If the exponent is greater than 0 and smaller than 255, and there is 1 in the MSB of

the significand then the number is said to be a normalized number; in this case the real number is represented by

(1).

Figure 1.1 IEEE single precision floating point format

Z = (-1S) * 2 (E - Bias) * (1.M)

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-22+ m0 2-23,

Bias = 127.

Significand is the mantissa with an extra MSB bit.

Multiplying two numbers in floating point format is done by

1- adding the exponent of the two numbers then subtracting the bias from their result

mailto:sachinpatil.ece@gmail.com1
mailto:sanjapatil27@gmail.com2
mailto:chaitrabadiger49@gmail.com3
mailto:adityasajane456@gmail.com4
mailto:baluchougale364@gmail.com5

288 | P a g e

2- multiplying the significand of the two numbers, and

3- calculating the sign by XORing the sign of the two numbers.

In order to represent the multiplication, result as a normalized number there should be 1 in the MSB of the result

(leading one).

Floating-point implementation on FPGAs has been the interest of many researchers. In 2008, an IEEE 754 single precision

pipelined floating point multiplier was implemented on multiple FPGAs (4 Actel A1280). In 1995, a custom 16/18 bit three

stage pipelined floating point multiplier that doesn’t support rounding modes was implemented. In 1996, a single precision

floating point multiplier that doesn’t support rounding modes was implemented using a digit-serial multiplier: using the

Altera FLEX 8000 it achieved 2.3 MFlops. In 2001, a parameterizable floating point multiplier was implemented using the

software-like language Handel-C, using the Xilinx XCV1000 FPGA; a five stages pipelined multiplier achieved 28MFlops.

In 2002, a latency optimized floating point unit using the primitives of Xilinx Virtex II FPGA was implemented with a

latency of 4 clock cycles. The multiplier reached a maximum clock frequency of 100 MHz.

Our discussion of floating point will focus almost exclusively on the IEEE floating- point standard (IEEE 754) because of its

rapidly increasing acceptance. Although floating- point arithmetic involves manipulating exponents and shifting fractions,

the bulk of the time in floating-point operations is spent operating on fractions using integer algorithms.

1.1 INTERPRETATION OF IEEE754 (IEEE 754 Converter)

This page allows you to convert between the decimal representation of numbers (like "1.02") and the binary format used

by all modern CPUs (IEEE 754 floating point). The conversion is limited to single precision numbers (32 Bit). The purpose

of this webpage is to help you understand floating point numbers.

Usage: You can either convert a number by choosing its binary representation in the button- bar, the other fields will be

updated immediately. Or you can enter a binary number, a hex number or the decimal representation into the corresponding

text field and press return to update the other fields. To make it easier to spot eventual rounding errors, the selected float

number is displayed after conversion to double precision.

Special Values: You can enter the words "Infinity", "-Infinity" or "NaN" to get the corresponding special values for IEEE-

754. Please note there are two kinds of zero: +0 and - 0.

Conversion: The value of a IEEE-754 number is computed as:

sign * 2exponent * mantissa The sign is stored in bit 32. The exponent can be computed from bits 24-31 by subtracting 127.

The mantissa (also known as significand or fraction) is stored in bits 1-23.

An invisible leading bit (i.e. it is not actually stored) with value 1.0 is placed in front, then bit 23 has a value of 1/2, bit 22

has value 1/4 etc. As a result, the mantissa has a value between 1.0 and 2. If the exponent reaches -127 (binary 00000000),

the leading 1 is no longer used to enable gradual underflow.

Underflow: If the exponent has minimum value (all zero), special rules for denormalized values are followed. The exponent

value is set to 2-126 while the "invisible" leading bit for the mantissa is no longer used. The range of the mantissa is

now [0:1).

Note: The converter used to show denormalized exponents as 2-127 and a denormalized mantissa range [0:2). This is

effectively identical to the values above, with a factor of two shifted between exponent and mantissa. However this confused

people and was therefore changed (2015-09-26).

Rounding errors: Not every decimal number can be expressed exactly as a floating point number. This can be seen when

entering "0.1" and examining its binary representation which is either slightly smaller or larger, depending on the last bit.

Other representations: The hex representation is just the integer value of the bit string printed as hex. Don't confuse this with

true hexadecimal floating point values in the style of 0xab.12ef.

1.2 OBJECTIVE

The primary objective of this multiplier is to increase the multiplier speed by minimizing the overall delay. Low power

consumption and smaller area are some of the most important criteria for the fabrication. However, area and speed are

usually conflicting constraints so that improving speed results mostly in larger areas.

1.3 CHALLENGES IN SYNCHRONOUS CIRCUITS

289 | P a g e

Traditional synchronous FPGA architectures are facing challenges with the growing logic size of chips in terms of

1. A single slow component or logic slows down the whole chip.

2. Challenges with designing reusable components.

3. To evenly distribute global clock signals all over the FPGA area requires great efforts because of clock skew.

4. FPGAs are more likely to contain a multitude of modules running at different clock frequencies, with data signals

appearing to be asynchronous in the new clock domain when moving data across modules.

5. Increased power consumption.

6. Improved noise and electromagnetic compatibility (EMC) properties.

7. Process variations seriously affect circuit designs.

8. Performance Overhead.

Hence, Asynchronous techniques have become more significant from past decade of years due to the continuous scaling of

VLSI technologies. In an asynchronous circuit, the next computation step can start immediately after the previous step has

been completed. There is no need to wait for the transition of the clock signal. This leads potentially to a fundamental

performance advantage for asynchronous circuits, an advantage that increases with the variability in delays associated with

these computation steps.

II. SYSTEM DESCRIPTION

2.1 BLOCK DIAGRAM

III. ARCHITECTURAL DETAILS

3.1 IMPLEMENTATION OF PROPOSED ARCHITECTURE

The Architecture has sign calculator, exponent calculator, mantissa calculator, which works parallel, and a normalization

unit. It takes two IEEE 754 format single precision floating point numbers and produces the multiplied output. It also

supports the features like underflow, overflow and invalid operations. The implementation of Floating point multiplier Unit

consists of two stages of multiplication calculation and Normalization. First stage includes three blocks which work in

parallel.

A. Sign Calculator: The Output Sign is the exclusive or of two sign bit inputs

290 | P a g e

B. Exponent Calculator: The input exponents are added using Ripple Carry Adder (RCA) and the bias is subtracted using

Ripple Carry Subtractor (RCS) to produce the exponent of Output.

C. Mantissa Calculator: Output Mantissa is calculated by multiplying the mantissa’s using multiplier (Modified

Booth/Vedic techniques)

Second stage performs Normalization of the first stage output. It first calculates how much amount the mantissa needs to

be left shifted using LZC (Leading Zero Counter) and finally produces the multiplier output.

3.2 MULTIPLIERS USED IN THE ARCHITECTURE

3.2.1 Vedic multiplier:

For Mantissa calculations, Vedic and modified booth multipliers are used in the implementation. The design of Vedic

Multiplier starts with 2x2 bit multiplier. Here, “Urdhva Tiryakbhyam Sutra” (Vertically and Crosswise Algorithm) has been

used for multiplication to develop multiplier architecture.

Figure 3.2: 4 X 4 bit Vedic multiplication

The expressions of the partial products obtained by multiplying A=A3A2A1A0 and B= B3B2B1B0 are P1=A0B0 and

Carry=C0 P2=A1B0+B1A0+C0 and Carry=C1 P3=A2B0+B2A0+A1B1+C1 and Carry=C2

P4=A3B0+A0B3+A2B1+A1B2+C2 &Carry=C3

P5=A3B1+A2B2+A1B3+C3 and Carry=C4 P6=A3B2+A2B3+C4 and Carry=C5

P7=A3B3+C5 This Sutra shows how to handle multiplication of a larger number (N x N, of N bits each) by breaking it into

smaller numbers of size (N/2 = n, say) and these smaller numbers can again be broken into smaller numbers (n/2 each) till 2

× 2 basic multiplier block. Hence, whole multiplication process is to be simplified. First the basic block, 2×2 multipliers

have been made then, using these blocks, 4×4 block and thereby using 4×4 block, 8×8 block and then finally 16×16 bit

Multiplier has been made.

Figure 3.3: Black box view of single precision floating point vedic multiplier

Figure 3.4: single precision floating point vedic multiplier

3.2.2 Modified Booth Multiplier

Booth multiplication is smaller, faster multiplication algorithm through encoding the signed numbers to 2’s complement,

291 | P a g e

which is also a standard technique used in chip design, and provides significant improvements by reducing the number of

partial product to half over “long multiplication” techniques. Modified Booth's multiplication algorithm is a multiplication

algorithm that multiplies two signed binary numbers in two's complement notation. Modified Booth algorithm reduces the

number of partial products generated in a multiplication process through encoding the signed numbers to 2’s complement

according to the table shown below.

TABLE 3.1 Modified Booth Encoding Table

b2b1b0 Operations

000 All zero

001 Same number

010 Same number

011 Single left shift

100 2's complement and left shift

101 2's complement

110 2's complement

111 All zero's

Figure 3.5: Black box view of single precision floating point modified booth multiplier

Figure 3.6: single precision floating point modified booth multiplier

3.2.3 DELAY RESULTS:

Multiplier Delay(ns)

Modified Booth algorithm 121.737

Vedic multiplier 94.770

IV. COMPARISON WITH DIFFERENT MULTIPLICATION METHODS

This is the most important stage, product of the mantissa bits is calculated. The multiplication of mantissa bits is performed

in the following stages.

4.1 Generation of Partial Products

The Booth multiplier makes use of Booth encoding algorithm in order to reduce the number of partial products by

considering certain number of bits of the multiplier at a time, thereby achieving a speed advantage over other multiplier

architectures. This algorithm is valid for both signed and unsigned numbers. It can handle signed binary multiplication by

using 2's complement representation. For generating the partial products Radix-8 Modified Booth's Algorithm is used. Since

the multiplier and multiplicand comprises of 24 bits, this algorithm will generate 8 partial products. The shortcoming of

Radix 2 Booth algorithm is that it becomes inefficient when there are isolated 1's. For example, 001010101(decimal 85) gets

reduced to 01-11- 11-11-1(decimal 85), requiring eight instead of four operations.001010101(0) recoded as 011111111,

requiring 8 instead of 4 operations.

4.1.1 Radix-8 Modified Booth’s Algorithm

Recoding extended to 3 bits at a time - overlapping groups of 4 bits each. Radix-8 recoding applies the same algorithm as

292 | P a g e

radix-4, but now we take quartets of bits instead of triplets.

Consequently, a multiplier based on this radix-8 scheme generates fewer partial products than a radix-4 multiplier, but the

computation of each partial product is more complex. In particular, a partial product corresponding to an encoding x=+3

requires the computation of 3x, and therefore a full addition. Each quartet is codified as a signed-digit using the table 4.1.

Table 4.1: Recoding in Booth Radix-8 Algorithm.

Quartet value Signed-digit

value

Quartet value Signed-digit

value

0000 0 1000 -4

0001 +1 1001 -3

0010 +1 1010 -3

0011 +2 1011 -2

0100 +2 1100 -2

0101 +3 1101 -1

0110 +3 1110 -1

0111 +4 1111 0

4.1.2 Synthesis Results on FPGA

Table 3 shows the synthesis report on Xilinx for generation of partial products.

Table 4.2: Synthesis Report of Partial Product Generation

Partial Product Reduction

8 Partial products are generated using Radix-8 Modified Booth's Algorithm. They are reduced using 4:2 compressors.

4.2.1 Carry Save Adder

A Carry-Save Adder is just a set of one-bit full adders, without any carry-chaining. The most important application of a

carry-save adder is to calculate the partial products in integer multiplication. 4:2 compressors are used as carry save adders.

The 4:2 compressor structure actually compresses five partial products bits into three. The architecture is connected in such a

way that four of the inputs are coming from the same bit position of the weight j while one bit is fed from the neighboring

position j- 1(known as carry-in). The outputs of 4:2 compressor consists of one bit in the position j and two bits in the

position j+1.

A 4:2 compressor can also be built using 3:2 compressors. It consists of two 3:2 compressors (full adders) in series and

involves a critical path of 4 XOR delays as shown in Figure 3[8]. The output Cout, being independent of the input Cin

accelerates the carry save summation of the partial products. 4:2 compressor is made from 2 full adders. The final carry is

saved and hence is called carry save adder. The delay of 4:2 compressor is equal that of 4 xor gates.

Initially two 4:2 compressors are used to reduce each 4 partial products pair to generate the pair of sum and carry. Then these

final 4 partial products generated from above two 4:2 compressors are further reduced to generate final sum and carry. The

final sum and carry are added in next Carry Propagate adder.

Figure 4.1: 4:2 Compressor Design using Full Adders

4.2.2 Synthesis Results on FPGA

Table 4.3 shows the synthesis report on Xilinx for Partial Product Addition.

Table 4.3: Synthesis Report of Partial Product Addition

293 | P a g e

4.3 Final stage Carry Propagate Adder

Further the partial products generated through carry save adders are further reduced by using Ripple Carry Adder.

4.3.1 Ripple Carry Adder

Ripple Carry Adder is used to obtain the final sum and the output carry by adding the partial products from the carry save

adders. It creates a logical circuit using multiple full adders to add N-bit numbers. Each full adder inputs a Cin, which is the

Cout of the previous adder. This kind of adder is a ripple carry adder, since each carry bit "ripples" to the next full adder.

The 48-bit sum and carry outputs obtained from the partial product accumulator are added in the final stage adder to give the

product of the mantissas. As shown in Figure 4 a ripple carry adder is a chain of cascaded full adders and one half adder;

each full adder has three inputs (A, B, Ci) and two outputs (S, Co). The carry out (Co) of each adder is fed to the next full

adder (i.e each carry bit "ripples" to the next full adder).

Figure 4.2: Ripple Carry Adder

4.3.2 Synthesis Results on FPGA

Table 5.4 shows the synthesis report on Xilinx for Final 48- bit Stage Carry Propagate Adder.

Table 4.4: Synthesis Report of 48-bit Ripple Carry Adder

Device Spartan 3E

xc3s500E

Virtex 4 xc4vlx15

No. of Slices 150/4656 (3%) 146/6144 (2%)

No. of LUTs 246/9312 (2%) 250/12288 (2%)

Minimum Period 8.235ns 5.206ns

Maximum Frequency 121.438MHz 192.095MHz

4.4 PIPELINING

A pipeline is a set of data processing elements connected in series, so that the output of one element is the input of the next

one. It is divided into segments and each segment can execute its operation concurrently with the other segments. When a

segment completes an operation, it passes the result to the next segment in the pipeline and fetches the next operation from

the preceding segment. The final results of each instruction emerge at the end of the pipeline in rapid succession.

The pipeline technique is widely used to improve the performance of digital circuits. As the number of pipeline stages is

increased, the path delays of each stage are decreased and the overall performance of the circuit is improved.

4.4.1 5-Stage Pipelining

In order to enhance the performance of the multiplier, five pipelining stages are used to divide the critical path thus

increasing the maximum operating frequency of the multiplier. Five pipelining stages mean that there is latency in the

output by five clocks[8]. The pipelining stages are embedded at the following locations:

i. After the Pre-processing of the Multiplicand and Multiplier.

ii. After the Exponent Adder and Generation of 8 Partial Products.

iii. After subtracting the Bias and Compressing the partial Products to 4.

iv. After Compressing the Partial Products to 2.

v. After Normalization and Final Carry Propagate Adder.

Table 6 shows the synthesis result. Comparing with 3-stage pipelined multiplier, the frequency is increased as the pipeline

294 | P a g e

stages are increased.

4.4.2 Synthesis Results on FPGA

Table 4.5: Synthesis Report of 5-Stage Floating Point Multiplier

Device Spartan 3E xc3s500E Virtex 4 xc4vlx15

No. of Slices 2045/4656 (43%) 2067/6144 (33%)

No. of LUTs 3893/9312 (41%) 3900/12288 (31%)

Minimum Period 12.154ns 6.532ns

Maximum Frequency 82.279MHz 153.081MHz

Figure 4.3: Floating point multiplier with 5 pipelining stages

V. HARDWARE OF FLOATING-POINT MULTIPLIER
5.1 Sign bit calculation

Multiplying two numbers results in a negative sign number if one of the multiplied numbers is of a negative value. By the

aid of a truth table we find that this can be obtained by XORing the sign of two inputs.

5.2 Unsigned Adder (for exponent addition)

This unsigned adder is responsible for adding the exponent of the first input to the exponent of the second input and

subtracting the Bias (127) from the addition result (i.e. A_exponent + B_exponent - Bias). The result of this stage is called

the intermediate exponent. The add operation is done on 8 bits, and there is no need for a quick result because most of the

calculation time is spent in the significand

multiplication process (multiplying 24 bits by 24 bits); thus we need a moderate exponent adder and a fast significand

multiplier.

An 8-bit ripple carry adder is used to add the two input exponents. As shown in Fig. 6.1 a ripple carry adder is a chain of

cascaded full adders and one half adder; each full adder has three inputs (A, B, Ci) and two outputs (S, Co). The carry out

(Co) of each adder is fed to the next full adder (i.e each carry bit "ripples" to the next full adder).

Figure 6.1 Ripple Carry Adder

The addition process produces an 8 bit sum (S7 to S0) and a carry bit (Co,7). These bits are concatenated to

form a 9 bit addition result (S8 to S0) from which the Bias is subtracted. The Bias is subtracted using an array

of ripple borrow subtractors. A normal subtractor has three inputs(minuend (S), subtrahend (T), Borrow in (Bi))

295 | P a g e

and two outputs (Difference (R), Borrow out (Bo)). The subtractor logic can be optimized if one of its inputs is

a constant value which is our case, where the Bias is constant (127|10 = 001111111|2). Table I shows the truth

table for a 1-bit subtractor with the input T equal to 1 which we will call “one subtractor (OS)”

Figure 6.2: 1-Bit Subtractor

Table 6.1: 1-Bit Subtractor With The Input T=1

The Boolean equations (2) and (3) represent this subtractor: (3)

Figure 6.3: 1-bit subtractor with the input T = 1

Table 6.2 shows the truth table for a 1-bit subtractor with the input T equal to 0 which we will call “zero subtractor (ZS)” .

Table 6.2: 1-Bit Subtractor With The Input T=0

The Boolean equations (4) and (5) represent this subtractor:

Figure 5.4: 1-bit subtractor with the input T = 0

Fig. 5.4 shows the Bias subtractor which is a chain of 7 one subtractors (OS) followed by 2 zero subtractors (ZS); the

borrow output of each subtractor is fed to the next subtractor. If an underflow occurs then Eresult< 0 and the number is out

of the IEEE 754 single precision normalized numbers range; in this case the output is signaled to 0 and an underflow flag is

asserted.

Figure 5.5: Ripple Borrow Subtractor

5.3 Unsigned Multiplier (for significand multiplication)

S T Bi D(R) B0

0 1 0 1 1

1 1 0 0 0

0 1 1 0 1

1 1 1 1 1

S T Bi Difference(R) B0

0 0 0 0 0

1 0 0 1 0

0 0 1 1 1

1 0 1 0 0

296 | P a g e

This unit is responsible for multiplying the unsigned significand and placing the decimal point in the multiplication product.

The result of significand multiplication will be called the intermediate product (IP). The unsigned significand multiplication

is done on 24 bit. Multiplier performance should be taken into consideration so as not to affect the whole multiplier’s

performance. A 24x24 bit carry save multiplier architecture is used as it has a moderate speed with a simple architecture. In

the carry save multiplier, the carry bits are passed diagonally downwards (i.e. the carry bit is propagated to the next stage).

Partial products are made by ANDing the inputs together and passing them to the appropriate adder.

Carry save multiplier has three main stages:

1- The first stage is an array of half adders.

2- The middle stages are arrays of full adders. The number of middle stages is equal to the significand size minus two.

3- The last stage is an array of ripple carry adders. This stage is called the vector merging stage. The number of adders

(Half adders and Full adders) in each stage is equal to the significand size minus one. For example, a 4x4 carry save

multiplier is shown in Fig.

5.5 and it has the following stages:

1- The first stage consists of three half adders.

2- Two middle stages; each consists of three full adders.

3- The vector merging

The decimal point is between bits 45 and 46 in the significand multiplier result. The multiplication time taken by the carry

save multiplier is determined by its critical path. The critical path starts at the AND gate of the first partial products (i.e.

a1b0 and a0b1), passes through the carry logic of the first half adder and the carry logic of the first full adder of the middle

stages, then passes through all the vector merging adders. The critical path is marked in bold in Fig. 5.5.

Figure 5.6: 4x4 bit Carry Save multiplier

1- Partial product: aibj = ai and bj

2- HA: half adder

3- FA: full adder
5.4 Normalizer

The result of the significand multiplication (intermediate product) must be normalized to have a leading ‘1’ just to the left of

the decimal point (i.e. in the bit 46 in the intermediate product). Since the inputs are normalized numbers then the

intermediate product has the leading one at bit 46 or 47

1- If the leading one is at bit 46 (i.e. to the left of the decimal point) then the intermediate product is already a normalized

number and no shift is needed.

2- If the leading one is at bit 47 then the intermediate product is shifted to the right and the exponent is incremented by 1.

The shift operation is done using combinational shift logic made by multiplexers.

5.5 Underflow/Overflow Detection

Overflow/underflow means that the result’s exponent is too large/small to be represented in the exponent field. The

exponent of the result must be 8 bits in size, and must be between 1 and 254 otherwise the value is not a normalized one. An

overflow may occur while adding the two exponents or during normalization. Overflow due to exponent addition may be

compensated during subtraction of the bias; resulting in a normal output value (normal operation). An underflow may occur

while subtracting the bias to form the intermediate exponent. If the intermediate exponent < 0 then it’s an underflow that can

never be compensated; if the intermediate exponent = 0 then it’s an underflow that may be compensated during

normalization by adding 1 to it.

When an overflow occurs an overflow flag signal goes high and the result turns to±Infinity (sign determined according to

the sign of the floating point multiplier inputs). When an underflow occurs an underflow flag signal goes high and the result

turns to ±Zero (sign determined according to the sign of the floating point multiplier inputs). Denormalized numbers are

signaled to Zero with the appropriate sign calculated from the inputs and an underflow flag is raised. Assume that E1 and E2

are the exponents of the two numbers A and B respectively; the result’s exponent is calculated by (6) E result = E1 + E2 -

297 | P a g e

127 (6)

E1 and E2 can have the values from 1 to 254; resulting in Eresult having values from -125 (2-127) to 381 (508-127); but for

normalized numbers, Eresult can only have the values from 1 to 254. Table III summarizes the Eresult different values and

the effect of normalization on it.

Table 5.3 Normalization Effect On Result’s Exponent And Overflow/Underflow Detection

5.6 Implementation And Testing

The whole multiplier (top unit) was tested against the Xilinx floating point multiplier core generated by Xilinx coregen.

Xilinx core was customized to have two flags to indicate overflow and underflow, and to have a maximum latency of three

cycles. Xilinx core implements the “round to nearest” rounding mode.

A test bench is used to generate the stimulus and applies it to the implemented floating point multiplier and to the Xilinx

core then compares the results. The floating point multiplier code was also checked using Design Checker .

Design Checker is a linking tool which helps in filtering design issues like gated clocks, unused/undriven logic, and

combinational loops. Also the speed of Xilinx core is affected by the fact that it implements the round to nearest rounding

mode.

VI. SOFTWARE DETAILS

6.1 Algorithm:

As stated in the introduction, normalized floating point numbers have the form of Z= (-1S)* 2 (E - Bias) * (1.M). To

multiply two floating point numbers the following is done:

Step 1: Multiplying the significand; i.e. (1.M1*1.M2) Step 2: Placing the decimal point in the result

Step 3: Adding the exponents; i.e. (E1 + E2 – Bias) Step 4: Obtaining the sign; i.e. s1 xor s2

Step 5:Normalizing the result; i.e. obtaining 1 at the MSB of the results’ Significand

Step 6: Rounding the result to fit in the available bits Step 7: Rounding the result to fit in the available bits

6.2 Flow Chart:

298 | P a g e

VII. RESULTS

7.1 Rtl View

7.2 Technological View

7.3 Synthesis Report
Below Table Shows the Synthesis for final 32-bit floating point multiplier

.

7.4 Simulation Results

Advantages and Applications :

1. They can represent values between integers.

2. Because of the scaling factor, they can represent a much greater range of values.

3. Floating point multiplicationis a most widely used operation in DSP/Math processors, digital computers.

4. Floating Point Arithmetic is extensively used in the field of banking, tax calculation, currency conversion,

and other financial areas.

299 | P a g e

Disadvantages:

1. Rounds off large numbers.

VIII. FUTURE SCOPE AND CONCLUSION
Single Precision multiplier is designed and implemented using VHDL/Verilog and simulated using Modelsim Simulator.

One of the important aspects of the presented and implemented design method is that it can be applicable to all kinds of

floating-point multipliers. The presented design is compared with conventional multipliers via synthesis. The synthesis

results showed that the proposed design is much faster and more efficient than conventional multipliers. The designed

multiplier conforms to IEEE 754 standard for floating point numbers. In this implementation default rounding mode is used.

The design is also verified for overflow and underflow cases and other exceptions defined by IEEE standard.

The future scopes of this implementation are to implement the proposed floating point arithmetic unit using Field-

Programmable Gate Arrays (FPGAs). This presents an implementation of a floating point multiplier that supports the IEEE

754-2008 binary interchange format, the multiplier doesn’t implement rounding and just presents the significand

multiplication result as is (48 bits). This gives better precision if the whole 48 bits are utilized in another unit i.e. a floating

point adder to form a MAC unit..

REFERENCES

1. M Al-Ashrafy, A Salem and W Anis, “An efficient implementation of floating point multiplier”, in Proc. IEEE

Electronics, Communications and Photonics Conference (SIECPC), Saudi International, April 24-26 2011.

2. Tejaswini H N, Dr. Ravishankar C V, “Single Precision Floating point Numbers Multiplication using standard IEEE

754” International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume

4, Issue 6, June 2015.

3. Surendra Singh Rajpoot, Nidhi Maheshwari, D S Yadav, “ Design and implementation of efficient 32-bit floating

point multiplier "International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 2 Issue 6 June

2013 Page No. 2098-2101.

4. Priyanka Koneru, M Tinnanti Sreenivasu, Addanki Purna Ramesh, "Asynchronous Single Precision Floating Point

Multiplier Using Verilog HDL" International Journal of Advanced Research in Electronics and Communication

Engineering (IJARECE) Volume 2, Issue 11, November 2013.

5. Mr. S.S.Mohanasundaram, A.Nirmal kumar, T.Arul prakash, "Design of Floating Point Multiplier Using Vedic

Mathematics" IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 1, January

2015.

