Volume No. 11, Issue No. 08, August 2022 www.ijarse.com



# Adiabatic compressibility, acoustic impedence, free length, relaxation time of *TridaxProcumbens* root extract solution

Shailesh S. Kamble<sup>1</sup>, Shashikant R. Aswale<sup>2</sup>, Sunanda S. Aswale<sup>3</sup>

<sup>1</sup>Dept. Chemistry Arts, Commerce and Science College Maregaon, Dist. Yavatmal, India.

#### **ABSTRACT:-**

Ultrasonic Velocity, density, viscosity have been measured experimentally for the solution of root extract of Tridax Procumbensin distilled water with various concentrations at 298.15 K, 303.15 K, 308.15 K keeping constant frequency of 4 MHz. As the acoustical parameters like adiabatic compressibility, intermolecular free length, relaxation time, specific acoustic impedencewould prove to be more useful to predict and confirm the molecular interactions, these have been determined by measuring the Ultrasonic Velocity, density, viscosity of the prepared solution. A variation in these parameters will provide a strong information regarding the molecular interactions taking place in the solution. Ultrasonic velocity together with density and viscosity data will furnish a wealth of information about the interactions between ions, dipoles and hydrogen bonding.

Keywords : Acoustic impedence, adiabatic compressibility, intermolecular length, relaxation timeUltrasonic velocity.

#### 1) INTRODUCTION:

Ultrasonic velocity measurements and other acoustical parameters of liquid mixtures are the powerful technique in understanding the chemical nature and the molecular interactions <sup>[1-5]</sup>. Many researchers used ultrasonic velocity measurement for studying solute-solvent interaction in number of systems including organic liquid, dilute solutions in organic acid and complexes <sup>[6-8]</sup>.Ultrasonic velocity in liquids and liquid mixtures provide valuable information about their physico-chemical properties and the nature of molecular interactions in them <sup>[9-10]</sup>. Our country is very well known for Ayurveda, in the Ayurveda medicines are largely made up from plants, herbs. One of such plants is which is also known as TridaxProcumbens. TridaxProcumbensis known for its antifungal nature. The solution of leaf extract of TridaxProcumbens in distilled water solvent is studied at 4 MHz for the concentration of 1%, 0 .5%, 0.25%, 0.125% at 298.15K, 303.15K, 308.15K. Here the effect of concentration at different temperature on molecular interaction will be predicted which may be helpful for predicting the reactivity of the extract.

#### 2. MATERIALS AND METHODS:-

The leaf extract used in this study was of analytical range. Distilled water was used for the preparation of solution. A special thermostatic water bath arrangement was made to maintain constant temperature. 1%, 0.5%,

<sup>&</sup>lt;sup>3</sup>Department of Chemistry LokmanyaTilakMahavidyalaya, Wani, Dist. Yavatmal,India.

Volume No. 11, Issue No. 08, August 2022

#### www.ijarse.com



0.25%, 0.125% solutions of leaf extracts of TridaxProcumbenswas Prepared by taking accurate weights on electronic digital balance (Model CB/CA/CT-Series, Contech having accuracy ± 0.0001 g.) The ultrasonic velocity of the 1%, 0.5%, 0.25%, 0.125% solutions of leaf extracts of TridaxProcumbenswas measured with the Multifrequency ultrasonic interferometer (Model M-83, Mittal Enterprizes) at 4 MHz frequency with an accuracy of -<sup>+</sup> 2 m/s. All the readings were taken at 298.15 K, 303.15K, 308.15K. The viscosity was measured by using Ostwald's viscometer and the density of the solution was measured by using Digital densitometer (DMA-35, Anton paar).

#### 2.1. Computation:

By using ultrasonic velocity following ultrasonic parameters are calculated.

#### 2.1.1. Adiabatic compressibility -

 $\beta=1/v_s^2d$ 

Where, v - velocity of solution,

d - density of liquid

#### 2.1.2. Intermolecular free length -

 $\mathbf{L_f} = \mathbf{K} \sqrt{\beta_s}$ 

Where, K - temperature dependent known as Jacobson's constant

#### 2.1.3. Specific acoustic impedance -

 $\mathbf{Z} = \mathbf{v} \times \mathbf{d}_{\mathbf{s}}$ 

#### 2.1.4. Relaxation time -

 $\tau = 4/3 \, \beta_s \times \eta$ 

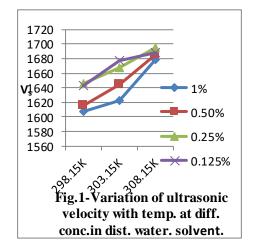
#### 3. RESULT AND DISCUSSION:

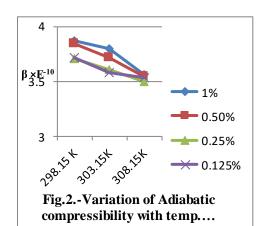
The experimentally determined values are listed in the following table.

Table 1: Density, Viscosity and Velocity (at frequency 4 mhz) of TridaxProcumben root extract solution in dist. water solvent.

| Sr. No. | Conc. (%) | Temp. (K) | Density (d <sub>s</sub> ) (Kg m <sup>-3</sup> ) | Velocity (v <sub>s</sub> ) (m/s) | Viscosity (η) (Kg m <sup>-1</sup> s <sup>-2</sup> ) |
|---------|-----------|-----------|-------------------------------------------------|----------------------------------|-----------------------------------------------------|
|         |           | 298.15    | 1001.0                                          | 1607.1                           | 8.210 E <sup>-4</sup>                               |
| 1       | 1%        | 303.15    | 999.5                                           | 1622.7                           | 7.476 E <sup>-4</sup>                               |
|         |           | 308.15    | 997.8                                           | 1678.3                           | 6.709 E <sup>-4</sup>                               |
|         |           | 298.15    | 996.8                                           | 1615.1                           | 7.377 E <sup>-4</sup>                               |
| 2       | 0.5%      | 303.15    | 995.5                                           | 1644.5                           | 7.192 E <sup>-4</sup>                               |
|         |           | 308.15    | 994.4                                           | 1685.5                           | 6.590 E <sup>-4</sup>                               |
|         |           | 298.15    | 996.8                                           | 1645.5                           | 7.680 E <sup>-4</sup>                               |
| 3       | 0.25%     | 303.15    | 996.1                                           | 1667.2                           | 7.292 E <sup>-4</sup>                               |
|         |           | 308.15    | 995.5                                           | 1695.5                           | 6.709 E <sup>-4</sup>                               |

Volume No. 11, Issue No. 08, August 2022

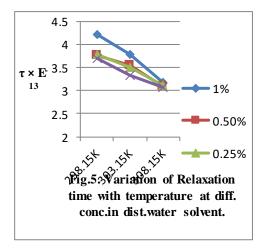


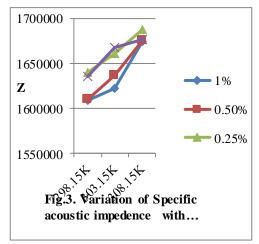



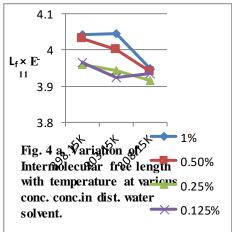

|   |        | 298.15 | 995.8 | 1643.1 | 7.486 E <sup>-4</sup> |
|---|--------|--------|-------|--------|-----------------------|
| 4 | 0.125% | 303.15 | 994.3 | 1677.2 | 7.000 E <sup>-4</sup> |
|   |        | 308.15 | 993.5 | 1688.3 | 6.552 E <sup>-4</sup> |

Table 2. Acoustical parameters of TridaxProcumbens leaf extract in dist. water solvent at 4 mhz

| Sr.N | Conc. | Temp.        | Adiabatic              | Specific                           | Intermolecular         | Relaxation             |
|------|-------|--------------|------------------------|------------------------------------|------------------------|------------------------|
| 0.   | (%)   | ( <b>K</b> ) | Compressibil           | Acoustic                           | free length            | time                   |
|      |       |              | iy                     | Impedence                          |                        |                        |
|      |       |              |                        | Kg M <sup>-2</sup> S <sup>-1</sup> |                        |                        |
| 1.   | 1%    | 298.15       | 3.867 E <sup>-10</sup> | 1608707                            | 4.044 E <sup>-11</sup> | 4.222 E <sup>-13</sup> |
|      |       | 303.15       | 3.799 E <sup>-10</sup> | 1621888                            | 4.045 E <sup>-11</sup> | 3.777 E <sup>-13</sup> |
|      |       | 308.15       | 3.558 E <sup>-10</sup> | 1674607                            | 3.950 E <sup>-11</sup> | 3.174 E <sup>-13</sup> |
| 2.   | 0.5%  | 298.15       | 3.845 E <sup>-10</sup> | 1609931                            | 4.033 E <sup>-11</sup> | 3.772 E <sup>-13</sup> |
|      |       | 303.15       | 3.714 E <sup>-10</sup> | 1637099                            | 4.000 E <sup>-11</sup> | 3.552 E <sup>-13</sup> |
|      |       | 308.15       | 3.539 E <sup>-10</sup> | 1676061                            | 3.939 E <sup>-11</sup> | 3.101 E <sup>-13</sup> |
| 3.   | 0.25  | 298.15       | 3.705 E <sup>-10</sup> | 1640234                            | 3.959 E <sup>-11</sup> | 3.784 E <sup>-13</sup> |
|      | %     | 303.15       | 3.611 E <sup>-10</sup> | 1660697                            | 3.944 E <sup>-11</sup> | 3.502 E <sup>-13</sup> |
|      |       | 308.15       | 3.494 E <sup>-10</sup> | 1687870                            | 3.914 E <sup>-11</sup> | 3.117 E <sup>-13</sup> |
| 4.   | 0.125 | 298.15       | 3.719 E <sup>-10</sup> | 1636198                            | 3.966 E <sup>-11</sup> | 3.702 E <sup>-13</sup> |
|      | %     | 303.15       | 3.575 E <sup>-10</sup> | 1667639                            | 3.924 E <sup>-11</sup> | 3.328 E <sup>-13</sup> |
|      |       | 308.15       | 3.531 E <sup>-10</sup> | 1677326                            | 3.935 E <sup>-11</sup> | 3.076 E <sup>-13</sup> |





Volume No. 11, Issue No. 08, August 2022

www.ijarse.com









The ultrasonic velocity of 1%, 0.5%, 0.25%, 0.125% *TridaxProcumbens*root extract was measured at 298.15K, 303.15K, 308.15K at 4 MHz frequency. From Table no.1& fig.no.1, shows that ultrasonic velocity increases with decrease in concentration this behavior is different from the ideal mixture behavior and can be attributed to intermolecular interaction in the system. From table no. 2 and fig.2 it is observed that the adiabatic compressibility increases with increase in concentration this may be due to decrease in number of compressible molecules. From Fig.3 it is seen that the specific acoustic impedence also decreases with increase in concentration, this decrease in acoustic impedence shows decrease in molecular packing in the medium which gives the possibility of molecular interaction due to hydrogen bonding between solute and solvent. "The intermolecular free length is the distance between the surfaces of the neighbouring molecules". Fig.4. shows that intermolecular free length increases with increase in concentration this is due to increase in the number of bulky solute particals and repulsive forces existed between them.

Relaxation time is the "characteristic time in which a system relaxes under certain changes in external conditions". Fig 5.shows that as concentration increases relaxation time increases it is because of the relaxation process showing the presence of strong molecular interactions.

Volume No. 11, Issue No. 08, August 2022 www.ijarse.com



#### **CONCLUSION:-**

From the above study we can conclude that for this system ultrasonic velocity incress with decrease in concentration because of intermolecular interaction. Evaluation of adiabatic compressibility, specific acoustic impedence, relaxation time, intermolecular free length clearly shows strong solute – solvent interaction.

#### **REFERENCES:-**

- 1. A.B. Dhote, S.S.Aswale, S.R.Aswale., Comparative Studies of Dichlofenac Sodium and (Paracetamol+DichlofenacSodium) Ultrasonically at 303.15k, Int. Res. J. of Science & Engineering, 2020; Special Issue A7: 864-868
- 2. S.Parveen, D.Shukla, S.Singh, K.P.Singh, M.Gupta and J.P.Shukla, Ultrasonic velocity, density, viscosity and their excess parameters of the binary mixtures of tetrahydrofuran with methanol and o-cresol at varying temperatures, App. Acous., 70(3), 507 2009.
- 3. M.Umadevi, R.Kesavasamy, K.Rathina and R.Mahalakshmi, "Studies on liquid-liquid interactions of some ternary mixtures by density, viscosity and ultrasonicspeed measurements", J. Mol. Liq., 219,820 2016.
- 4. N.Nayak M.I.Aralagupp, and T.M.Aminabhavi, Density, viscosity, refractive index, and speed of sound in the binary mixtures of 1,4- dioxane + ethyl acetoacetate, + diethyl oxalate, + diethyl phthalate, or + dioctyl phthalate at 298.15, 303.15, and 308.15 K, Journal of Chemical and Engineering Data, 48, (6), 1489–1494,2003.
- 5. W. V. Steele, R. D.Chirico , A. B.Cowell, S. E.Knipmeyer, and A.Nguyen, Thermodynamic properties and ideal-gas enthalpies of formation for methyl benzoate, ethyl benzoate, (R)-(+)-limonene, tert-amyl methyl ether, transcrotonaldehyde, and diethylene glycol, Journal of Chemical and Engineering Data, vol. 47, no. 4, pp. 667–688, 2002.
- 6. J.C.R.Reis, A.F.S.Santos, F.A.Disas, I.M.S.Lampreia,: Correlated volume fluctuations in binary liquid mixtures from isothermal compressions at 298.15 K. Chem. Phys. Chem. 9, 1178–1188, 2008.
- 7. T.S.Khasanshin,, A.P.Khasanshin,: The thermodynamic properties of n-tetradecane in liquid state. High Temp. 40(2), 207–211 (2002)7 T. N. Srivastava, R. P. Singh and B. Swaroop, Ind. J. Pure Phys., 21, 67-72 1983.
- 8. A.Kumar, U.Srivastava, A.K.Singh, K.Srivastava, R.K.Shukla,: Sound velocity and isentropic compressibility of binary liquid systems from various theoretical models at temperature range 293.15 to 313.15 K. Can. Chem. Trans. 4(2), 157–167 (2016)9
- 9.R.R.Tayde, A.S.Chandami and M.P.Wadekar, Ultrasonic investigation and molecular interactions studies in substituted oxoimidazoline drugs solutions at different concentrations, Journal of chemical and Pharmaceutical Research, 6(9), 114-121,2014.
- 10. K. Rathina, M. Umadevi, C.Senthamilselvi, RamalathaMarimuthu, Research on solvent ion interactions in the inorganic liquid mixtures by ultrasonic technique, International journal of Engineering and Advanced technology, 8, 151-159,2019.