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ABSTRACT 

As networks become increasingly complex and traffic demands surge, traditional traffic engineering methods often 

fall short in maintaining optimal performance. This paper introduces a novel approach that leverages Deep 

Reinforcement Learning (DRL) to dynamically adapt to changing network conditions within Software-Defined 

Networks (SDN). By harnessing the centralized control of SDN and the adaptive learning capabilities of DRL, our 

framework optimizes routing decisions in real-time, enhancing network utilization, reducing congestion, and 

improving overall Quality of Service (QoS). Through rigorous simulations and comparisons with existing techniques, 

our results demonstrate a significant improvement in network throughput (15%) and a substantial reduction in end-to-

end latency (20%). This research paves the way for more intelligent, efficient, and responsive network management 

systems. 

Keywords: Deep Reinforcement Learning; Software-Defined Networking; Traffic Engineering; Adaptive Routing; 

Network Optimization 

1. Introduction 

The exponential growth of internet traffic, driven by the proliferation of connected devices, cloud computing, and 

data-intensive applications, has placed unprecedented demands on network infrastructure. Traditional traffic 

engineering methods, which often rely on static or reactive approaches, are increasingly inadequate in addressing the 
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dynamic nature of modern network traffic patterns. This challenge is particularly acute in large-scale, complex 

networks where traffic conditions can change rapidly and unpredictably. 

Software-Defined Networking (SDN) has emerged as a promising paradigm to address these challenges by decoupling 

the control plane from the data plane, enabling more flexible and programmable network management [1]. However, 

while SDN provides the necessary infrastructure for centralized control, it does not inherently solve the problem of 

optimal traffic engineering. The key challenge lies in developing intelligent control mechanisms that can leverage the 

SDN architecture to make optimal routing decisions in real-time, adapting to changing network conditions. 

Deep Reinforcement Learning (DRL) offers a powerful framework for addressing this challenge. By combining the 

representation learning capabilities of deep neural networks with the decision-making prowess of reinforcement 

learning, DRL has shown remarkable success in solving complex, high-dimensional problems in various domains [2]. 

The application of DRL to traffic engineering in SDN environments presents an opportunity to create adaptive, 

intelligent network management systems that can learn and improve from experience. 

This paper proposes a novel DRL-based approach to adaptive traffic engineering in SDN environments. Our method 

aims to optimize network performance by dynamically adjusting routing decisions based on current network states 

and predicted future conditions. The main contributions of this work are as follows: 

1. We develop a DRL framework specifically tailored for traffic engineering in SDN, considering the unique 

characteristics and constraints of network environments. 

2. We design a state representation and reward function that effectively capture the complexities of network 

traffic patterns and performance metrics. 

3. We implement and evaluate our approach using realistic network simulations, demonstrating significant 

improvements in key performance indicators such as throughput, latency, and congestion mitigation. 

4. We provide a comprehensive comparison of our DRL-based method with traditional traffic engineering 

approaches and other machine learning-based solutions. 

5. We analyze the scalability and robustness of our approach, considering various network sizes and traffic 

scenarios. 
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The rest of this paper is organized as follows: Section 2 provides background information on SDN, traffic engineering, 

and DRL, along with a review of related work. Section 3 details our proposed DRL-based traffic engineering method. 

Section 4 describes the experimental setup used to evaluate our approach. Section 5 presents and discusses the results 

of our experiments. Finally, Section 6 concludes the paper and outlines directions for future research. 

2. Background and Related Work 

This section provides an overview of the key concepts underlying our research and reviews relevant literature in the 

fields of Software-Defined Networking, Traffic Engineering, and Deep Reinforcement Learning. 

2.1 Software-Defined Networking (SDN) 

Software-Defined Networking represents a paradigm shift in network architecture and management. Unlike traditional 

networks where control and data planes are tightly coupled within network devices, SDN separates these planes, 

centralizing network control and enabling programmability [3]. The key components of SDN architecture are: 

1. Control Plane: A logically centralized controller that maintains a global view of the network and makes 

routing decisions. 

2. Data Plane: Network devices (switches and routers) that forward packets based on rules set by the control 

plane. 

3. Southbound API: Protocols like OpenFlow that enable communication between the control and data planes. 

4. Northbound API: Interfaces that allow applications to interact with the control plane. 

This architecture offers several advantages, including simplified network management, increased flexibility, and the 

ability to implement complex network policies more easily [4]. However, it also introduces new challenges, 

particularly in terms of scalability and the need for intelligent control mechanisms. 

2.2 Traffic Engineering 

Traffic Engineering (TE) refers to the process of analyzing, predicting, and regulating the behavior of data transmitted 

over a network [5]. The primary objectives of TE include: 

1. Optimizing resource utilization 

2. Improving network performance (e.g., throughput, latency) 

3. Ensuring Quality of Service (QoS) 
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4. Minimizing congestion 

Traditional TE approaches often rely on static optimization techniques or reactive methods based on predefined rules. 

These include: 

1. Equal-Cost Multi-Path (ECMP) routing 

2. Constraint-based routing using protocols like MPLS-TE 

3. Flow-based routing optimization 

While these methods have been effective to some degree, they struggle to adapt to the dynamic nature of modern 

network traffic, especially in large-scale and complex environments. 

2.3 Deep Reinforcement Learning 

Reinforcement Learning (RL) is a branch of machine learning where an agent learns to make decisions by interacting 

with an environment [6]. The agent receives rewards or penalties based on its actions, aiming to maximize cumulative 

rewards over time. Deep Reinforcement Learning combines RL with deep neural networks, allowing the agent to learn 

complex patterns and make decisions in high-dimensional state spaces [7]. 

Key components of DRL include: 

1. State: The current situation of the environment 

2. Action: The decision made by the agent 

3. Reward: Feedback from the environment based on the action taken 

4. Policy: The strategy the agent follows to choose actions 

5. Value function: An estimate of future rewards 

Popular DRL algorithms include Deep Q-Networks (DQN), Policy Gradient methods, and Actor-Critic architectures 

[8]. 

2.4 Related Work 

The application of machine learning techniques to network management and traffic engineering has gained significant 

attention in recent years. Several researchers have explored the use of reinforcement learning and deep learning for 

various aspects of network optimization. 
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2.4.1 Machine Learning for Traffic Prediction 

Azzouni and Pujolle [9] proposed a Long Short-Term Memory (LSTM) based approach for predicting traffic matrices 

in SDN. Their method demonstrated improved accuracy compared to traditional statistical methods. Similarly, Xiao 

et al. [10] used a combination of Convolutional Neural Networks (CNN) and LSTMs to predict network traffic, 

showing promising results in capturing both spatial and temporal dependencies. 

2.4.2 Reinforcement Learning for Routing Optimization 

Valadarsky et al. [11] introduced a reinforcement learning approach for learning routing strategies. Their method, 

while not using deep learning, showed the potential of RL in adapting to changing network conditions. Lin et al. [12] 

proposed a QoS-aware adaptive routing algorithm using deep reinforcement learning, demonstrating improvements 

in network throughput and latency. 

2.4.3 DRL for Traffic Engineering in SDN 

Stampa et al. [13] were among the first to apply DRL specifically to traffic engineering in SDN environments. They 

used a Deep Q-Network to learn optimal routing policies, showing improvements over traditional routing methods. 

Chen et al. [14] extended this work by incorporating a more sophisticated state representation and using a Double 

DQN algorithm, achieving better stability and performance. 

2.4.4 Multi-agent DRL for Distributed Control 

To address scalability issues in large networks, Xu et al. [15] proposed a multi-agent DRL approach where each agent 

controls a subset of the network. Their method showed promising results in balancing local and global optimization 

objectives. 

2.5 Research Gap and Our Contribution 

While previous work has demonstrated the potential of DRL in network optimization, several challenges remain: 

1. Scalability to large, complex networks 

2. Handling heterogeneous traffic types with varying QoS requirements 

3. Adapting to rapid changes in network conditions 

4. Balancing exploration and exploitation in the learning process 

5. Interpretability of learned policies 
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Our work aims to address these challenges by: 

1. Developing a more comprehensive state representation that captures complex network dynamics 

2. Designing a multi-objective reward function that considers various performance metrics and QoS 

requirements 

3. Implementing an adaptive exploration strategy to balance learning and performance 

4. Incorporating transfer learning techniques to improve adaptability to new network scenarios 

5. Providing visualizations and explanations of the learned policies to enhance interpretability 

By addressing these aspects, our research contributes to the ongoing efforts to create more intelligent, efficient, and 

adaptive traffic engineering solutions for SDN environments. 

3. Proposed Method 

This section presents our novel Deep Reinforcement Learning (DRL) approach for adaptive traffic engineering in 

Software-Defined Networks (SDN). We describe the overall framework, the DRL model architecture, state 

representation, action space, reward function, and the learning algorithm. 

3.1 Framework Overview 

Our proposed framework integrates a DRL agent with the SDN control plane to optimize routing decisions based on 

current network conditions and predicted future states. The framework consists of the following key components: 

1. SDN Controller: Manages the network topology and collects real-time traffic statistics. 

2. DRL Agent: Learns and makes routing decisions based on the current network state. 

3. Traffic Predictor: Forecasts short-term traffic patterns to enhance decision-making. 

4. Action Executor: Implements the routing decisions in the network. 

Figure 1 illustrates the high-level architecture of our proposed framework. 
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Figure 1: High-level architecture of the proposed DRL-based traffic engineering framework 

3.2 DRL Model Architecture 

We employ a Deep Q-Network (DQN) as our DRL model, which combines Q-learning with deep neural networks to 

handle high-dimensional state spaces. The DQN architecture consists of: 

1. Input Layer: Receives the state representation. 

2. Hidden Layers: Multiple fully connected layers with ReLU activation functions. 

3. Output Layer: Produces Q-values for each possible action. 

To enhance stability and performance, we implement several advanced DQN techniques: 

1. Double DQN: Uses separate networks for action selection and evaluation to reduce overestimation bias [16]. 

2. Prioritized Experience Replay: Prioritizes important transitions in the replay buffer for more efficient 

learning [17]. 



 
 

166 | P a g e  
 

3. Dueling Network Architecture: Separates state value and action advantage estimation for better policy 

evaluation [18]. 

3.3 State Representation 

The state representation is crucial for capturing relevant information about the network condition. Our state space 

includes: 

1. Link Utilization: A matrix representing the current utilization of each link in the network. 

2. Traffic Matrix: The current traffic demand between each source-destination pair. 

3. Queue Lengths: A vector of queue lengths at each network node. 

4. Historical Traffic Patterns: Recent traffic history to capture temporal dependencies. 

5. Predicted Future Traffic: Short-term traffic predictions from the Traffic Predictor component. 

To handle the high dimensionality of this state space, we employ a combination of Convolutional Neural Networks 

(CNNs) for spatial features and Long Short-Term Memory (LSTM) networks for temporal features. 

3.4 Action Space 

The action space defines the set of possible routing decisions the DRL agent can make. In our framework, an action 

consists of: 

1. Path Selection: Choosing a path for each source-destination pair from a set of k-shortest paths. 

2. Flow Split Ratio: Determining the proportion of traffic to be sent along each selected path when multiple 

paths are used. 

To manage the complexity of the action space, we use a hierarchical approach: 

1. First, select the top-k paths for each source-destination pair based on current network conditions. 

2. Then, determine the optimal split ratio for traffic among these paths. 

This approach reduces the action space dimensionality while still allowing for flexible routing decisions. 

3.5 Reward Function 

The reward function is designed to encourage actions that optimize network performance across multiple objectives. 

Our multi-objective reward function considers: 

1. Network Throughput: Maximize the total amount of traffic successfully transmitted. 
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2. End-to-End Latency: Minimize the average delay experienced by packets. 

3. Link Utilization: Maintain balanced link utilization to avoid congestion. 

4. QoS Compliance: Ensure that Quality of Service requirements are met for different traffic classes. 

The reward function is formulated as: 

R = w₁ * Throughput + w₂ * (1 / Latency) + w₃ * LoadBalancing + w₄ * QoSCompliance 

Where w₁, w₂, w₃, and w₄ are weights that can be adjusted to prioritize different objectives based on network policies 

or requirements. 

3.6 Learning Algorithm 

We use a modified version of the Deep Q-learning algorithm for training our DRL agent. The key steps of our learning 

process are: 

1. Initialize the DQN with random weights. 

2. For each episode: a. Reset the network environment to an initial state. b. For each time step: 

○ Observe the current state s_t. 

○ Choose an action a_t using an ε-greedy policy. 

○ Execute the action and observe the reward r_t and next state s_{t+1}. 

○ Store the transition (s_t, a_t, r_t, s_{t+1}) in the replay buffer. 

○ Sample a mini-batch of transitions from the replay buffer. 

○ Perform a gradient descent step on the loss function: L = E[(r + γ max_a' Q(s', a'; θ') - Q(s, a; θ))²] 

○ Update the target network periodically. c. End episode when terminal state is reached or maximum 

steps are taken. 

To improve learning efficiency and adaptability, we incorporate the following enhancements: 

1. Curriculum Learning: Start with simpler network scenarios and gradually increase complexity. 

2. Transfer Learning: Pre-train the model on historical data and fine-tune on specific network topologies. 

3. Adaptive Exploration: Adjust the exploration rate based on the agent's performance and the stability of the 

network environment. 

3.7 Implementation Details 
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Our framework is implemented using the following technologies: 

1. SDN Environment: Mininet for network emulation and OpenDaylight as the SDN controller. 

2. DRL Implementation: PyTorch for building and training the DRL model. 

3. Traffic Generation: Custom traffic generator based on real-world traffic patterns from the GEANT network 

dataset [19]. 

4. Performance Monitoring: sFlow for real-time traffic statistics collection. 

The DRL agent interacts with the SDN environment through a custom OpenFlow application that interfaces with the 

OpenDaylight controller. This allows for seamless integration of the learned policies into the network control plane. 

4. Experimental Setup 

To evaluate the performance and efficacy of our proposed DRL-based traffic engineering approach, we conducted a 

series of comprehensive experiments. This section details our experimental setup, including the network topology, 

traffic patterns, baseline comparisons, evaluation metrics, and implementation specifics. 

4.1 Network Topology 

We used two different network topologies in our experiments to assess the scalability and adaptability of our approach: 

1. GÉANT Network: A real-world pan-European research and education network consisting of 40 nodes and 

61 links [20]. 

2. Large-scale synthetic network: A generated network using the Barabási-Albert model [21], consisting of 100 

nodes and 300 links, to test the scalability of our approach. 

4.2 Traffic Patterns 

To simulate realistic network conditions, we used a combination of real-world traffic traces and synthetic traffic 

generation: 

1. Real-world traffic: We used traffic matrices from the GÉANT network dataset [19], which provides traffic 

data at 15-minute intervals. 

2. Synthetic traffic: We generated additional traffic using a gravity model [22] with added noise to simulate 

variations and unpredictability. 

We considered three types of traffic in our experiments: 
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1. Best-effort traffic: No specific QoS requirements. 

2. Delay-sensitive traffic: Requiring low latency (e.g., VoIP, video conferencing). 

3. Bandwidth-intensive traffic: Requiring high throughput (e.g., file transfers, video streaming). 

The traffic mix was distributed as 60% best-effort, 25% delay-sensitive, and 15% bandwidth-intensive. 

4.3 Baseline Comparisons 

We compared our DRL-based approach with the following baseline methods: 

1. ECMP (Equal-Cost Multi-Path): A widely used static load balancing technique. 

2. OSPF-TE (Open Shortest Path First with Traffic Engineering): A traditional traffic engineering approach 

using link weights optimization. 

3. CSPF (Constrained Shortest Path First): A path computation algorithm that considers both topology and 

network utilization. 

4. Shortest Path Routing: A simple routing strategy based on hop count. 

4.4 Evaluation Metrics 

We used the following metrics to evaluate the performance of our approach: 

1. Network Throughput: The total amount of traffic successfully transmitted across the network. 

2. Average End-to-End Delay: The average time taken for packets to traverse from source to destination. 

3. Link Utilization: The distribution of traffic across network links. 

4. Jitter: The variation in packet delay, particularly important for delay-sensitive traffic. 

5. Packet Loss Rate: The percentage of packets that fail to reach their destination. 

6. Convergence Time: The time taken for the DRL agent to adapt to new network conditions. 

7. QoS Violation Rate: The percentage of time QoS requirements are not met for different traffic classes. 

4.5 Implementation Details 

Our experimental setup was implemented using the following tools and frameworks: 

1. Network Emulation: We used Mininet 2.3.0 to emulate the SDN environment. 

2. SDN Controller: OpenDaylight (Sodium SR2) was used as the SDN controller. 

3. DRL Implementation: We implemented our DRL agent using PyTorch 1.7.0. 
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4. Traffic Generation: A custom traffic generator was developed using Python 3.8, incorporating both real-

world traces and synthetic generation. 

5. Performance Monitoring: sFlow-RT was used for real-time traffic statistics collection. 

4.6 Experimental Parameters 

Table 1 summarizes the key parameters used in our experiments: 

Parameter Value 

Experiment Duration 24 hours (simulated time) 

Traffic Matrix Update Interval 15 minutes 

DRL Training Episodes 1000 

DRL Agent Update Frequency Every 5 minutes 

Exploration Rate (ε) 0.1 (annealed from 1.0 over 500 episodes) 

Discount Factor (γ) 0.99 

Learning Rate 0.001 

Replay Buffer Size 100,000 transitions 

Mini-batch Size 64 

Target Network Update Frequency Every 100 steps 

Number of Hidden Layers 3 

Neurons per Hidden Layer 256 

Activation Function ReLU 
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4.7 Experimental Procedure 

Our experimental procedure consisted of the following steps: 

1. Initialize the network topology and traffic patterns. 

2. Train the DRL agent using historical traffic data for 1000 episodes. 

3. Deploy the trained agent in the live network environment. 

4. Generate traffic according to the defined patterns and introduce random network events (e.g., link failures, 

traffic spikes) to test adaptability. 

5. Collect performance metrics at 1-minute intervals throughout the 24-hour simulated period. 

6. Repeat the experiment 10 times with different random seeds to ensure statistical significance. 

7. Compare the performance of our DRL-based approach with the baseline methods across all evaluation 

metrics. 

4.8 Statistical Analysis 

To ensure the validity and significance of our results, we performed the following statistical analyses: 

1. Calculated mean and standard deviation for each performance metric across the 10 experiment runs. 

2. Conducted paired t-tests to compare our approach with each baseline method, considering a p-value < 0.05 

as statistically significant. 

3. Computed 95% confidence intervals for the performance improvements over baseline methods. 

In the next section, we will present and discuss the results obtained from these experiments, highlighting the 

performance of our DRL-based approach in comparison to the baseline methods across various network conditions 

and scenarios. 

5. Results and Discussion 

This section presents the results of our experimental evaluation and provides a comprehensive analysis of the 

performance of our DRL-based traffic engineering approach compared to the baseline methods. We discuss the 

outcomes for each evaluation metric, analyze the adaptability and scalability of our approach, and examine its 

performance under various network conditions. 

5.1 Overall Performance Comparison 
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Table 2 summarizes the average performance of our DRL-based approach compared to the baseline methods across 

all evaluation metrics for the GÉANT network topology. 

Metric DRL (Ours) ECMP OSPF-TE CSPF Shortest Path 

Network Throughput (Gbps) 42.8 ± 1.2 35.6 ± 1.5 38.2 ± 1.3 39.5 ± 1.4 33.7 ± 1.6 

Avg. End-to-End Delay (ms) 18.3 ± 0.7 25.6 ± 1.1 22.4 ± 0.9 21.2 ± 0.8 27.8 ± 1.2 

Max Link Utilization (%) 72.5 ± 2.1 88.7 ± 3.2 81.3 ± 2.8 78.9 ± 2.5 92.4 ± 3.5 

Jitter (ms) 2.1 ± 0.2 3.8 ± 0.4 3.2 ± 0.3 2.9 ± 0.3 4.2 ± 0.5 

Packet Loss Rate (%) 0.05 ± 0.01 0.23 ± 0.03 0.15 ± 0.02 0.11 ± 0.02 0.31 ± 0.04 

QoS Violation Rate (%) 1.8 ± 0.3 5.7 ± 0.7 4.2 ± 0.5 3.5 ± 0.4 7.1 ± 0.8 

Our DRL-based approach consistently outperforms all baseline methods across all metrics. Key findings include: 

1. Network Throughput: Our approach achieves a 20.2% improvement over ECMP, the best-performing 

baseline method in terms of throughput. 

2. Average End-to-End Delay: We observe a 28.5% reduction in delay compared to ECMP and a 13.7% 

reduction compared to CSPF, the best-performing baseline for this metric. 

3. Maximum Link Utilization: Our method reduces maximum link utilization by 18.3% compared to ECMP, 

indicating better load balancing. 

4. QoS Violation Rate: We achieve a 68.4% reduction in QoS violations compared to ECMP, demonstrating 

superior ability to meet service requirements. 

5.2 Adaptability to Dynamic Traffic Conditions 
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To evaluate the adaptability of our approach, we introduced sudden traffic changes and observed how quickly each 

method adjusted. Figure 2 shows the network throughput over time during a 6-hour period with two significant traffic 

spikes. 

 

Figure 2: Network throughput over time with traffic spikes 

Our DRL-based approach demonstrates superior adaptability: 

1. Faster Convergence: On average, our method converges to a new optimal routing configuration 37% faster 

than OSPF-TE and 52% faster than ECMP after a sudden traffic change. 

2. Minimal Performance Degradation: During traffic spikes, our approach maintains 94% of its steady-state 

throughput, compared to 82% for CSPF and 75% for ECMP. 

3. Quick Recovery: After a traffic spike, our method returns to within 5% of peak performance in an average 

of 3.2 minutes, compared to 7.5 minutes for OSPF-TE and 9.1 minutes for ECMP. 

5.3 Scalability Analysis 
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To assess scalability, we compared performance on the GÉANT network (40 nodes) and the large-scale synthetic 

network (100 nodes). Table 3 shows the relative performance of our approach compared to ECMP (the most scalable 

baseline) on both networks. 

Metric GÉANT 

Network 

Large-scale Network 

Throughput Improvement +20.2% +18.7% 

Delay Reduction -28.5% -25.9% 

Max Utilization Reduction -18.3% -16.8% 

Convergence Time (minutes) 2.8 ± 0.3 3.5 ± 0.4 

Our approach maintains its performance advantages in the larger network, with only a slight decrease in improvement 

margins. The convergence time increases by 25% for the larger network, which is reasonable given the 150% increase 

in network size. 

5.4 Performance Across Traffic Classes 

We analyzed how our approach performs for different traffic classes. Figure 3 shows the average end-to-end delay for 

each traffic class compared to CSPF (the best-performing baseline for delay-sensitive traffic). 
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Figure 3: Average end-to-end delay by traffic class 

Key observations: 

1. Delay-sensitive Traffic: Our approach reduces delay by 32% compared to CSPF for this critical traffic class. 

2. Bandwidth-intensive Traffic: We achieve 22% higher throughput for this class compared to CSPF. 

3. Best-effort Traffic: Our method provides a balanced improvement, with 15% lower delay and 18% higher 

throughput compared to CSPF. 

5.5 Computational Efficiency 

Table 4 compares the computational requirements of our DRL-based approach with the baseline methods. 

Method Avg. Decision Time (ms) Memory Usage (MB) 

DRL (Ours) 5.2 ± 0.4 512 ± 15 

ECMP 0.8 ± 0.1 64 ± 5 

OSPF-TE 15.3 ± 1.2 128 ± 8 
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CSPF 8.7 ± 0.7 256 ± 12 

Shortest Path 0.5 ± 0.1 32 ± 3 

While our approach requires more computational resources than simpler methods like ECMP, it is more efficient than 

OSPF-TE and comparable to CSPF. The additional computational cost is justified by the significant performance 

improvements. 

5.6 Analysis of Learned Policies 

To understand the behavior of our DRL agent, we analyzed the learned policies under different network conditions. 

Key insights include: 

1. Path Diversity: The agent learns to utilize a wider range of paths compared to traditional methods, especially 

under high load conditions. 

2. Predictive Load Balancing: We observe that the agent often redirects traffic preemptively, based on predicted 

future congestion, rather than reacting to existing congestion. 

3. QoS-aware Routing: The agent learns to prioritize low-latency paths for delay-sensitive traffic, even at the 

cost of slightly lower utilization of these paths. 

5.7 Limitations and Future Work 

While our approach demonstrates significant improvements, we identified several areas for future research: 

1. Computational Scalability: For very large networks (>1000 nodes), the current approach may face 

computational challenges. Investigating hierarchical or distributed DRL approaches could address this 

limitation. 

2. Multi-domain Optimization: Extending the approach to work across multiple SDN domains would be 

valuable for inter-domain traffic engineering. 

3. Security Considerations: Incorporating network security constraints and anomaly detection into the DRL 

framework could enhance its practical applicability. 

4. Explainability: Developing methods to better interpret and explain the decisions made by the DRL agent 

would improve trust and adoption in production environments. 
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In conclusion, our DRL-based approach to traffic engineering in SDN environments demonstrates substantial 

improvements over traditional methods across various performance metrics. It shows superior adaptability to dynamic 

traffic conditions and good scalability to larger networks. The approach effectively balances the needs of different 

traffic classes and offers a promising direction for future research in intelligent network management. 

6. Conclusion and Future Work 

This paper presents a novel approach to traffic engineering in Software-Defined Networks using Deep Reinforcement 

Learning. Our research demonstrates the potential of combining the flexibility of SDN with the adaptive learning 

capabilities of DRL to create more intelligent and responsive network management systems. The key contributions 

and findings of our work are as follows: 

1. DRL Framework for Traffic Engineering: We developed a comprehensive DRL-based framework 

specifically tailored for traffic engineering in SDN environments. This framework incorporates a 

sophisticated state representation, a multi-objective reward function, and advanced DRL techniques such as 

Double DQN and prioritized experience replay. 

2. Superior Performance: Our approach consistently outperformed traditional traffic engineering methods 

across all evaluated metrics. Notable improvements include: 

○ 20.2% increase in network throughput compared to ECMP 

○ 28.5% reduction in average end-to-end delay compared to ECMP 

○ 68.4% reduction in QoS violation rate compared to ECMP 

3. Adaptive and Scalable Solution: The DRL-based approach demonstrated superior adaptability to dynamic 

traffic conditions, converging to new optimal routing configurations 37% faster than OSPF-TE after sudden 

traffic changes. It also showed good scalability, maintaining performance advantages in larger network 

topologies. 

4. Balanced Optimization: Our method effectively balanced the needs of different traffic classes, providing 

significant improvements for delay-sensitive, bandwidth-intensive, and best-effort traffic simultaneously. 
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5. Insights into Learned Policies: Analysis of the learned policies revealed that the DRL agent developed 

sophisticated strategies, including utilizing diverse paths, performing predictive load balancing, and making 

QoS-aware routing decisions. 

The success of our approach opens up several promising avenues for future research: 

1. Multi-domain Optimization: Extending the DRL framework to optimize traffic across multiple SDN domains 

could lead to more comprehensive network-wide improvements. 

2. Integration with Intent-based Networking: Combining our DRL approach with intent-based networking 

concepts could create more user-friendly and business-oriented network management systems. 

3. Enhanced Security Integration: Incorporating network security constraints and anomaly detection into the 

DRL framework could result in a more robust and secure traffic engineering solution. 

4. Explainable AI for Network Management: Developing techniques to interpret and explain the decisions made 

by the DRL agent would increase trust and facilitate adoption in production environments. 

5. Real-world Deployments: While our experiments used realistic simulations, testing the approach in real-

world SDN deployments would provide valuable insights and validation. 

6. Hybrid Approaches: Exploring combinations of DRL with other AI techniques, such as graph neural 

networks or evolutionary algorithms, could potentially lead to even more powerful traffic engineering 

solutions. 

In conclusion, our research demonstrates that Deep Reinforcement Learning can significantly enhance traffic 

engineering in Software-Defined Networks, offering a more adaptive, efficient, and intelligent approach to network 

management. As networks continue to grow in complexity and scale, such AI-driven solutions will become 

increasingly crucial in maintaining optimal performance and meeting the diverse requirements of modern network 

traffic. Our work contributes to the ongoing evolution of intelligent network systems and lays a foundation for future 

advancements in this critical area of networking research. 
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