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1. INTRODUCTION 

Many branches of science and engineering rely on integral and differential equations, which 

are fundamental in the expansive field of mathematical modeling. From heat transfer to 

population dynamics, and from fluid dynamics to quantum mechanics, these equations explain 

a multitude of phenomena that are governed by physical systems. Despite the usefulness of 

these equations as a tool for understanding complex systems, analytical solutions may be 

difficult to obtain, particularly for nonlinear, high-dimensional, or specified on irregular 

domains systems. Numerical techniques are often required to estimate solutions to these 

equations because to their complexity. These solutions may then be used for simulation, 

prediction, and decision-making in real-world applications. A strong and effective strategy for 

solving integral and differential equations in many different domains has arisen among the 

many numerical methods that have been developed over the years: wavelet-based approaches. 

In order to simplify difficult mathematical issues, wavelet approaches make use of the special 

features of wavelets, which are functions that can represent data at different resolutions. The 

ability to localize in both time and frequency is what sets wavelets apart from more 

conventional approaches like Fourier series. In cases when the solution displays abrupt 

changes, breaks, or singularities, this quality becomes even more important. Although Fourier 

analysis works well for periodic functions, it has a hard time with localized characteristics like 

these because it breaks functions down into infinite global sine and cosine functions, which 

aren't great for capturing the nitty-gritty of irregular or non-smooth functions. A strong and 

versatile approximation technique, wavelet transformations allow one to examine a function at 

many scales and locations. Wavelets are ideal for numerical approaches that attempt to solve 

complicated integral and differential equations because of their flexibility. 
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Numerical analysis has come a long way since wavelet techniques were applied to integral 

equations. When an integral is used to relate the unknown function to its own values, an integral 

equation is often the result. The integral equations in question may be categorized as either 

Volterra or Fredholm. The former are specified with regard to an upper limit that changes in 

relation to the independent variable, while the latter have fixed limits. Electromagnetism, fluid 

dynamics, and signal processing are just a few of the scientific domains that face integral 

equations. They shine when used to simulate memory-based systems or those involving spatial 

or temporal cumulative effects. Complex integral kernels and irregular domains make 

analytical solution of integral equations very difficult. By extending the unknown function and 

kernel in terms of wavelet series, wavelet techniques may estimate the solution of these 

equations, which is a huge benefit in this situation. In doing so, we simplify the issue to a set 

of linear equations amenable to efficient numerical solution. 

Wavelet algorithms provide an equally effective strategy for differential equations. Fluid 

dynamics, wave propagation, and heat diffusion are all examples of dynamic systems whose 

behavior may be well described by differential equations. Differential equations may be 

categorized according to whether they contain derivatives with respect to one independent 

variable (ordinary differential equations, or ODEs) or many variables (partial differential 

equations, or PDEs). For systems with a large number of dimensions or that are not linear, 

analytical solutions to these equations may be very challenging, if not impossible.  

 

2. LITERATURE REVIEW 

Kumar, B. et al., (2018) A wavelet Galerkin method based on Daubechies compactly supported 

wavelets is shown here. Numerical issues with linear and nonlinear PDEs of fourth order in 

two- and three-dimensional spaces may be solved using this technique. The use of two-term 

connection coefficients has allowed for the accurate and efficient calculation of higher-order 

derivatives. Because of their characteristics, wavelets cause the global matrix to be sparse. 

Orthogonality and localization are two of these characteristics. To be more precise, these 

characteristics greatly reduce the necessary computational effort. The GMRES iterative solver 

was used to successfully resolve linear systems of equations obtained from discretized 

equations. The quasi-linearization method has been successfully used to manage nonlinear 

components in nonlinear biharmonic equations. We have introduced a powerful compression 

method to reduce the computational resources needed by our method. We have calculated the 
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stability and error estimates. The goal of providing several examples is to prove that the 

proposed method is accurate. 

Mirzaee, Farshid et al., (2018) In order to numerically solve linear stochastic Itô-Volterra 

integral equations, this work proposes a novel approach based on operational matrices of 

Bernoulli wavelets. Process, plan, and blueprint. This goal is accomplished by introducing and 

explaining the characteristics of Bernoulli wavelets and Bernoulli polynomials. The initial 

calculations of the integral operational matrix and its stochastic equivalent, originated from the 

Bernoulli wavelet, follow. These matrices might help simplify the original issue to a set of 

linear algebraic equations that the correct numerical algorithm could solve. Included in this 

research are some findings about the convergence analysis and error estimate of the suggested 

system. Being distinct is important Two numerical examples are provided to prove that the 

procedure is legitimate and beneficial. 

Hazim, Nawar et al., (2018) Studying nonlinear systems is crucial to applied mathematics and 

engineering. The mixed hyperbolic-parabolic non-linear partial differential equation known as 

the Burger-Fisher equation has applications in a wide variety of scientific and applied 

disciplines. Modeling gas dynamics and fluid mechanics are two examples of such fields. This 

study successfully used the Haar wavelet method to find the numerical solution of the Burger-

Fisher problem. Compared to other approaches that are presently being used, our methodology 

shows a faster convergence. The examples shown here demonstrate how to employ wavelet-

based approaches to build a robust strategy for solving the Burger-Fisher problem numerically. 

The suggested strategy is both accurate and practical for solving these types of issues, 

according to numerical data, exact answers, and solutions produced using specific conventional 

procedures like the variational iteration method (VIM). This is seen when the numerical 

findings are compared to the precise answers. 

Al-Fayadh, Ali et al., (2017) Studying nonlinear systems is crucial to applied mathematics and 

engineering. The mixed hyperbolic-parabolic non-linear partial differential equation known as 

the Burger-Fisher equation has applications in a wide variety of scientific and applied 

disciplines. Modeling gas dynamics and fluid mechanics are two examples of such fields. This 

study successfully used the Haar wavelet method to find the numerical solution of the Burger-

Fisher problem. Compared to other approaches that are presently being used, our methodology 

shows a faster convergence. The examples shown here demonstrate how to employ wavelet-

based approaches to build a robust strategy for solving the Burger-Fisher problem numerically.  
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Yan, W. (2017) The field of wavelet analysis has been rapidly growing in popularity among 

mathematicians, engineers, and applied scientists in the last few years. This is due to the fact 

that technological advancements are perpetual. Building a large mathematical system and 

continuously exploring new fields of research are strengthening wavelets' theoretical 

foundation. Graph and picture processing, quantum physics, artificial intelligence in armament, 

denoising compression, and wavelet theory and the wavelet transform are some of the areas 

examined by the study's author. Numerical solutions to partial differential equations in wavelet 

theory are also explored by the author. We use the Haar wavelet integration method, a new 

numerical solution to the 1D second-order linear hyperbolical telegraph problem, to verify the 

technique's functions in the telegraph equation and to evaluate the time domain and approach 

decomposition of airspace. 

Rahimkhani, P. et al., (2016) New functions, generalized fractional-order Bernoulli wavelet 

functions (GFBWFs), are developed in this paper for the purpose of finding numerical solutions 

to fractional-order pantograph differential equations over a long interval. The Bernoulli 

wavelet transform is the basis of these procedures. To further understand fractional derivative, 

we may use the Riemann-Liouville fractional integral operator in the Caputo sense. Creating 

generalized fractional-order Bernoulli wavelets is one of the first things to do. Based on these 

functions and their characteristics, the GFBWF operating matrices for pantograph and 

fractional integration are subsequently built. Solving the issue using the integral and 

pantograph operating matrices reduces it to an algebraic equation system. Finally, we have 

shown the validity and efficacy of our method by presenting several examples. 

Yi, Mingxu et al., (2015) The goal of this study is to provide numerical solutions to long-term 

fractional-order pantograph differential equations using newly-developed functions called 

generalized fractional-order Bernoulli wavelet functions (GFBWFs). These methods are based 

on the Bernoulli wavelet transform. The Caputo version of the Riemann-Liouville fractional 

integral operator could help shed light on fractional derivatives. A good place to start is by 

making generalized fractional-order Bernoulli wavelets. These functions and their properties 

are used to construct the GFBWF operating matrices for fractional and pantograph integration. 

The system of algebraic equations is the result of solving the problem with the integral and 

pantograph operating matrices. Finally, using the examples we have presented, we can prove 

that our technique is effective and valid. 
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Singh, S. et al., (2015) If you have any kind of partial differential equation, the Haar wavelet 

may help you solve it. The findings are more precise and time-saving when Haar wavelets are 

used. Using a Haar wavelet approach, which is detailed in this work, we numerically solve the 

wave equation. Here, we use the current approach to get a numerical answer that is better and 

more accurate than the one given by Shi. 

Aziz, Imran et al., (2014) An innovative numerical approach using the Haar wavelet has been 

suggested for solving first and second class Volterra-Fredholm, Fredholm, and Volterra-

Fredholm integral equations in two dimensions that are nonlinear. The authors Aziz and Siraj-

ul-Islam (2013), Siraj-ul-Islam et al. (2013), and Siraj-ul-Islam et al. (2014) proposed an 

extension of the Haar wavelet approach to two-dimensional nonlinear integral equations 

(Fredholm, Volterra, and Volterra-Fredholm). This is an extension of the Haar wavelet method. 

This approach differs from others as it does not involve numerical integration, a typical 

technique. As a result, the method's precision is significantly enhanced. Applying the approach 

to several benchmark issues may demonstrate its usefulness. A comparison is made between 

the numerical findings and other approaches that have been published recently. 

Choudhury, A. (2014). The use of semi-discrete approximations has allowed the development 

of an exceedingly accurate numerical approach for solving one-dimensional parabolic partial 

differential equations. Using a wavelet-Galerkin approach, the spatial direction is discretized. 

Using this method, you may get certain kinds of fundamental functions by including 

Daubechies functions. These fundamental operations are diverseiable and have compact 

support. The time variable is often discretized using one of many classical finite difference 

algorithms. Problems like as diffusion, diffusion-reaction, convection-diffusion, and 

convection-diffusion-reaction with Dirichlet, mixed, and other boundary conditions are used 

to derive theoretical and numerical conclusions. When compared to the actual ones, the 

calculated answers are far superior. 

 

3. OBJECTIVE (S) /NEED OF THE STUDY 

1. To develop and analyze numerical solutions of fractional-order differential equations using 

the Haar wavelet method, focusing on accuracy and efficiency. 

2. To develop and investigate efficient numerical solutions for singular perturbation boundary 

value problems using the Haar wavelet collocation method. 
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3. To construct and evaluate numerical solutions for singular ordinary differential equations 

using the Legendre wavelet method, emphasizing accuracy and computational efficiency. 

4. To develop and analyze numerical solutions for the Klein/Sine-Gordon equations using the 

Chebyshev wavelet method, emphasizing accuracy and stability. 

 

NEED OF THE STUDY 

Many disciplines rely on numerical solutions to model and solve real-world issues. This 

includes economics, physics, engineering, biology, and many more. Though they have their 

uses, traditional techniques like spectral, finite difference, and difference approaches aren't 

without their drawbacks. These include computing inefficiency, problems with singularities, 

and an inability to resolve localized solution characteristics. Wavelet technique provides a 

game-changing way to overcome these constraints because of its built-in capability for multi-

resolution analysis. A potential tool for solving complicated equations in various domains, it 

effectively represents functions, captures local behavior, and flexibly handles boundary 

constraints. 

Numerical approaches based on wavelets have shown promise, but there has been little research 

into their use for solving non-linear, multi-dimensional, time-dependent integral and 

differential equations. To fully use wavelet approaches, one must have a thorough grasp of how 

they work in regards to accuracy, stability, and computing efficiency. The purpose of this 

research is to determine which wavelet families and parameters work best for certain types of 

issues, verify wavelet-based procedures, and compare them to more conventional methods. The 

results should help computational mathematics progress and provide a foundation for new 

approaches to solving difficult scientific problems. 

 

4. PROPOSED METHODOLOGY 

The research methodology for solving differential equations of fractional order and singular 

perturbation boundary value problems (BVPs) using various wavelet methods will follow a 

structured approach based on approximation techniques and numerical analysis. For the 

numerical solution of fractional-order differential equations, the Haar wavelet method will be 

applied. This will involve discretizing the problem domain using Haar wavelets, where the 

differential operator will be approximated by a set of wavelet basis functions. The resulting 

system of algebraic equations will then be solved using appropriate numerical techniques, such 
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as Gaussian elimination or iterative solvers, to obtain an approximate solution with high 

accuracy. 

For singular perturbation BVPs, the Haar wavelet collocation method will be utilized. In this 

case, the solution will be approximated by a linear combination of Haar wavelets, and the 

collocation method will ensure that the differential equation is satisfied at specific points in the 

domain. The problem will be carefully handled to account for the small perturbation parameter, 

ensuring that the correct asymptotic behavior is captured. The solution will then be obtained 

by solving the resulting system of equations numerically. 

When addressing singular ordinary differential equations (ODEs), the Legendre wavelet 

method will be employed. Here, the ODE will be transformed into an equivalent algebraic 

system by expanding the solution as a series of Legendre wavelets. These wavelets are 

orthogonal, providing excellent numerical stability. By applying boundary conditions and 

solving the resulting system, an accurate numerical solution will be obtained. 

For solving Klein/Sine-Gordon equations, the Chebyshev wavelet method will be used. This 

method will exploit Chebyshev wavelets, which offer high precision and are particularly suited 

for solving nonlinear and oscillatory partial differential equations. The approach will involve 

discretizing the equation and transforming it into a system of algebraic equations, which will 

then be solved using iterative techniques. The Chebyshev wavelets will provide efficient 

approximation, ensuring accurate solutions even for complex and highly non-linear systems. 

Throughout all methods, the accuracy and convergence of the numerical solutions will be 

analyzed by comparing the results with known analytical solutions or benchmark problems. 

The methodologies will focus on ensuring efficient computation and high precision in solving 

complex differential equations. 

 

5. TENTATIVE CHAPTER PLAN 

• CHAPTER 1: INTRODUCTION 

• CHAPTER 2: NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF 

FRACTIONAL ORDER USING HAAR WAVELET METHOD. 

• CHAPTER 3: NUMERICAL SOLUTION OF SINGULAR PERTURBATION BVP 

USING HAAR WAVELET COLLOCATION METHOD 

• CHAPTER 4: NUMERICAL SOLUTION OF SINGULAR ORDINARY 

DIFFERENTIAL EQUATIONS USING LEGENDRE WAVELET METHOD 
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• CHAPTER 5: NUMERICAL SOLUTION OF KLEIN/SINE-GORDON EQUATIONS 

USING CHEBYSHEV WAVELET METHOD 

• CHAPTER 6: CONCLUSION, RECOMMENDATIONS AND FUTURE SCOPE OF THE 

STUDY 

 

6. EXPECTED OUTCOMES 

The expected outcome of the study on numerical solutions using wavelet methodology for 

integral and differential equations in various domains is to demonstrate the efficacy and 

versatility of wavelet-based techniques in solving complex mathematical problems. The study 

aims to show that wavelet methods provide accurate, efficient, and computationally feasible 

solutions to both integral and differential equations across a range of domains, from simple to 

complex geometries. By comparing these solutions with traditional methods, such as finite 

difference and finite element methods, the study intends to highlight the advantages of wavelet 

techniques, such as their ability to handle irregular domains, provide multiresolution analysis, 

and improve convergence rates. Additionally, the research expects to address any challenges 

related to the implementation of wavelet-based approaches, including their numerical stability, 

computational cost, and scalability in higher-dimensional problems. Ultimately, the study 

hopes to contribute to the development of more reliable and efficient methods for solving 

mathematical models in engineering, physics, and applied sciences. 
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