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Abstract 

As systems have become increasingly complex, the adoption of cloud computing has surged, driven by the 

need to efficiently and securely manage vast amounts of data. Cloud environments now support a wide range 

of activities, leading to a significant rise in online operations. This shift marks a transformative era in 

computing, with cloud technologies expected to further expand across various sectors. However, as cloud 

computing becomes more widespread, both users and service providers face unique challenges related to the 

domains of its application. This paper provides a comprehensive analysis of common issues and the essential 

system conditions required for optimal performance of cloud-based systems. Utilizing a dataset of system 

parameters, we examine both normal and abnormal operational modes, offering valuable insights into 

maintaining system integrity and enhancing satisfaction for users and service providers alike. 
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1.0 Introduction  

Cloud solutions offer scalable resources, enabling businesses and individuals to handle demanding 

computational tasks without the need for extensive on-premises infrastructure [1]. By leveraging the flexibility 

and power of cloud computing, organizations can innovate faster, streamline operations, and focus on core 

activities, leaving the complexities of IT management to specialized providers [2]. 
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Cloud computing workloads are increasing day by day due to the widespread global adoption of cloud 

computing technologies. Businesses, governments, and individuals are leveraging the cloud for its scalability, 

flexibility, and cost-efficiency, leading to a surge in data processing and storage demands. Consequently, 

cloud service providers are continually expanding their capabilities to accommodate the escalating workloads, 

ensuring reliable and secure cloud environments for users worldwide [3], [4]. Additionally, in the realm of 

entertainment, cloud computing powers streaming services, online gaming, and content distribution, 

delivering seamless and high-quality experiences to users worldwide [5]. 

Beyond these sectors, cloud computing is revolutionizing the way businesses operate across various industries. 

Manufacturing companies use cloud-based solutions for supply chain management, predictive maintenance, 

and IoT integration, leading to optimized production processes. Delivery of efficient services by service 

providers has led to established trust and a sharp rise in cloud computing services. All these factors have 

further led to the manifold growth of cloud users in recent years [6].  A few Data set are available as such as 

Google cluster data, Azure Public Dataset, Yahoo cluster data etc 

Thepublicly available datasets for specific research purposes like as for failures Computer Failure Data 

Repository (CFDR): collecting, sharing and analyzing failure data, varying task and machine heterogeneity 

usage in Heterogeneous Computing Scheduling Problems (HCSP) Instances and Task Execution Time 

Modeling (TETM).   

This paper examines several critical system parameters, emphasizing their importance in designing solutions 

that ensure fault-free operation and cost-effective service delivery to users. 

 

2.0 Review of Related Work 

Here is aoverview of related research worksin the cloud computing fault detection evolution and major 

contributions over the years by the research community: 

A clear taxonomy of fault detection approaches has been established in research work  [2]. Fault or failure 

detection techniques initially emerged from performance log analysis, with classifications based solely on 

historical datasets. Some researchers used cloud-adaptive anomaly detection methods to ensure high 

availability of cloud computing resources. Deep learning techniques have also been applied to overcome these 

challenges [7]. 

The industry has an abundance of datasets for analysis, generating huge volumes of data, while academia and 

the research community face a scarcity of useful data for testing new strategies and implementations. The 
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most widely available dataset for analysis is Google’s ClusterData2011. Since its publication in 2011, many 

researchers have analyzed this dataset. It consists of data from approximately 12,500 machines, including 

scheduler requests and utilization data over 29 days. Various studies have characterized cluster resource 

requests, their distribution, and actual resource utilization, revealing that machines are not homogeneous. CPU 

utilization is less than 60%, and memory utilization is less than 50% of the total cluster size during an average 

one-hour window [4]. The model creates randomly fluctuating patterns to emulate dynamic environments [8]. 

Insights from Google cluster data include machine and workload behavior, frequency and patterns of machine 

maintenance events, job and task-level workload behavior, and overall cluster resource utilization. 

Researchers used K-means clustering to identify common job groups and conducted correlation analysis 

between job semantics and behavior for efficient capacity planning and system tuning [9]. 

Even if dataset traces are not available from the IT industry, analytical methods can extract valuable system 

design insights [10], [11], [12] and [13]. The low average resource utilization across clusters indicates 

significant scope for resource consolidation and energy-aware job scheduling to reduce power consumption. 

Anomaly detection can be enhanced through peer comparison [14]. 

 

3.0 Methodology 

To analyze faults and the affected parameters, we downloaded a cloud workload dataset from the Kaggle 

platform. The dataset includes thirteen attributes and approximately 2880 values, representing both faulty and 

non-faulty modes during system operation. We pre-processed the dataset, cleaning it by removing redundant 

attributes and selecting the most valuable ones. Initially, we segregated the data based on the provided labels, 

0 and 1. We found 2727 entries with label 0, representing normal system operation, while the remaining 152 

entries with label 1 indicated faulty or abnormal system operation. To estimate the probabilities of different 

system parameters for faulty and non-faulty systems, we used the standard normal distribution, which is best 

suited for this context. 

 

4.0 Experiments and Results 

We studied the parameters and observed that the range of maximum and minimum values during system faults 

is significantly larger compared to when the system is operating normally, as shown in the graphs. By 

examining comparative graphs of various statistics, such as CPU Usage (MHZ), Disk Write Throughput 
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(KB/s), Network Received Throughput (KB/s), Memory Usage (GB), Disk Read Throughput (KB/s), and 

Network Transmitted Throughput (KB/s), these behaviors are clearly depicted.  
 

The respective behaviors are summarized in Table 1 and illustrated in Figure 1 to Figure 6. 
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Table 1 Analysis of cloud parameters for fault detection 
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Figure 1:Graph (a), showing CPU Usage in MHZ 

 

In graph (a), showing CPU Usage in MHZ, the stable non-faulty min and max value variation is only 58.5 

MHZ, while during faults, the variation reaches 11,044 MHZ.  

 

Figure 2: Graph (b), showing Disk Write Throughput in KB/s, 

In graph (b), displaying Disk Write Throughput in KB/s, the non-faulty variation is 171.3 KB/s, whereas 

during faults, the variation soars to 26,627.4 KB/s.  

 

Figure 3: Graph (c) showing Network Received Throughput in KB/s 
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Graph (c) shows Network Received Throughput in KB/s, with a non-faulty variation of 71.8 KB/s, but during 

faults, the variation increases to 3,562.4 KB/s. 

 

Figure 4: Graph (d) showing Memory Usage in GB 

Graph (d) illustrates Memory Usage in GB, where the non-faulty variation is 4.2 GB, and during faults, it 

reaches 21.8 GB.  

 

Figure 5: Graph (e) showing Disk Read Throughput in KB/s 

Graph (e) presents Disk Read Throughput in KB/s, with a non-faulty variation of 161.5 KB/s, while during 

faults, it rises to 8,544.7 KB/s.  

 

Figure 6: Graph (f) showing Network Transmitted Throughput in KB/s 
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Lastly, graph (f) shows Network Transmitted Throughput in KB/s, with a non-faulty variation of 3.3 KB/s, 

but during faults, the variation climbs to 1,013.1 KB/s. 

These observations reveal that during faults, all system parameters peak abruptly to high levels, whereas, 

under normal operation, the parameters remain within a normal range. 

 

We analyzed the parameters and discovered that their probability distribution is continuous. We modeled 

the probability of usage and impact of these attributes under normal and faulty conditions. The probability 

distributions reveal that the likelihood of usage parameters falling between the statistical mean and the 

maximum value in the non-faulty dataset is very low: 0.018 for CPU utilization and absolute zero for Disk 

Write Throughput, Network Received Throughput, Memory Usage, Disk Read Throughput, and Network 

Transmitted Throughput. Conversely, in the faulty dataset, the probability usage statistics are significantly 

higher (0.4568, 0.2213, 0.0124, 0.1948, 0.0000, and 0.0004, respectively).  

Based on these findings, it is evident that the usage probability of CPU, memory, disk, and network 

parameters is much higher during fault conditions compared to normal conditions. This probabilistic 

estimate can serve as an indicator for detecting faults. 

 

5.0 Conclusion  

The probability of usage of important system parameters like CPU usage, Memory Usage,Disk Read/Writes, 

Network packets Transmitted and Received is high for faulty systems starting from the mid point towards 

the maximum value of the range in comparison to the non faulty systems. Thus our research support the 

concept of detecting faulty systems in best possible manner. This analysis facts can be directly used in design 

of fault or anomaly detection algorithms design 
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