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ABSTRACT 
The IEEE 754 standard provides the format for representation of Binary Floating-point numbers. The Binary 

Floating-point numbers are represented in Single and Double formats. The Single consists of 32 bits and the 

Double consist of 64 bits. The formats are composed of 3 fields: Sign, Exponent and Mantissa. In case of 

Single, the Mantissa is represented in 23 bits and 1 bit is added to the MSB for normalization, Exponent is 

represented in 8 bits which is biased to 127, the Exponent is represented in excess 127-bit format and MSB of 

Single is reserved for Sign bit. When the sign bit is 1 that means the number is negative and when the sign bit is 

0 that means the number is positive. In 64 bits format the Mantissa is represented in 52 bits, the Exponent is 

represented in 11 bits which is biased to 1023 and the MSB of Double is reserved for sign bit. The main object 

of this paper is to reduce power consumption and to increase the speed of execution by implementing certain 

algorithms for multiplying two floating point numbers. 

These Lab-Oriented Implementation and Activities have been carried out into two parts. First Half is the 

Floating-Point Representation Using IEEE-754 Format (32 Bit Single Precision) and second Half is simulation, 

synthesis of Design using HDLs and Software Tools. The Binary representation of decimal floating-point 

numbers permits an efficient implementation of the proposed radix independent IEEE standard for floating- 

point arithmetic. 

Keywords— IEEE-754 Format, Simulation, Synthesis 

 

I. INTRODUCTION 

The Floating point numbers are one possible way of representing real numbers in binary format; the IEEE 754 

standard presents two different floating point formats, Binary interchange format and Decimal interchange 

format. Multiplying floating point numbers is a critical requirement for DSP applications involving large 

dynamic range. This paper focuses only on single precision normalized binary interchange format. Fig. 1.1 

shows the IEEE 754 single precision binary format representation; it consists of a one bit sign (S), an eight bit 

exponent (E), and a twenty three bit fraction (M or Mantissa). An extra bit is added to the fraction to form what 

is called the significand 1. If the exponent is greater than 0 and smaller than 255, and there is 1 in the MSB of 

the significand then the number is said to be a normalized number; in this case the real number is represented by 

(1).  

 
Figure 1.1 IEEE single precision floating point format 

Z = (-1S) * 2 (E - Bias) * (1.M) 

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-22+ m0 2-23, 

Bias = 127. 

Significand is the mantissa with an extra MSB bit. 

Multiplying two numbers in floating point format is done by 

1- adding the exponent of the two numbers then subtracting the bias from their result 
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2- multiplying the significand of the two numbers, and 

3- calculating the sign by XORing the sign of the two numbers. 

In order to represent the multiplication, result as a normalized number there should be 1 in the MSB of the result 

(leading one). 

Floating-point implementation on FPGAs has been the interest of many researchers. In 2008, an IEEE 754 single precision 

pipelined floating point multiplier was implemented on multiple FPGAs (4 Actel A1280). In 1995, a custom 16/18 bit three 

stage pipelined floating point multiplier that doesn’t support rounding modes was implemented. In 1996, a single precision 

floating point multiplier that doesn’t support rounding modes was implemented using a digit-serial multiplier: using the 

Altera FLEX 8000 it achieved 2.3 MFlops. In 2001, a parameterizable floating point multiplier was implemented using the 

software-like language Handel-C, using the Xilinx XCV1000 FPGA; a five stages pipelined multiplier achieved 28MFlops. 

In 2002, a latency optimized floating point unit using the primitives of Xilinx Virtex II FPGA was implemented with a 

latency of 4 clock cycles. The multiplier reached a maximum clock frequency of 100 MHz. 

Our discussion of floating point will focus almost exclusively on the IEEE floating- point standard (IEEE 754) because of its 

rapidly increasing acceptance. Although floating- point arithmetic involves manipulating exponents and shifting fractions, 

the bulk of the time in floating-point operations is spent operating on fractions using integer algorithms. 

1.1 INTERPRETATION OF IEEE754 (IEEE 754 Converter) 

This page allows you to convert between the decimal representation of numbers (like "1.02") and the binary format used 

by all modern CPUs (IEEE 754 floating point). The conversion is limited to single precision numbers (32 Bit). The purpose 

of this webpage is to help you understand floating point numbers. 

 
Usage: You can either convert a number by choosing its binary representation in the button- bar, the other fields will be 

updated immediately. Or you can enter a binary number, a hex number or the decimal representation into the corresponding 

text field and press return to update the other fields. To make it easier to spot eventual rounding errors, the selected float 

number is displayed after conversion to double precision. 

Special Values: You can enter the words "Infinity", "-Infinity" or "NaN" to get the corresponding special values for IEEE-

754. Please note there are two kinds of zero: +0 and - 0. 

Conversion: The value of a IEEE-754 number is computed as: 

sign * 2exponent * mantissa The sign is stored in bit 32. The exponent can be computed from bits 24-31 by subtracting 127. 

The mantissa (also known as significand or fraction) is stored in bits 1-23. 

An invisible leading bit (i.e. it is not actually stored) with value 1.0 is placed in front, then bit 23 has a value of 1/2, bit 22 

has value 1/4 etc. As a result, the mantissa has a value between 1.0 and 2. If the exponent reaches -127 (binary 00000000), 

the leading 1 is no longer used to enable gradual underflow. 

Underflow: If the exponent has minimum value (all zero), special rules for denormalized values are followed. The exponent 

value is set to 2-126 while the "invisible" leading bit for the mantissa is no longer used. The range of the mantissa is 

now [0:1). 

Note: The converter used to show denormalized exponents as 2-127 and a denormalized mantissa range [0:2). This is 

effectively identical to the values above, with a factor of two shifted between exponent and mantissa. However this confused 

people and was therefore changed (2015-09-26). 

Rounding errors: Not every decimal number can be expressed exactly as a floating point number. This can be seen when 

entering "0.1" and examining its binary representation which is either slightly smaller or larger, depending on the last bit. 

Other representations: The hex representation is just the integer value of the bit string printed as hex. Don't confuse this with 

true hexadecimal floating point values in the style of 0xab.12ef. 

1.2 OBJECTIVE 

The primary objective of this multiplier is to increase the multiplier speed by minimizing the overall delay. Low power 

consumption and smaller area are some of the most important criteria for the fabrication. However, area and speed are 

usually conflicting constraints so that improving speed results mostly in larger areas. 

1.3 CHALLENGES IN SYNCHRONOUS CIRCUITS 
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Traditional synchronous FPGA architectures are facing challenges with the growing logic size of chips in terms of 

1. A single slow component or logic slows down the whole chip. 

2. Challenges with designing reusable components. 

3. To evenly distribute global clock signals all over the FPGA area requires great efforts because of clock skew.  

4. FPGAs are more likely to contain a multitude of modules running at different clock frequencies, with data signals 

appearing to be asynchronous in the new clock domain when moving data across modules. 

5. Increased power consumption. 

6. Improved noise and electromagnetic compatibility (EMC) properties. 

7. Process variations seriously affect circuit designs. 

8. Performance Overhead. 

Hence, Asynchronous techniques have become more significant from past decade of years due to the continuous scaling of 

VLSI technologies. In an asynchronous circuit, the next computation step can start immediately after the previous step has 

been completed. There is no need to wait for the transition of the clock signal. This leads potentially to a fundamental 

performance advantage for asynchronous circuits, an advantage that increases with the variability in delays associated with 

these computation steps. 

 

II. SYSTEM DESCRIPTION 

2.1 BLOCK DIAGRAM 

 

III. ARCHITECTURAL DETAILS 

3.1 IMPLEMENTATION OF PROPOSED ARCHITECTURE 

 
The Architecture has sign calculator, exponent calculator, mantissa calculator, which works parallel, and a normalization 

unit. It takes two IEEE 754 format single precision floating point numbers and produces the multiplied output. It also 

supports the features like underflow, overflow and invalid operations. The implementation of Floating point multiplier Unit 

consists of two stages of multiplication calculation and Normalization. First stage includes three blocks which work in 

parallel. 

A. Sign Calculator: The Output Sign is the exclusive or of two sign bit inputs 
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B. Exponent Calculator: The input exponents are added using Ripple Carry Adder (RCA) and the bias is subtracted using 

Ripple Carry Subtractor (RCS) to produce the exponent of Output. 

C. Mantissa Calculator: Output Mantissa is calculated by multiplying the mantissa’s using multiplier (Modified 

Booth/Vedic techniques) 

Second stage performs Normalization of the first stage output. It first calculates how much amount the mantissa needs to 

be left shifted using LZC (Leading Zero Counter) and finally produces the multiplier output. 

3.2 MULTIPLIERS USED IN THE ARCHITECTURE 

3.2.1 Vedic multiplier: 

For Mantissa calculations, Vedic and modified booth multipliers are used in the implementation. The design of Vedic 

Multiplier starts with 2x2 bit multiplier. Here, “Urdhva Tiryakbhyam Sutra” (Vertically and Crosswise Algorithm) has been 

used for multiplication to develop multiplier architecture. 

 
Figure 3.2: 4 X 4 bit Vedic multiplication 

The expressions of the partial products obtained by multiplying A=A3A2A1A0 and B= B3B2B1B0 are P1=A0B0 and 

Carry=C0 P2=A1B0+B1A0+C0 and Carry=C1 P3=A2B0+B2A0+A1B1+C1 and Carry=C2 

P4=A3B0+A0B3+A2B1+A1B2+C2 &Carry=C3 

P5=A3B1+A2B2+A1B3+C3 and Carry=C4 P6=A3B2+A2B3+C4 and Carry=C5 

P7=A3B3+C5 This Sutra shows how to handle multiplication of a larger number (N x N, of N bits each) by breaking it into 

smaller numbers of size (N/2 = n, say) and these smaller numbers can again be broken into smaller numbers (n/2 each) till 2 

× 2 basic multiplier block. Hence, whole multiplication process is to be simplified. First the basic block, 2×2 multipliers 

have been made then, using these blocks, 4×4 block and thereby using 4×4 block, 8×8 block and then finally 16×16 bit 

Multiplier has been made. 

 
Figure 3.3: Black box view of single precision floating point vedic multiplier 

 
Figure 3.4: single precision floating point vedic multiplier 

3.2.2 Modified Booth Multiplier 

Booth multiplication is smaller, faster multiplication algorithm through encoding the signed numbers to 2’s complement, 
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which is also a standard technique used in chip design, and provides significant improvements by reducing the number of 

partial product to half over “long multiplication” techniques. Modified Booth's multiplication algorithm is a multiplication 

algorithm that multiplies two signed binary numbers in two's complement notation. Modified Booth algorithm reduces the 

number of partial products generated in a multiplication process through encoding the signed numbers to 2’s complement 

according to the table shown below. 

TABLE 3.1 Modified Booth Encoding Table 

b2b1b0 Operations 

000 All zero 

001 Same number 

010 Same number 

011 Single left shift 

100 2's complement and left shift 

101 2's complement 

110 2's complement 

111 All zero's 

 
Figure 3.5: Black box view of single precision floating point modified booth multiplier 

 

 
Figure 3.6: single precision floating point modified booth multiplier 

3.2.3 DELAY RESULTS: 

Multiplier Delay(ns) 

Modified Booth algorithm 121.737 

Vedic multiplier 94.770 

 

IV. COMPARISON WITH DIFFERENT MULTIPLICATION METHODS 

This is the most important stage, product of the mantissa bits is calculated. The multiplication of mantissa bits is performed 

in the following stages. 

4.1 Generation of Partial Products 

The Booth multiplier makes use of Booth encoding algorithm in order to reduce the number of partial products by 

considering certain number of bits of the multiplier at a time, thereby achieving a speed advantage over other multiplier 

architectures. This algorithm is valid for both signed and unsigned numbers. It can handle signed binary multiplication by 

using 2's complement representation. For generating the partial products Radix-8 Modified Booth's Algorithm is used. Since 

the multiplier and multiplicand comprises of 24 bits, this algorithm will generate 8 partial products. The shortcoming of 

Radix 2 Booth algorithm is that it becomes inefficient when there are isolated 1's. For example, 001010101(decimal 85) gets 

reduced to 01-11- 11-11-1(decimal 85), requiring eight instead of four operations.001010101(0) recoded as 011111111, 

requiring 8 instead of 4 operations. 

4.1.1 Radix-8 Modified Booth’s Algorithm 

Recoding extended to 3 bits at a time - overlapping groups of 4 bits each. Radix-8 recoding applies the same algorithm as 
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radix-4, but now we take quartets of bits instead of triplets. 

Consequently, a multiplier based on this radix-8 scheme generates fewer partial products than a radix-4 multiplier, but the 

computation of each partial product is more complex. In particular, a partial product corresponding to an encoding x=+3 

requires the computation of 3x, and therefore a full addition. Each quartet is codified as a signed-digit using the table 4.1. 

Table 4.1: Recoding in Booth Radix-8 Algorithm. 

Quartet value Signed-digit 

value 

Quartet value Signed-digit 

value 

0000 0 1000 -4 

0001 +1 1001 -3 

0010 +1 1010 -3 

0011 +2 1011 -2 

0100 +2 1100 -2 

0101 +3 1101 -1 

0110 +3 1110 -1 

0111 +4 1111 0 

 

4.1.2 Synthesis Results on FPGA 

Table 3 shows the synthesis report on Xilinx for generation of partial products. 

Table 4.2: Synthesis Report of Partial Product Generation 

 
Partial Product Reduction 

8 Partial products are generated using Radix-8 Modified Booth's Algorithm. They are reduced using 4:2 compressors. 

4.2.1 Carry Save Adder 

A Carry-Save Adder is just a set of one-bit full adders, without any carry-chaining. The most important application of a 

carry-save adder is to calculate the partial products in integer multiplication. 4:2 compressors are used as carry save adders. 

The 4:2 compressor structure actually compresses five partial products bits into three. The architecture is connected in such a 

way that four of the inputs are coming from the same bit position of the weight j while one bit is fed from the neighboring 

position j- 1(known as carry-in). The outputs of 4:2 compressor consists of one bit in the position j and two bits in the 

position j+1. 

A 4:2 compressor can also be built using 3:2 compressors. It consists of two 3:2 compressors (full adders) in series and 

involves a critical path of 4 XOR delays as shown in Figure 3[8]. The output Cout, being independent of the input Cin 

accelerates the carry save summation of the partial products. 4:2 compressor is made from 2 full adders. The final carry is 

saved and hence is called carry save adder. The delay of 4:2 compressor is equal that of 4 xor gates. 

Initially two 4:2 compressors are used to reduce each 4 partial products pair to generate the pair of sum and carry. Then these 

final 4 partial products generated from above two 4:2 compressors are further reduced to generate final sum and carry. The 

final sum and carry are added in next Carry Propagate adder. 

 
Figure 4.1: 4:2 Compressor Design using Full Adders 

4.2.2 Synthesis Results on FPGA 

Table 4.3 shows the synthesis report on Xilinx for Partial Product Addition. 

Table 4.3: Synthesis Report of Partial Product Addition 
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4.3 Final stage Carry Propagate Adder 

Further the partial products generated through carry save adders are further reduced by using Ripple Carry Adder. 

4.3.1 Ripple Carry Adder 

Ripple Carry Adder is used to obtain the final sum and the output carry by adding the partial products from the carry save 

adders. It creates a logical circuit using multiple full adders to add N-bit numbers. Each full adder inputs a Cin, which is the 

Cout of the previous adder. This kind of adder is a ripple carry adder, since each carry bit "ripples" to the next full adder. 

The 48-bit sum and carry outputs obtained from the partial product accumulator are added in the final stage adder to give the 

product of the mantissas. As shown in Figure 4 a ripple carry adder is a chain of cascaded full adders and one half adder; 

each full adder has three inputs (A, B, Ci) and two outputs (S, Co). The carry out (Co) of each adder is fed to the next full 

adder (i.e each carry bit "ripples" to the next full adder). 

 

Figure 4.2: Ripple Carry Adder 

4.3.2 Synthesis Results on FPGA 

Table 5.4 shows the synthesis report on Xilinx for Final 48- bit Stage Carry Propagate Adder. 

Table 4.4: Synthesis Report of 48-bit Ripple Carry Adder 

Device Spartan 3E 

xc3s500E 

Virtex 4 xc4vlx15 

No. of Slices 150/4656 (3%) 146/6144 (2%) 

No. of LUTs 246/9312 (2%) 250/12288 (2%) 

Minimum Period 8.235ns 5.206ns 

Maximum Frequency 121.438MHz 192.095MHz 

 

4.4 PIPELINING 

A pipeline is a set of data processing elements connected in series, so that the output of one element is the input of the next 

one. It is divided into segments and each segment can execute its operation concurrently with the other segments. When a 

segment completes an operation, it passes the result to the next segment in the pipeline and fetches the next operation from 

the preceding segment. The final results of each instruction emerge at the end of the pipeline in rapid succession. 

The pipeline technique is widely used to improve the performance of digital circuits. As the number of pipeline stages is 

increased, the path delays of each stage are decreased and the overall performance of the circuit is improved. 

4.4.1 5-Stage Pipelining 

In order to enhance the performance of the multiplier, five pipelining stages are used to divide the critical path thus 

increasing the maximum operating frequency of the multiplier. Five pipelining stages mean that there is latency in the 

output by five clocks[8]. The pipelining stages are embedded at the following locations: 

i. After the Pre-processing of the Multiplicand and Multiplier. 

ii. After the Exponent Adder and Generation of 8 Partial Products. 

iii. After subtracting the Bias and Compressing the partial Products to 4. 

iv. After Compressing the Partial Products to 2. 

v. After Normalization and Final Carry Propagate Adder. 

Table 6 shows the synthesis result. Comparing with 3-stage pipelined multiplier, the frequency is increased as the pipeline 
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stages are increased. 

4.4.2 Synthesis Results on FPGA 

Table 4.5: Synthesis Report of 5-Stage Floating Point Multiplier 

Device Spartan 3E xc3s500E Virtex 4 xc4vlx15 

No. of Slices 2045/4656 (43%) 2067/6144 (33%) 

No. of LUTs 3893/9312 (41%) 3900/12288 (31%) 

Minimum Period 12.154ns 6.532ns 

Maximum Frequency 82.279MHz 153.081MHz 

 
Figure 4.3: Floating point multiplier with 5 pipelining stages 

V. HARDWARE OF FLOATING-POINT MULTIPLIER 
5.1 Sign bit calculation 

Multiplying two numbers results in a negative sign number if one of the multiplied numbers is of a negative value. By the 

aid of a truth table we find that this can be obtained by XORing the sign of two inputs. 

5.2 Unsigned Adder (for exponent addition) 

This unsigned adder is responsible for adding the exponent of the first input to the exponent of the second input and 

subtracting the Bias (127) from the addition result (i.e. A_exponent + B_exponent - Bias). The result of this stage is called 

the intermediate exponent. The add operation is done on 8 bits, and there is no need for a quick result because most of the 

calculation time is spent in the significand 

multiplication process (multiplying 24 bits by 24 bits); thus we need a moderate exponent adder and a fast significand 

multiplier. 

An 8-bit ripple carry adder is used to add the two input exponents. As shown in Fig. 6.1 a ripple carry adder is a chain of 

cascaded full adders and one half adder; each full adder has three inputs (A, B, Ci) and two outputs (S, Co). The carry out 

(Co) of each adder is fed to the next full adder (i.e each carry bit "ripples" to the next full adder). 

 
Figure 6.1 Ripple Carry Adder 

The addition process produces an 8 bit sum (S7 to S0) and a carry bit (Co,7). These bits are concatenated to 

form a 9 bit addition result (S8 to S0) from which the Bias is subtracted. The Bias is subtracted using an array 

of ripple borrow subtractors. A normal subtractor has three inputs(minuend (S), subtrahend (T), Borrow in (Bi)) 
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and two outputs (Difference (R), Borrow out (Bo)). The subtractor logic can be optimized if one of its inputs is 

a constant value which is our case, where the Bias is constant (127|10 = 001111111|2). Table I shows the truth 

table for a 1-bit subtractor with the input T equal to 1 which we will call “one subtractor (OS)” 

 
Figure 6.2: 1-Bit Subtractor 

Table 6.1: 1-Bit Subtractor With The Input T=1 

 

 

 

 

 

 

The Boolean equations (2) and (3) represent this subtractor: (3) 

 
Figure 6.3: 1-bit subtractor with the input T = 1 

Table 6.2 shows the truth table for a 1-bit subtractor with the input T equal to 0 which we will call “zero subtractor (ZS)” . 

Table 6.2: 1-Bit Subtractor With The Input T=0 

 

 

 

 

 

 

The Boolean equations (4) and (5) represent this subtractor: 

 
Figure 5.4: 1-bit subtractor with the input T = 0 

Fig. 5.4 shows the Bias subtractor which is a chain of 7 one subtractors (OS) followed by 2 zero subtractors (ZS); the 

borrow output of each subtractor is fed to the next subtractor. If an underflow occurs then Eresult< 0 and the number is out 

of the IEEE 754 single precision normalized numbers range; in this case the output is signaled to 0 and an underflow flag is 

asserted. 

 
Figure 5.5: Ripple Borrow Subtractor 

 

5.3 Unsigned Multiplier (for significand multiplication) 

S T Bi D(R) B0 

0 1 0 1 1 

1 1 0 0 0 

0 1 1 0 1 

1 1 1 1 1 

 

S T Bi Difference(R) B0 

0 0 0 0 0 

1 0 0 1 0 

0 0 1 1 1 

1 0 1 0 0 
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This unit is responsible for multiplying the unsigned significand and placing the decimal point in the multiplication product. 

The result of significand multiplication will be called the intermediate product (IP). The unsigned significand multiplication 

is done on 24 bit. Multiplier performance should be taken into consideration so as not to affect the whole multiplier’s 

performance. A 24x24 bit carry save multiplier architecture is used as it has a moderate speed with a simple architecture. In 

the carry save multiplier, the carry bits are passed diagonally downwards (i.e. the carry bit is propagated to the next stage). 

Partial products are made by ANDing the inputs together and passing them to the appropriate adder. 

Carry save multiplier has three main stages: 

1- The first stage is an array of half adders. 

2- The middle stages are arrays of full adders. The number of middle stages is equal to the significand size minus two. 

3- The last stage is an array of ripple carry adders. This stage is called the vector merging stage. The number of adders 

(Half adders and Full adders) in each stage is equal to the significand size minus one. For example, a 4x4 carry save 

multiplier is shown in Fig. 

5.5 and it has the following stages: 

1- The first stage consists of three half adders. 

2- Two middle stages; each consists of three full adders. 

3- The vector merging 

The decimal point is between bits 45 and 46 in the significand multiplier result. The multiplication time taken by the carry 

save multiplier is determined by its critical path. The critical path starts at the AND gate of the first partial products (i.e. 

a1b0 and a0b1), passes through the carry logic of the first half adder and the carry logic of the first full adder of the middle 

stages, then passes through all the vector merging adders. The critical path is marked in bold in Fig. 5.5. 
 

 
Figure 5.6: 4x4 bit Carry Save multiplier 

1- Partial product: aibj = ai and bj 

2- HA: half adder 

3- FA: full adder 
5.4 Normalizer 

The result of the significand multiplication (intermediate product) must be normalized to have a leading ‘1’ just to the left of 

the decimal point (i.e. in the bit 46 in the intermediate product). Since the inputs are normalized numbers then the 

intermediate product has the leading one at bit 46 or 47 

1- If the leading one is at bit 46 (i.e. to the left of the decimal point) then the intermediate product is already a normalized 

number and no shift is needed. 

2- If the leading one is at bit 47 then the intermediate product is shifted to the right and the exponent is incremented by 1. 

The shift operation is done using combinational shift logic made by multiplexers. 

5.5 Underflow/Overflow Detection 

Overflow/underflow means that the result’s exponent is too large/small to be represented in the exponent field. The 

exponent of the result must be 8 bits in size, and must be between 1 and 254 otherwise the value is not a normalized one. An 

overflow may occur while adding the two exponents or during normalization. Overflow due to exponent addition may be 

compensated during subtraction of the bias; resulting in a normal output value (normal operation). An underflow may occur 

while subtracting the bias to form the intermediate exponent. If the intermediate exponent < 0 then it’s an underflow that can 

never be compensated; if the intermediate exponent = 0 then it’s an underflow that may be compensated during 

normalization by adding 1 to it. 

When an overflow occurs an overflow flag signal goes high and the result turns to±Infinity (sign determined according to 

the sign of the floating point multiplier inputs). When an underflow occurs an underflow flag signal goes high and the result 

turns to ±Zero (sign determined according to the sign of the floating point multiplier inputs). Denormalized numbers are 

signaled to Zero with the appropriate sign calculated from the inputs and an underflow flag is raised. Assume that E1 and E2 

are the exponents of the two numbers A and B respectively; the result’s exponent is calculated by (6) E result = E1 + E2 - 
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127 (6) 

E1 and E2 can have the values from 1 to 254; resulting in Eresult having values from -125 (2-127) to 381 (508-127); but for 

normalized numbers, Eresult can only have the values from 1 to 254. Table III summarizes the Eresult different values and 

the effect of normalization on it. 

Table 5.3 Normalization Effect On Result’s Exponent And Overflow/Underflow Detection 

 
5.6 Implementation And Testing 

The whole multiplier (top unit) was tested against the Xilinx floating point multiplier core generated by Xilinx coregen. 

Xilinx core was customized to have two flags to indicate overflow and underflow, and to have a maximum latency of three 

cycles. Xilinx core implements the “round to nearest” rounding mode. 

A test bench is used to generate the stimulus and applies it to the implemented floating point multiplier and to the Xilinx 

core then compares the results. The floating point multiplier code was also checked using Design Checker . 

Design Checker is a linking tool which helps in filtering design issues like gated clocks, unused/undriven logic, and 

combinational loops. Also the speed of Xilinx core is affected by the fact that it implements the round to nearest rounding 

mode. 

 

VI. SOFTWARE DETAILS 

6.1 Algorithm: 

As stated in the introduction, normalized floating point numbers have the form of Z= (-1S)* 2 (E - Bias) * (1.M). To 

multiply two floating point numbers the following is done: 

Step 1: Multiplying the significand; i.e. (1.M1*1.M2) Step 2: Placing the decimal point in the result 

Step 3: Adding the exponents; i.e. (E1 + E2 – Bias) Step 4: Obtaining the sign; i.e. s1 xor s2 

Step 5:Normalizing the result; i.e. obtaining 1 at the MSB of the results’ Significand 

Step 6: Rounding the result to fit in the available bits Step 7: Rounding the result to fit in the available bits 

6.2 Flow Chart: 
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VII. RESULTS 

7.1 Rtl View 

 
7.2  Technological View 

 
7.3 Synthesis Report 
Below Table Shows the Synthesis for final 32-bit floating point multiplier 

.  

 

 

7.4 Simulation Results 

 
Advantages and Applications : 

1. They can represent values between integers. 

2. Because of the scaling factor, they can represent a much greater range of values. 

3. Floating point multiplicationis a most widely used operation in DSP/Math processors, digital computers. 

4. Floating Point Arithmetic is extensively used in the field of banking, tax calculation, currency conversion, 

and other financial areas. 
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Disadvantages: 

1. Rounds off large numbers. 

 

VIII. FUTURE SCOPE AND CONCLUSION 
Single Precision multiplier is designed and implemented using VHDL/Verilog and simulated using Modelsim Simulator. 

One of the important aspects of the presented and implemented design method is that it can be applicable to all kinds of 

floating-point multipliers. The presented design is compared with conventional multipliers via synthesis. The synthesis 

results showed that the proposed design is much faster and more efficient than conventional multipliers. The designed 

multiplier conforms to IEEE 754 standard for floating point numbers. In this implementation default rounding mode is used. 

The design is also verified for overflow and underflow cases and other exceptions defined by IEEE standard. 

The future scopes of this implementation are to implement the proposed floating point arithmetic unit using Field-

Programmable Gate Arrays (FPGAs). This presents an implementation of a floating point multiplier that supports the IEEE 

754-2008 binary interchange format, the multiplier doesn’t implement rounding and just presents the significand 

multiplication result as is (48 bits). This gives better precision if the whole 48 bits are utilized in another unit i.e. a floating 

point adder to form a MAC unit.. 
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