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ABSTRACT 

With the increasing reliance on electronic healthcare systems and the extensive usage of machine learning 

models for data-driven insights, safeguarding patient privacy has become paramount. Traditional 

anonymization techniques often face challenges in maintaining a balance among privacy preservation and data 

utility, especially when dealing with complex, sensitive healthcare data. This paper presents comparative 

analysis of hybrid machine learning-based privacy-preserving schemes focusing on attribute-based 

anonymization for healthcare data publishing. By integrating practises such as differential privacy, 

homomorphic encryption, and federated learning, we propose a novel anonymization framework that enhances 

privacy without significantly compromising data utility. Through a detailed evaluation of existing models, the 

framework demonstrates improved performance in safeguarding sensitive attributes while ensuring that the 

anonymized data leftovers valuable for exploration and analysis. Future research directions are outlined to 

optimize this hybrid approach, addressing scalability and computational efficiency in real-world healthcare 

applications. 
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I. INTRODUCTION 

The exponential growing of data collection and utilization, especially in healthcare systems, has heightened 

concerns about the privacy of individuals’ sensitive information. Healthcare data, which often contain 

personally identifiable information (PII), essential to protect from un-authorized access and potential misuse. 

This creates a dual challenge of ensuring data privacy while maintaining its utility for meaningful analysis and 

decision-making (Xie et al., 2023) [1]. Machine learning (ML) algorithms, with their ability to extract patterns 

and insights from big datasets, are becoming increasingly indispensable in modern healthcare. However, their 

widespread adoption also raises concerns regarding data privacy used for training models (Tanuwidjaja et al., 

2020) [2]. To address privacy concerns, a variety of privacy-preserving techniques have been proposed. These 

range from cryptographic methods to data anonymization techniques, with each approach offering varying 

levels of privacy protection and data utility. A widely used method is differential privacy (DP), which adds 

statistical noise to data to obscure individual data points while preserving aggregate trends. DP has shown 
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potential in protecting privacy in applications like social network analysis and healthcare systems (Qin et al., 

2024) [3], but it often introduces trade-offs in terms of data accuracy and usability (Liu et al., 2022) [4]. The use 

of cryptographic primitives in privacy-preserving machine learning has also gained traction. Techniques such as 

homomorphic encryption and functional encryption allow computations to be implemented on encrypted data, 

thus protecting data throughout its lifecycle. However, these methods often incur significant computational 

overheads, making them impractical for large-scale healthcare applications (Panzade et al., 2024) [5]. The 

challenge lies in balancing computational efficiency with robust privacy protection, particularly in environments 

like healthcare, where real-time decision-making can be critical. Another emerging trend is the integration of 

hybrid machine learning models that combine multiple privacy-preserving techniques, such as anonymization, 

encryption, and federated learning. This hybrid approach allows data to be distributed and analyzed without 

being fully exposed to third parties, decreasing the risk of data breaches (Krishna et al., 2023) [6]. In healthcare 

settings, where data sensitivity is paramount, such methods enable healthcare providers to share data for 

collaborative research while ensuring patient confidentiality (Srijayanthi & Sethukarasi, 2023) [8]. 

 

II. MOTIVATION  

With the rise of data-driven technologies in healthcare, ensuring the privacy & security of sensitive information 

is critical. Healthcare systems store vast amounts of personal data essential for patient care, medical research, 

and public health, but widespread data sharing increases risks of privacy breaches, unauthorized access, and 

misuse. Traditional anonymization techniques often fail against modern re-identification methods, especially 

given the complexity and high dimensionality of healthcare data, creating a challenge in balancing privacy with 

utility for machine learning and decision-making. Effective healthcare AI requires diverse datasets, yet privacy 

regulations like HIPAA and GDPR restrict access, making privacy-preserving techniques essential for secure 

data sharing. Hybrid machine learning-based privacy models, integrating anonymization, encryption, and 

federated learning, offer promising solutions to protect sensitive attributes while maintaining data utility for 

analysis. Additionally, healthcare organizations must navigate regulatory compliance and ethical 

responsibilities, as frequent breaches highlight the urgent need for robust security measures. This paper explores 

hybrid privacy-preserving machine learning models, focusing on attribute-based anonymization to balance data 

privacy and utility, while analyzing existing techniques, assessing their efficacy, and discussing future trends in 

secure healthcare data publishing. 

 

III. RELATED WORK 

Over the years, privacy-preserving techniques for data sharing have gained immense traction, particularly in 

healthcare. Numerous methods have been proposed to address the dual challenges of ensuring data privacy 

while preserving utility, with each presenting a unique balance between security, performance, and usability. In 

this section, we discuss the most prominent approaches and technologies used in privacy-preserving data 

sharing, particularly in the context of healthcare. 
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A. Traditional Anonymization Techniques 

Although these methods have proven effective in various use cases, they often come with significant trade-offs. 

As the dimensionality and complexity of the data increase, traditional anonymization techniques struggle to 

retain data utility while ensuring privacy, especially when applied to high-dimensional healthcare data. 

Furthermore, adversarial attacks, such as attribute linkage attacks, have demonstrated that anonymized data can 

quiet be vulnerable to reidentification (Tanuwidjaja et al., 2020) [2]. This has led to the exploration of more 

advanced and robust privacy-preserving techniques.  

B. Differential Privacy 

Differential privacy is widely accepted techniques for ensuring privacy in data sharing. It introduces controlled 

randomness into datasets, making it mathematically improbable to reverse-engineer or infer specific data points 

from the shared data. The Laplace mechanism and Gaussian mechanism are commonly used to introduce noise 

while maintaining the statistical properties required for meaningful analysis (Jiang et al., 2023) [7]. Differential 

privacy has been successfully implemented in numerous domains, including healthcare, due to its strong 

theoretical guarantees of privacy protection. However, while it offers robust privacy protections, the level of 

noise introduced often results in a significant loss of data utility, especially in machine learning applications 

where fine-grained details are essential for model accuracy (Wu et al., 2022) [16]. 

C. Homomorphic Encryption 

Homomorphic encryption (HE) allows computations to be done directly on encrypted data without needing 

decryption, thus ensuring data privacy through the processing pipeline. This makes it particularly attractive for 

cloud-based machine learning applications, where sensitive healthcare data is processed on third-party servers. 

He has been successfully applied in privacy-preserving machine learning models where patient data is 

encrypted, processed, and returned in an encrypted form, preserving both privacy and functionality (Liu et al., 

2021) [4]. 

D. Federated Learning 

Federated learning has garnered attention in healthcare, particularly in scenarios where patient data is spread 

across multiple hospitals or clinics. However, FL still faces several challenges, such as ensuring the robustness 

of the model updates against adversarial attacks and the need for secure aggregation techniques to prevent 

information leakage from the model gradients (Liu et al., 2022) [4]. Furthermore, FL alone may not be sufficient 

to handle all privacy concerns, especially when dealing with highly sensitive attributes, thus requiring additional 

privacy-preserving mechanisms such as homomorphic encryption or differential privacy. 

E. Attribute-Based Anonymization 

Attribute-based anonymization focuses on selectively anonymizing specific attributes within a dataset, ensuring 

that sensitive information is adequately protected while maintaining the utility of the remaining data. This is 

particularly useful in healthcare, where certain attributes, such as patient identities, need to be anonymized, 

while others, like medical conditions or treatment histories, remain useful for analysis. Recent advancements in 

hybrid models have combined attribute-based anonymization with other privacy-preserving techniques, such as 

clustering-based anonymization and feature selection techniques. These methods aim to enhance both privacy 

and data utility by ensuring that only the most sensitive attributes are fully anonymized, while less critical data 

points remain intact for machine learning purposes (Srijayanthi & Sethukarasi, 2023) [10]. This approach 
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provides a more balanced trade-off between privacy and utility, making it highly applicable in healthcare data 

publishing. 

F. Privacy-Preserving Aggregation in Healthcare Data 

Another significant area of research focuses on privacy-preserving aggregation methods, particularly in the 

context of largescale, multi-institutional healthcare data sharing. Methods such as secure multi-party 

computation and functional encryption proposed to enable multiple parties to collaboratively compute aggregate 

statistics or train machine learning models without revealing their individual datasets (Panzade et al., 2024) [5]. 

These methods are particularly useful in federated learning settings or when healthcare institutions need to 

collaborate on research. However, the complexity and computational cost of these methods often limit their 

scalability. Efforts to optimize these techniques, such as reducing communication overhead and improving the 

efficiency of encryption schemes, are critical for their broader adoption in healthcare (Chong & Malip, 2022) 

[9]. 

G. Privacy-Utility Trade-Off Optimization  

The balance between privacy and utility has been a central focus of privacy-preserving data publishing. Various 

techniques, such as similarity-based clustering and diversity-aware anonymization, have been proposed to 

optimize this trade-off. For example, Majeed et al. (2024) [10] introduced a clustering-based approach that 

maximizes the diversity within anonymized datasets while maintaining similarity in critical data patterns 

required for machine learning tasks. This allows for more nuanced anonymization, improving the overall utility 

of the published data without compromising privacy. Recent studies have also explored the use of self-

organizing maps (SOMs) and other machine learning techniques to enhance the privacy-utility trade-off 

dynamically, allowing healthcare institutions to adapt their anonymization strategies based on evolving privacy 

threats and data requirements (Mohammed et al., 2021) [17]. 

Table 1: Comparative Analysis of Literature Review 

Reference Key Focus Approach/Technique Contribution Future Directions 

Xie et al. 

(2023) 

Privacy-preserving 

data outsourcing 

Generalized privacy-utility 

framework 

Balanced privacy 

preservation with data 

utility 

Enhance scalability in 

complex scenarios 

Tanuwidjaja 

et al. (2020) 

Privacy-preserving 

deep learning 

(MLaaS) 

Survey on privacy-

preserving ML techniques 

Examined 

homomorphic 

encryption & 

differential privacy 

Optimize 

computational 

efficiency in MLaaS 

Qin et al. 

(2024) 

Cryptographic 

techniques in privacy 

ML 

Survey on homomorphic 

encryption in ML 

Analyzed cryptographic 

methods for secure ML 

Integrate cryptography 

in federated learning 

Liu et al. 

(2022) 

Privacy-preserving 

aggregation in FL 

Secure multiparty 

computation (SMC) 

Reviewed secure 

aggregation in FL 

Improve scalability & 

efficiency in FL 

Panzade et al. 

(2024) 

Functional 

encryption for ML 

Functional encryption for 

secure ML processing 

Evaluated encryption's 

role in privacy ML 

Address computational 

overhead, improve 

model integration 
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Krishna et al. 

(2023) 

Hybrid privacy-

preserving AI 

Hybrid model (Differential 

Privacy + Cryptography) 

Introduced PRIVATE-

AI model for privacy 

protection 

Optimize hybrid 

models for real-world 

applications 

Jiang et al. 

(2023) 

Differential privacy 

in social networks 

Differential privacy for 

social network analysis 

Applied DP to 

anonymize social 

network data 

Extend to larger, more 

complex datasets 

Srijayanthi et 

al. (2023) 

Clustering-based 

anonymization 

Feature selection for 

privacy-preserving 

clustering 

Developed an efficient 

clustering-based 

anonymization model 

Scale model for larger 

sensitive datasets 

Chong et al. 

(2022) 

Data unlinkability in 

healthcare 

Privacy-preserving schemes 

for healthcare data 

Focused on 

unlinkability and data 

utility 

Explore stronger 

privacy-utility trade-

offs 

Majeed et al. 

(2024) 

Privacy-utility trade-

off optimization 

Similarity & diversity-based 

clustering 

Enhanced privacy-

utility trade-off using 

clustering 

Expand approach to 

dynamic datasets 

Schiegg et al. 

(2022) 

Privacy-risk-utility 

trade-offs in data 

warehouses 

Anonymization strategies 

for large-scale data 

Developed evaluation 

framework for 

warehouse 

anonymization 

Extend to big data 

environments 

Singh et al. 

(2024) 

Multimedia data 

integrity in IoT 

Data integrity techniques for 

IoT multimedia 

Explored methods to 

ensure integrity in IoT 

networks 

Investigate solutions 

for large-scale IoT 

networks 

Wu et al. 

(2022) 

Privacy-utility trade-

off in ML 

Mutual Information Neural 

Estimator 

Designed a privacy-

utility optimization 

model 

Improve mutual 

information techniques 

Mohammed et 

al. (2021) 

Self-organizing 

maps for privacy-

preserving data 

SOM-based privacy-utility 

trade-off 

Introduced self-

organizing maps for 

privacy 

Extend method to 

complex ML and data 

publishing 

Zou et al. 

(2022) 

Hybrid differential 

privacy for smart 

cities 

DP combined with 

cryptographic techniques 

Developed a privacy-

preserving data-sharing 

framework 

Expand to real-time 

data-sharing 

applications 

Zhao et al. 

(2023) 

Federated learning in 

healthcare 

Privacy-preserving FL in 

healthcare 

Surveyed FL 

challenges and privacy 

methods in healthcare 

Secure inter-institution 

data sharing 

Liu et al. 

(2023) 

Privacy-preserving 

ML techniques 

Overview of encryption & 

DP in ML 

Explored various 

privacy techniques in 

ML 

Solve computational 

challenges in large-

scale ML 

Zhou et al. 

(2022) 

Blockchain for 

privacy-preserving 

healthcare 

Blockchain + Differential 

Privacy for secure 

healthcare 

Combined blockchain 

with privacy 

mechanisms 

Improve blockchain 

scalability in large 

networks 

Abidi et al. 

(2021) 

Privacy-preserving 

IoT healthcare 

Survey on IoT healthcare 

privacy techniques 

Reviewed privacy 

techniques for IoT 

health systems 

Integrate advanced 

privacy techniques in 

real-time IoT 
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IV. PROPOSED HYBRID SCHEME FOR PRIVACY-PRESERVING HEALTHCARE DATA 

SHARING 

In response to the limitations identified in the previous section, we propose a hybrid scheme that integrates 

multiple privacy preserving techniques to achieve a balanced trade-off between privacy, utility, and efficiency in 

healthcare data sharing. The proposed scheme aims to leverage the strengths of traditional anonymization 

methods, differential privacy, homomorphic encryption, and federated learning to ensure comprehensive 

protection of sensitive healthcare information while maintaining data utility. The challenge remains to develop 

hybrid approaches that combine the strengths of these techniques while addressing their limitations shown in 

Table 1 Comparative analysis of the Literature review to summarize the key contributions, approaches, 

techniques, and future directions. 

A. Overview of the Hybrid Scheme 

The proposed hybrid scheme enhances healthcare data privacy through four key components. First, pre-

processing with anonymization techniques like k-anonymity and l-diversity removes direct identifiers and 

creates equivalence classes, forming a foundational privacy layer against re-identification attacks. Next, 

differential privacy safeguards query responses by adding noise (Laplace or Gaussian) based on query 

sensitivity, balancing privacy and utility (Wu et al., 2022). For secure computations, homomorphic encryption 

enables operations on encrypted data, preserving confidentiality. Finally, federated learning allows multiple 

healthcare institutions to collaboratively train models without sharing raw data, exchanging only model updates 

for aggregation, thus minimizing data exposure while maximizing utility (Zhang et al., 2018). 

 

Fig. 1. Proposed Architecture of the Hybrid Mechanism 

 

B. Architecture of the Hybrid Scheme 

The architecture of the proposed hybrid scheme, illustrated in Figure 1, operates through four phases. First, 

healthcare providers collect data and apply anonymization techniques to remove identifiers. Next, queries on the 

anonymized dataset are processed with differential privacy, ensuring results include added noise for protection. 
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When computations are required, homomorphic encryption is used to perform operations on encrypted data 

without exposing sensitive information. Finally, the scheme generates privacy-preserved outputs, including 

query results, computed data, and an improved model, ensuring compliance with privacy standards. To evaluate 

the effectiveness of the proposed hybrid scheme, we will conduct a comprehensive analysis across three key 

aspects. First, privacy guarantees are strengthened by integrating multiple privacy-preserving techniques, 

ensuring that even with access to anonymized data, an adversary cannot infer individual information due to 

differential privacy. Second, data utility is preserved by maintaining essential patterns through anonymization, 

optimizing noise in differential privacy, and enabling secure computations via homomorphic encryption. Lastly, 

efficiency is enhanced by balancing computational overhead; while anonymization is lightweight, federated 

learning distributes computational tasks, improving overall performance. The implementation of the proposed 

hybrid scheme requires careful consideration of several factors: 

1) Selection of Techniques: The choice of specific anonymization and differential privacy parameters must be 

tailored to the context of the healthcare data being processed, ensuring that privacy needs are met without 

excessively sacrificing utility. 

2) Computational Resources: The infrastructure must be capable of supporting homomorphic encryption and 

federated learning, which may necessitate investment in computational resources or cloud-based solutions. 

3) Legal and Ethical Compliance: It is crucial to ensure that the proposed scheme complies with relevant 

regulations and ethical standards, such as HIPAA in the United States or GDPR in Europe, to protect 

patient rights and data integrity. 

 

V. CASE STUDY: APPLICATION IN A HEALTHCARE SETTING 

To demonstrate the practicality of the proposed hybrid scheme, we apply it to a real-world healthcare dataset 

focused on chronic disease management. The dataset consists of anonymized patient records, including 

demographic details, medical history, and treatment outcomes for conditions such as diabetes and hypertension. 

Given the dataset's size and sensitivity, robust privacy measures are essential. The implementation begins with 

data anonymization, where k-anonymity is applied to prevent patient re-identification. When researchers query 

treatment patterns, differential privacy ensures confidentiality by adding noise to the results. For analytics 

requiring computations on patient data, homomorphic encryption allows secure processing without exposing 

sensitive information. Additionally, federated learning enables multiple hospitals to collaboratively improve 

predictive models by training locally and sharing only model updates, ensuring data privacy is maintained 

throughout the process. 

 

VI. PRIVACY RISKS AND LIMITATIONS OF EXISTING ANONYMIZATION 

TECHNIQUES 

Privacy Threat Models 

Table 2 outlines key privacy threats in healthcare data publishing, where attackers exploit quasi-identifiers, 

external datasets, or machine learning models to infer sensitive information. These threats highlight the risks 

associated with anonymized datasets and the need for stronger privacy-preserving mechanisms. 
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Table 2: Privacy Threat in healthcare data publishing 

Threat Model Description Example 

Attribute 

Disclosure 

Adversaries infer sensitive attributes using 

quasi-identifiers (QIDs) or external 

datasets. 

An attacker deduces a patient's disease 

based on demographic details like gender 

and zip code. 

Re-identification 

Attacks 

Attackers match anonymized records with 

publicly available datasets to re-identify 

individuals. 

A hacker uses voter registration data to 

re-link anonymized health records. 

Membership 

Inference Attacks 

Attackers determine if an individual's data 

is part of a dataset, often using machine 

learning models. 

A model trained on hospital data leaks 

membership information about specific 

patients. 

 

Limitations of Traditional Anonymization Techniques 

Table 3 compares traditional anonymization techniques, evaluating their strengths and weaknesses in protecting 

sensitive healthcare data. While these methods provide privacy safeguards, they often introduce trade-offs 

between privacy protection, computational complexity, and data utility. 

Table 3: Comparison of traditional anonymization techniques 

Technique Advantages Limitations 

k-Anonymity Prevents direct linkage attacks by ensuring 

records are indistinguishable among at least k 

individuals. 

Vulnerable to homogeneity attacks and 

reduces data utility due to excessive 

generalization. 

l-Diversity Improves upon k-anonymity by requiring 

diverse sensitive values within each 

equivalence class. 

Computationally expensive in high-

dimensional datasets and does not prevent 

skewness attacks. 

Differential 

Privacy (DP) 

Provides strong theoretical privacy 

guarantees by adding controlled noise to 

queries. 

Introduces significant noise, reducing data 

utility, and can be computationally 

intensive. 

 

VII. HYBRID MACHINE LEARNING-BASED ANONYMIZATION FRAMEWORK 

This framework integrates clustering, classification, and perturbation techniques to address the limitations of 

traditional anonymization methods. It classifies data sensitivity, clusters similar records to retain utility, applies 

dynamic perturbation, and optimizes the privacy-utility trade-off iteratively as shown in Table 4. 

Table 4: Hybrid ML-based anonymization framework attributes  

Component Description 

Classify Data 

Sensitivity 

Attributes are categorized as direct identifiers, quasi-identifiers, or sensitive 

attributes, determining the anonymization approach. 

Cluster Data 

Efficiently 

Clustering methods group similar records to reduce excessive generalization, 

preserving data utility. 

Apply Dynamic 

Perturbation 

Noise is added based on attribute sensitivity, ensuring a balance between privacy and 

accuracy. 

Iterative Optimization Machine learning models optimize the trade-off between privacy and data utility 

using predefined cost functions. 

Attribute Classification and Risk Assessment 

The framework categorizes electronic health record (EHR) attributes and assesses re-identification risk to apply 

appropriate anonymization techniques. 
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Table 5: Electronic health record (EHR) attributes types 

Attribute Type Example Anonymization Approach 

Direct Identifiers Name, Social Security Number Completely removed before processing. 

Quasi-identifiers Date of birth, Gender Generalized or suppressed based on risk assessment. 

Sensitive 

Attributes 

Medical diagnosis, Treatment 

details 

Perturbed using differential privacy to prevent re-

identification. 

Risk is assessed using metrics like re-identification risk and sensitivity impact factor, enabling dynamic 

selection of anonymization techniques. 

Clustering for Enhanced Utility 

To preserve data utility, clustering methods categorize records based on privacy risks. 

Table 6: Clustering methods categorization 

Clustering Approach Description 

High-Risk Clusters Undergo higher perturbation due to the presence of quasi-identifiers. 

Low-Risk Clusters Generalized less aggressively to maximize data utility. 

Privacy-Preserving 

Clustering 

Uses differentially private k-means to prevent privacy leaks during 

clustering. 

Machine Learning-Guided Data Perturbation 

Noise is added dynamically using machine learning models to minimize privacy risks while maintaining 

accuracy. 

Table 7: Perturbation Method types 

Perturbation Method Application 

Laplace Mechanism Ensures differential privacy in sensitive attributes. 

Synthetic Data Generation Creates anonymized versions of sensitive data for model training. 

Predictive Modeling Estimates re-identification risks and adjusts noise levels accordingly. 

Privacy-Utility Trade-Off Optimization 

The framework continuously refines the anonymization process through iterative optimization. 

Table 8: Optimization Techniques 

Optimization Technique Purpose 

Utility Metric 

Computation 

Evaluates anonymized data using entropy, classification accuracy, or prediction 

error. 

Gradient Descent Finds the best balance between privacy loss and data utility. 

Genetic Algorithms Navigates the trade-off curve to optimize anonymization strategies. 

This structured approach ensures strong privacy protection while retaining the usability of healthcare data. The 

proposed hybrid anonymization framework enhances privacy and utility but incurs computational costs due to 

clustering, perturbation mechanisms, and machine learning optimization. To ensure efficiency, scalability is 

achieved using distributed computation and hardware acceleration. 
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Time and Space Complexity 

Table 9: Time and space complexity Module wise 

Operation Time Complexity Description 

Clustering (k-means) O(nk) Groups similar records to reduce generalization but 

increases complexity, especially with differential 

privacy integration. 

Perturbation 

Mechanisms 

O(mn) (where m = 

iterations) 

Adjusts noise dynamically based on privacy risk, 

requiring multiple passes over the dataset. 

Machine Learning 

Optimization 

Varies (Gradient 

Descent: O(p), Genetic 

Algorithms: O(gp)) 

Iterative algorithms refine privacy-utility trade-offs but 

add computational overhead. 

Evaluation Metrics and Benchmarking 

Table 10 : Evaluation Metrics and Benchmarking 

Metric Hybrid Model Traditional Methods (k-Anonymity, 

l-Diversity) 

Re-identification 

Risk 

✅ Low risk due to machine learning-based 

perturbation and clustering. 

❌ Higher risk due to vulnerability to 

linkage and homogeneity attacks. 

Data Utility ✅ Retains useful data patterns with minimal 

loss, enhancing machine learning model 

accuracy. 

❌ Excessive generalization reduces 

analytical value and model 

performance. 

Computational 

Efficiency 

✅ Moderate—introduces extra processing but 

optimized via distributed computing. 

✅ Faster but lacks adaptability for 

complex datasets. 

Scalability ✅ High—leverages cloud computing, GPUs, 

and parallel processing. 

❌ Limited scalability, struggles with 

high-dimensional data. 

Privacy-Utility 

Trade-off 

✅ Dynamically optimized through iterative 

machine learning processes. 

❌ Static, may overprotect or under-

protect data. 

 

X. CONCLUSION 

This review has addressed the technical challenges involved in privacy-preserving anonymization for healthcare 

data publishing. Traditional anonymization techniques such as k-anonymity and l-diversity often struggle to 

balance privacy and utility, particularly in high-dimensional datasets. To overcome these limitations, a hybrid 

machine learning-based anonymization framework was proposed. The hybrid approach leverages clustering, 

classification, and perturbation techniques to dynamically adjust privacy levels and optimize the trade-off 

between data utility and privacy. By employing machine learning models to guide the anonymization process, 

this framework achieves stronger privacy guarantees while retaining more useful information compared to 

conventional methods. The proposed model demonstrates significant improvements in both re-identification risk 

reduction and data utility preservation. However, the increased computational complexity of the hybrid 

approach remains a challenge, particularly for large-scale healthcare datasets. Future work will focus on 

improving the computational efficiency of the model, refining optimization algorithms, and validating the 

framework in real-world healthcare environments. Additionally, there is potential to explore new techniques 

such as federated learning and homomorphic encryption to enhance the privacy-preserving capabilities of the 

system. 
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