Volume No. 11, Issue No. 02, February 2022

IJARSE ISSN 2319 - 8354

www.ijarse.com

EXISTENCE AND NON-EXISTENCE OF ECCENTRICITY CORDIAL LABELING OF GRAPHS

P. MANISHA REBECCA¹ AND G. PRISCILLA PACIFICA²

ABSTRACT. Let G be a (p,q)-connected graph. We define a map Ψ from the set of all vertices of G to the set $\{0,1\}$ in such a way that, a vertex x has the label 1 if the eccentricity of that vertex is odd, and 0 otherwise. For each edge e=xy, we put the label as the absolute difference of labels of its end vertices. We can say Ψ , a eccentricity cordial labeling if $|\Psi_{ev}(0) - \Psi_{ev}(1)| \leq 1$ where $\Psi_{ev}(0)$, $\Psi_{ev}(1)$ respectively denote the number of vertices and edges together labelled by 0 and by 1. A graph which satisfies these labeling conditions will be called as eccentricity cordial graph. In this manuscript, we have studied some classes of graphs and their eccentricity cordial nature.

1. Introduction

Let G = (V, E) be a (p, q) graph. Throughout this paper we have considered only simple, connected, and undirected graphs. The number of vertices of G is called the order of G and the number of edges of Gis called the size G. Graph labeling has wide range of applications, see [2]. The graph labeling problem was introduced by Rosa called graceful labeling [4] in the year 1967. In 1980, Cahit [1] introduced the cordial labeling of graphs. Motivated by this labeling we introduce here a new type of graph labeling, called eccentricity cordial labeling. Also here we discuss the nature of this labeling on some standard graphs. Let xbe any real number. Then the symbol [x] stands for the largest integer less than or equal to x and [x] stands for the smallest integer greater than or equal to x. Terms and definitions not defined here are used in the sense of Harary [3].

2. Preliminaries

Definition 2.1. [3] The distance d(u, v) between two points u and v in a connected graph G is the length of a shortest path joining them.

²⁰⁰⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. eccentricity of a vertex, complete graph, complete bipatite graph, corona graphs, join graphs.

Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

P. MANISHA REBECCA AND G. PRISCILLA PACIFICA

Definition 2.2. [3] The eccentricity e(v) of a vertex v in a connected graph G is max d(u, v) for all u in G.

Definition 2.3. The Cartesian product of two graphs G_1 and G_2 is the graph $G_1 \square G_2$ with the vertex set $V_1 \square V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent whenever $[u_1 = v_1 \text{ and } u_2 \text{ adj } v_2]$ or $[u_2 = v_2 \text{ and } u_1 \text{ adj } v_1]$.

Definition 2.4. The graph $B_m = S_m \square K_2$ is called a book graph, where S_m is the star with m + 1 vertices.

Definition 2.5. The notation C(n; k) denotes the cycle C_n with k cords sharing a common endpoint called the apex. The graph graph C(n; n-3) is called a shell. Notice that the shell C(n; n-3) is the same as the fan $F_n = P_n + K_1$. A shell-butterfly graph SB_n is a one-point union of two shells C(n; n-3) of with two pendent edges at the apex.

Example 2.1. A shell-butterfly graph SB_7 is given below.

Fig.1

Definition 2.6. Let $C_n^{(t)}$ denote the one-point union of t cycles of length n. The graph $C_3^{(t)}$ is called a *friendship graph*.

Definition 2.7. Jelly fish graphs J(m, n) obtained from a cycle C_4 : uxvyu by joining x and y with an edge and appending m pendent edges to u and n pendent edges to v.

Definition 2.8. The graph obtained by joining two disjoint cycles $u_1u_2 \dots u_nu_1$ and $v_1v_2 \dots v_nv_1$ with an edge u_1v_1 is called dumbbell graph Db_n .

Definition 2.9. The triangular snake T_n is obtained from the path P_n by replacing each edge of the path by a triangle C_3 .

Definition 2.10. The armed crown AC_n is obtained from the cycle C_n with $V(AC_n) = V_i(C_n) \cup \{v_i, w_i : 1 \le i \le n\}$ and $E(AC_n) = E(C_n) \cup \{u_i w_i, w_i v_i : 1 \le i \le n\}$.

Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

EXISTENCE AND NON-EXISTENCE OF ECCENTRICITY CORDIAL LABELING OF GRAPHS

Definition 2.11. For a (p, q)-connected graph, we construct a map $f : V(G) \rightarrow \{0, 1\}$ by

$$f(u) = \begin{cases} 0 & \text{if } e(u) \text{ is even} \\ 1 & \text{otherwise} \end{cases}$$

For each edge uv we assign |f(u) - f(v)|. The graph G is said to have an eccentricity cordial labeling if $|f_{ev}(0) - f_{ev}(1)| \le 1$, where $f_{ev}(i)$, $i \in$ $\{0,1\}$ denote the number of vertices and edges labelled by $i, i \in \{0,1\}$. In this case, G is called as eccentricity cordial graph.

3. Main Results

Theorem 3.1. The book graph B_m is not eccentricity cordial, for all m.

Proof. Let $V(B_m) = \{u, v\} \cup \{u_i, v_i : 1 \le i \le m\}$ be the vertex set of B_m and $E(B_m) = \{uu_i, vv_i, u_iv_i : 1 \le i \le m\} \cup \{uv\}$ be the edge set of B_m . The eccentricities of each vertex of the book graph is given below:

$$e(x) = \begin{cases} 3 & \text{if } x = u_i \text{ or } x = v_i \\ 2 & \text{if } x = u \text{ or } x = v \end{cases}$$

Using this data, we conclude that, the vertices u_i , v_i have the label 1, and the vertices u, v have the label 0. Then the edges uu_i , vv_i , where $1 \le i \le m$, are labelled by 1 whereas u_iv_i where $1 \le i \le m$, are labelled by 0. Also the edge uv has the label 0. Thus, we have the total number of vertices and edges labelled by 0 is n + 2 and that by 1 is 4n. This gives the non-existence of eccentricity cordial labeling.

Theorem 3.2. Shell-butterfly graph SB_n is not eccentricity cordial.

Proof. Let $V(SB_n) = \{u, v, w\} \cup \{u_i, v_i : 1 \le i \le n-1\}$ and $E(SB_n) = \{uv, uw\} \cup \{uu_i, uv_i : 1 \le i \le n-1\} \cup \{u_iu_{i+1}, v_iv_{i+1} : 1 \le i \le n-2\}$. Note that the eccentricities of the vertex u is 1 and all the remaining vertices have eccentricity 2. It follows that u receives the label 1 and the other vertices receive the label 0. It is easy to check that the number of vertices and edges labelled by 1 is 2n+3 and by 0 is 4n-4. It follows that shell-butterfly graph SB_n is not eccentricity cordial.

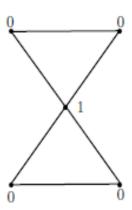
Theorem 3.3. Friendship graph $C_3^{(t)}$ is eccentricity cordial if and only if t > 2.

Proof. Let u be the vertex obtained by joining t copies of the cycle C_3 . Let the i^{th} cycle be C_i : $uu_1^iu_2^iu$. As eccentricity of u is 1 and that of remaining vertices is 2, they receive the labels 1, 0 respectively. Here the edges $u_1^iu_2^i$ ($1 \le i \le t$) contributes t number of zeros and the edges $u_1u_1^i$, $u_1u_2^i$ contribute each t number of zeros. It follows that

Volume No. 11, Issue No. 02, February 2022 www.ijarse.com

P. MANISHA REBECCA AND G. PRISCILLA PACIFICA

the total number of vertices and edges labelled by 0 is 3t and that by 1 is 2t + 1. Thus $|\Psi_{ev}(0) - \Psi_{ev}(1)| = t - 1$. Hence t = 2 or t = 1. Conversely suppose t = 1 or t = 2, then the following figures illustrates the existence of eccentricity cordial labeling of both the cases.



Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

EXISTENCE AND NON-EXISTENCE OF ECCENTRICITY CORDIAL LABELING OF GRAPH5

Theorem 3.4. Dumbbell graph Db_n is not eccentricity cordial for all n.

Proof. The proof is divided into two cases according to the nature of

Case 1. $n \equiv 0 \pmod{2}$.

In this case, the eccentricity of each vertex is as follows:

$$e(u_i) = e(v_i) \begin{cases} \frac{n}{2} + i & \text{if } 1 \leq i \leq \frac{n}{2} + 1 \\ \frac{3n+4}{2} - i & \text{if } \frac{n}{2} + 2 \leq i \leq n \end{cases}$$

Note that for $n \equiv 2 \pmod{4}$ each odd indexed vertex has even eccentricity and an even indexed vertex has odd eccentricity. Thus they are labeled by 0 and 1 respectively. Similarly for, $n \equiv 0 \pmod{4}$, each odd indexed vertex has eccentricity odd and even indexed vertex has eccentricity even. So they are labeled by 1 and 0 respectively. It follows that the number of vertices and edges labeled by 0 is n + 1 and the number of vertices and edges labeled by 1 is 3n. Hence in this case Db_n is not an eccentricity cordial graph.

Case 2. $n \equiv 1 \pmod{2}$.

Here, the eccentricity of each vertex is as follows:

$$e(u_i) = e(v_i) \left\{ \begin{array}{ll} \frac{n-1}{2} + i & \text{if} \quad 1 \leq i \leq \frac{n+1}{2} \\ \frac{3n+3}{2} - i & \text{if} \quad \frac{n+3}{2} \leq i \leq n \end{array} \right.$$

A similar argument shows that, there doesn't exist an eccentricity cordial labeling. Thus, Db_n is not an eccentricity cordial graph, for all values of n.

Theorem 3.5. The jelly fish graph J(m, n) is not a eccentricity cordial graph, for all values of m, n.

Proof. Let $u_i(1 \le i \le m)$ be the appended vertices to u and $v_j(1 \le i \le n)$ be the appended vertices to v. The pendent vertices u_i , v_j of this graph have eccentricity 4. The vertices u and v have eccentricity 3. Also x, y have eccentricity 2. It follows that u_i , v_j , x and y receive the label 0 and the u, v receive the label 1. This implies the number of vertices and edges labeled by 1 and by 0 differ by 3. Hence J(m, n) is not a eccentricity cordial graph.

Theorem 3.6. Triangular Snake T_n , is eccentricity cordial iff $n \leq 4$.

Proof. Let $V(T_n) = \{u_i, v_j : 1 \le i \le n, 1 \le j \le n-1\}$ and $E(T_n) = \{u_iu_{i+1}, u_iv_i, v_iu_{i+1} : 1 \le i \le n-1\}$. The existence of eccentricity cordial labeling on T_2 , T_3 and T_4 are displayed in figure 3

Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

P. MANISHA REBECCA AND G. PRISCILLA PACIFICA

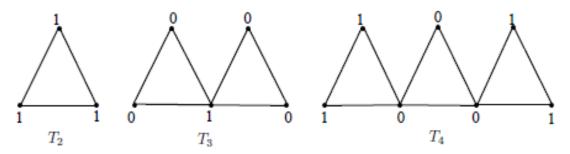


Figure 1

Conversely suppose n > 4, we divide the proof into two cases due to the nature of n.

Case 1. n is even.

Here the eccentricity of the each vertex is given below:

$$e(u_i) = \begin{cases} n-i & \text{if } 1 \le i \le \frac{n}{2} \\ i-1 & \text{if } \frac{n}{2}+1 \le i \le n \end{cases}$$

and

$$e(v_i)$$
 $\begin{cases} n-i & \text{if } 1 \leq i \leq \frac{n}{2} \\ i & \text{if } \frac{n}{2}+1 \leq i \leq n-1 \end{cases}$

So, the vertices $u_2, u_4, u_6, \ldots u_{\frac{n}{2}}, u_{fracn+22}, u_{fracn+62}, u_{fracn+102}, \ldots, u_{n-1}$ are labelled by 0. The remaining vertices of the path P_n are labelled by 1. Also the vertices $v_1, v_3, v_5, \ldots, v_{n-1}$ are labelled by 1 and the remaining unlabelled $v_i^{'s}$ are labelled by 0. It follows that n-2 edges of the path are labelled by 1 and the edge joining $u_{\frac{n}{2}}$ and $u_{fracn+22}$ received the label 0. On the other hand the edges joining u_i and v_i , $1 \le i \le \frac{n}{2}$ received the label 0 and the edges joining u_i and v_i , $\frac{n}{2}+1 \le i \le n-1$ received the label 1. Similarly, we can identify the labels of the remaining edges of T_n . It follows that f(1) = 3n-4 and f(0) = 2n. This implies the total number of vertices and edges labelled by 1 and that by 0 differ by at least 2.

Case 2. n is odd.

In this case, the eccentricity of the each vertex is given below:

$$e(u_i) = \begin{cases} n-i & \text{if } 1 \le i \le \frac{n+1}{2} \\ i-1 & \text{if } \frac{n+1}{2} + 1 \le i \le n \end{cases}$$

and

$$e(v_i) \left\{ \begin{array}{ll} n-i & \text{if} & 1 \leq i \leq \frac{n-1}{2} \\ i & \text{if} & \frac{n+1}{2} \leq i \leq n-1 \end{array} \right.$$

As in case 1, we can find the labels of vertices and edges, then we get the number of vertices and edges labelled by 1 is 3n-3 and the number

Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

EXISTENCE AND NON-EXISTENCE OF ECCENTRICITY CORDIAL LABELING OF GRAPHS

of vertices and edges labelled by 0 is 2n-1. Therefore, the number of vertices and edges labelled by 1 and labelled by 0 differ by at least 3. This shows that, for odd values of n, T_n is not eccentricity cordial.

Theorem 3.7. The armed crown AC_n is eccentricity cordial if and only if $n \equiv 0, 1 \pmod{4}$.

Proof. Let the vertex set and edge set of AC_n are as follows: $V(AC_n) = \{u_i, v_i, w_i : 1 \le i \le n\}$ and $E(AC_n) = \{u_nu_1\} \cup \{uu_{i+1} : 1 \le i \le n-1\} \cup \{u_iv_i, v_iw_i : 1 \le i \le n\}$. Note that, if n is even then

$$e(u) \begin{cases} \frac{n+4}{2} & \text{if } u = u_i \\ \frac{n+6}{2} & \text{if } u = v_i \\ \frac{n+8}{2} & \text{if } u = w_i \end{cases}$$

and if n is odd then

$$e(u)$$

$$\begin{cases}
\frac{n+3}{2} & \text{if } u = u_i \\ \frac{n+5}{2} & \text{if } u = v_i \\ \frac{n+7}{2} & \text{if } u = w_i
\end{cases}$$

The labels of the vertices are differ according to their nature. So we can split up the values of n into the following four cases.

Case 1. $n \equiv 0 \pmod{4}$.

Here, all $u_i^{'s}$ are labelled by 0, all the $v_i^{'s}$ are labelled by 1 and all the $w_i^{'s}$ are labelled by 0 and that by 1 are equal to 3n. So their difference is zero.

Case 2. $n \equiv 1 \pmod{4}$.

The labels are given to the vertices of AC_n similar to that of case 1. Here also the difference between the total number of vertices and edges with different labels is zero.

Case 3. $n \equiv 2 \pmod{4}$.

Here all $u_i^{'s}$ are labelled by 1, all the $v_i^{'s}$ are labelled by 0 and all the $w_i^{'s}$ are labelled by 1. One can easily check that the number of vertices and edges labelled by zero is 2n and that by 1 is 4n. It follows that, their difference is greater that > 6.

Case 4. $n \equiv 3 \pmod{4}$.

A similar arguement to case 3, shows that there doesn't exist an eccentricity cordial labeling of AC_n .

References

- I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23(1987), 201-207.
- J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) #Ds6.
- [3] F.Harary, Graph theory, Addision wesley, New Delhi (1969).

Volume No. 11, Issue No. 02, February 2022

www.ijarse.com

P. MANISHA REBECCA AND G. PRISCILLA PACIFICA

[4] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967) 349-355.

1. Research Scholar

Registration No. 19212212092003

Department of Mathematics

St. Mary's College (Autonomous)

AFFILIATED TO MANONMANIAM SUNDARANAR UNIVERSITY

Тноотникирі - 628 001

Tamilnadu, India.

E-mail address: manisharebecca82@gmail.com

2. Assistant Professor

Department of Mathematics

St. Mary's College (Autonomous)

Тноотникирі - 628 001

Tamilnadu, India.

E-mail address: pricillamelwyn@gmail.com