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ABSTRACT  

Risk-based assessments of pipe conditions focus on prioritizing critical assets by evaluating the risk of pipe failure. 

The aging wastewater infrastructure is a growing concern for utilities across the country. The US water sector 

received a concerning C- grade (Report, 2021), an improvement from a previous D, while the wastewater sector 

earned a troubling D+ in the latest Infrastructure Report Card. Over the next 25 years, $271 billion will be required 

to maintain and operate these networks effectively. Furthermore, the demand for wastewater collection and 

treatment is projected to increase by 23% by 2032. However, leaks in wastewater pipelines are a major source of 

loss for operators, potentially causing severe ecological disasters, human casualties, and financial loss. Traditional 

manual methods for assessing structural leakage in sewage pipes are time-consuming. This study introduces an 

automated method using K-Nearest Neighbors (K-NN) to effectively identify pipe leaks using repair data. This 

classification process helps to quickly identify wastewater pipes needing immediate replacement. The proposed 

model is tested on a Phase-3 US wastewater collection system in Shreveport, Louisiana. 
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1. INTRODUCTION 

The aging wastewater infrastructure is an increasing concern for utilities across the country. In the 2021 

Infrastructure Report Card, the US water sector received a concerning C- grade, a slight improvement from its 

previous D rating (EPA, 2004), while the wastewater sector earned a D+. Over the next 25 years, an estimated 

$271 billion will be required to maintain and manage these systems at an adequate operational level. Additionally, 

demand for wastewater collection and treatment is projected to grow by 23% by 2032 (Report, 2021). Risk-based 

asset management focuses on identifying the most critical assets to determine the most effective strategies for 

detecting pipe leaks, rehabilitating, and replacing pipe infrastructure. The Pipeline Assessment and Certification 

Program (PACP), established by the National Association of Sewer Service Companies, is the industry-standard 

protocol for assessing and managing the condition of sewer pipes in the United States. 

The Pipeline Assessment and Certification Program (PACP), established by the National Association of Sewer 

Service Companies, is the industry-accepted and used protocol for rehabilitation and replacement of the condition 

of sewer pipes in the United States (Angkasuwansiri & Sinha, 2015; Aprajita, 2018; Betgeri, 2022; Betgeri, 
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Matthews, et al., 2023; Betgeri et al., 2024; Betgeri, Vadyala, et al., 2023; DeBoda & Bayer, 2015). Since the 

initial development of the method, several updated versions exist, the most current one is PACP version 7.0.4, 

released on October 1, 2020. The PACP method relies entirely on visual inspections using closed-circuit television 

(CCTV). Trained operators assess structural and operation and maintenance (O&M) issues. A CCTV camera is 

mounted on an IBAK crawler with a 1000-foot cable, transmitting high-resolution images to a computer and 

display above ground. As the crawler moves through the pipe, continuous video is recorded. The crawler can be 

paused at any point, allowing the CCTV camera to rotate and zoom in on areas of interest for more detailed 

inspection. The inner surface of the pipe is recorded in real-time during the inspection, and contractors analyze 

the footage immediately. Based on the CCTV inspections, contractors generate pipe assessment reports, and 

inspectors classify pipe failures according to the industry-standard PACP protocol for all reports. Based on the 

pipe leak failures classification maintenance is scheduled. The overall leak detection protocol is shown in Figure  

1. Figure 2 shows the pipe leakage in a wastewater pipe. 

 

 

Figure 1: Overall leak detection protocol 

 

 

Figure 2: Pipe leakage in a wastewater pipe 

 

2. OBJECTIVE 

The main objective of this paper is to automate the leak classification based on the reports by inspectors to classify 

pipe failures and schedule maintenance faster. 
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3. METHODOLOGY 

3.1 DATASET 

A total of 3100 pipe data totaling approximately 285 km (935,703 ft) is given. For this study, a total length of 

roughly 47 km (154,060 ft) of 200 mm (8 in.) diameter vitrified clay (VC) pipe, totaling 3100 pipe segments, was 

selected. Information such as Pipe ID, Leaks observed or not is mentioned in the pdf format. The pdf data is given 

by the Dept. of Engineering & Environmental Services, Shreveport, Louisiana Phase 3. We used Python 

programming to process the records of all the PDF documents into a CSV file. Figure 3 shows the data extraction 

process. 

 

Figure 3: Data extraction 

 

3.2 DATA PREPROCESSING 

Data Preprocessing is when the data gets transformed, or encoded, such that the machine can quickly parse it. In 

this study, we included records with relevant data by removing inconsistent data, and missing information info 

per pipe for further analysis. This step makes the training dataset cleaner and error-free, which helps in improving 

the accuracy of the model. After all these analyses and verification of data, the final data collection included 2970 

pdf reports for our analysis as shown in Fig. 4. 

3.2.1 MISSING VALUES 

It is very usual to have missing values in our dataset. It may have happened during data collection by the CCTV 

inspector. We eliminated 60 reports related to the few missing information related to leaks observed. 

3.2.2 INCONSISTENT VALUES 

We know that data can contain inconsistent values. Due to human error, or maybe the information was entered as 

not sure about leaks observed. We have eliminated 70 reports related to the inconsistent values.  
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Figure 4: Process of leaks final data 

 

3.3 LEAK DETECTION FRAMEWORK 

The leak detection framework model incorporates the well-established industry-standard condition rating method, 

the PACP, developed by NASSCO in 2014. The K-Nearest Neighbor model is used for this purpose. K-NN is a 

non-parametric method used for classification. The basic logic behind K-NN is to explore your neighborhood, 

assume the test data point to be like them, and derive the output. Compared to other classifier algorithms, it is 

very easy to implement. If training data is much larger than several features (m≫n), K-NN is better than SVM. 

Compared to Neural networks, it requires less training data to achieve the same accuracy.  

We didn’t consider the geographical location of the pipe for our model implementation. A leak detection 

framework is shown in Fig. 5.  

 

Figure 5: Leak detection framework 

 

3.3.1 𝑲 −nearest Neighbor (K-NN) 

The K-nearest neighbor's algorithm is a non-parametric, supervised learning classifier, which uses proximity to 

make classifications or predictions about the grouping of an individual data point. (Peterson, 2009).  K-NN 

classifies the new data points based on the similarity measure of the earlier stored data points. 
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Compared to other algorithms K-NN is called Lazy Learner (Instance-based learning). It does not learn anything 

in the training period. It does not derive any discriminative function from the training data. It stores the training 

dataset and learns from it only at the time of making real-time predictions. This makes the K-NN algorithm much 

faster than other algorithms that require training e.g., SVM, Linear Regression, etc. New data can be added 

seamlessly at any point in time which will not impact the accuracy of the algorithm. Finally, it is very easy to 

implement because it only requires two parameters K and the Euclidean distance function. 

Algorithm: 

Input: 𝐸: All factors, 𝐾: Chosen Number of Neighbors 

Output:  𝐶: Mode of 𝐾 labels 

Begin: 

 Load the data. 

 Initialize K to your chosen number of neighbors. 

 For each testing data: 

o Calculate the distance between 25% of testing data (𝑥, 𝑦) with all 75% of the training data. (a, b) using 

Euclidean distance (ED) as shown in Equation 2. 

ED = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2)     (Eq.1) 

o Add the distance and the index of testing data to the ordered collection. 

 Sort the ordered collection of distances and indices in ascending order by distances. 

 Pick the first K entries from the sorted collection. 

 Get the labels of selected entries. 

 Return the mode of K labels. 

End 

 

4. RESULTS AND ANALYSIS 

We have divided the data into 75% training and 25% validation data, and the process is repeated several times 

with different values of K to reduce the errors and to make accurate predictions.  We have finally chosen the value 

as K = 9. As the value of K is increased, our predictions become more stable and will have more accurate 

predictions up to a certain point.  Figure 7 shows the graph of the misclassification rate as a function of K for 20 

and 25, and from both graphs, we see the lowest error is found at K = 9 with a value of 0.012. We also checked 

for different values of K, and we found the lowest value of the misclassification rate at 9. So, we have used the 

value as K = 9 for better accuracy. Table 1 shows the count and misclassification rate for training data and testing 

data for K=20 and Table 2 shows the count and misclassification rate for training and testing data for K=25. 

Figure 6 shows the plot of the misclassification rate for K = 20. Figure 7 shows the plot of the misclassification 

rate for K = 20. Misclassification can be reduced when the model is trained with a wider variety of data.  

Table 1: Misclassification rate for K=20 

 Training Testing 

K Count Misclassification Rate Count Misclassification Rate 

1 2227 0.194 743 0.184 
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2 2227 0.187 743 0.177 

3 2227 0.165 743 0.165 

4 2227 0.135 743 0.145 

5 2227 0.102 743 0.112 

6 2227 0.082 743 0.092 

7 2227 0.065 743 0.057 

8 2227 0.034 743 0.032 

9 2227 0.012 743 0.011 

10 2227 0.015 743 0.018 

11 2227 0.023 743 0.025 

12 2227 0.030 743 0.032 

13 2227 0.060 743 0.059 

14 2227 0.045 743 0.047 

15 2227 0.035 743 0.039 

16 2227 0.055 743 0.064 

17 2227 0.084 743 0.075 

18 2227 0.123 743 0.114 

19 2227 0.186 743 0.192 

20 2227 0.176 743 0.183 

Table 2: Misclassification rate for K=25 

 Training Testing 

K Count Misclassification Rate Count Misclassification Rate 

1 2227 0.185 743 0.173 

2 2227 0.177 743 0.167 

3 2227 0.155 743 0.162 

4 2227 0.145 743 0.153 

5 2227 0.112 743 0.132 

6 2227 0.092 743 0.083 

7 2227 0.055 743 0.049 

8 2227 0.044 743 0.021 

9 2227 0.013 743 0.011 

10 2227 0.016 743 0.025 

11 2227 0.019 743 0.029 

12 2227 0.025 743 0.032 

13 2227 0.055 743 0.063 

14 2227 0.040 743 0.045 

15 2227 0.032 743 0.038 

16 2227 0.060 743 0.057 

17 2227 0.074 743 0.077 

18 2227 0.090 743 0.092 

19 2227 0.102 743 0.112 

20 2227 0.135 743 0.124 

21 2227 0.142 743 0.134 

22 2227 0.153 743 0.159 

23 2227 0.167 743 0.170 

24 2227 0.177 743 0.175 

25 2227 0.165 743 0.163 
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Figure 6: Misclassification rate for K=20 

 

 

Figure 7: Misclassification rate for K=25 

 

To proceed with the K-NN calculation process, Euclidian distance is used to find the distance between each testing 

data to training data as shown in Equation 2. Table 3 shows the confusion matrix of validation data compared with 

the original result given by the inspector. Table 4 shows the accuracy, precision, recall, and F1 score for leaked 

data, and Equations 2 through 5 present the accuracy, precision, recall, and F1 score, respectively. 

Accuracy = ( 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 )*100%      (Eq.2) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (Eq.3) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (Eq.4) 

F1 Score = 
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
        (Eq.5) 

where TP, FN, FP, and TN represent the number of true positives, false negatives, false positives, and true 

negatives, respectively. In summary, the K-NN classifiers are based on leaks data will reduce the manual efforts 

of the inspector. 
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Table 3: Confusion matrix 

 Actual Leaks Actual No Leaks 

Predicted Leaks 385 6  

Predicted No Leaks 8 344 

 

Table 4: Accuracy, precision, recall, and F1 score 

Accuracy 0.9812 

Precision 0.9847 

Recall 0.9796 

F1 Score 0.9821 

 

5. CONCLUSION 

The proposed leak detection framework assesses the leaks in the wastewater pipe in must faster way by saving 

the pipe from more deterioration. A K-Nearest Neighbor (K-NN) model was used to automate the pipe leaks 

reduce the efforts of the inspector and speed up the process. To validate the model, the predicted leak detection 

of our model was compared with the actual leak classification given by the inspector, and our accuracy was 

98.12% which is satisfactory. 

One of the main limitations of the study was the data. Therefore, more pipe from different geographic locations 

is needed to improve and convey more robustness to the obtained results. The other limitation was the execution 

time because K-NN Classifiers are real-time execution, so their execution is slow compared to other classifier 

algorithms. 
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