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Abstract— 

Wireless sensor networks (WSNs) are highly resource 

constrained in terms of power supply, memory capacity, 

communication bandwidth, and processor performance. 

Compression of sampling, sensor data, and communications 

can significantly improve the efficiency of utilization of 

three of these resources, namely, power supply, memory 

and bandwidth. Recently, there have been a large number of 

proposals describing compression algorithms for WSNs, 

The main objective of this paper is to compress the 

environmental data which can be predictable for given data 

sample.In this paper we are going to use CS 

algorithm/Lossy compression that works in its maximum 

efficiency when the nature of data is sparse and hence to 

generate sparsed data a prediction filter is 

used.Reconstruction of data will be performed at the 

decoder.Implementation using NI-WSN module will be 

done  

 

Keywords—Wireless sensor networks, compression 

I. Introduction 

Wireless sensor networks (WSNs) are critically resource 

constrained by limited power supply, memory, processing 

performance, and communication bandwidth [Akyildiz et al. 

2002]. Due to their limited power supply, energy 

consumption is a key issue in the design of protocols and 

algorithms for WSNs. Typically, energy consumption is 

dominated by radio communication [Pottie and Kaiser 2000; 
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Barr and Asanovic].The energy consumption of radio 

communication is directly proportional to the number of bits 

of data, that is, data traffic, transmitted within the network. 

Therefore, using compression to reduce the number of bits 

to be transmitted has the potential to drastically reduce 

communication energy costs and so increase network 

lifetime. Similarly, sampling-level [Candes and Wakin 

2008; Haupt et al. 2008] ` and communication-level [Lu et 

al. 2010; Tulone and Madden 2006] compression can reduce 

energy costs in WSNs and increase network lifetime. In 

most cases, the savings due to compression are greater than 

linear, since reducing the number of bits transmitted has the 

knock-on effect of reducing link-level congestion, which in 

turns reduces the number of collisions and re-tries in the 

network. Consequently, researchers have been investigating 

optimal algorithms for compression of sensed data, 

sampling, and communications in WSNs. Unfortunately, 

most conventional compression algorithms are not directly 

applicable to WSNs. First, in conventional compression 

approaches, the key objective is to save storage, not energy. 

In WSNs, energy is more important than memory. Thus, 

energy saving is the primary evaluation metric. Second, it 

has been shown [Sadler and Martonosi 2006] that, in terms 

of energy consumption, transmission of just one byte of data 

is equivalent to execution of roughly four thousand 

(Chipcon CC2420) to two million (MaxStreamXTend) 

instructions. These calculations only consider local energy 

consumption at the compressing node; network-wide energy 

savings due to compression can further compensate for the 

energy expense of compression. Thus, compression 

algorithms with some degree (low or medium) of 

computational complexity are worth exploring. On the other 

hand, excessively computationally complex algorithms are 

not worth pursuing. Finally, conventional compression 

algorithms, originally designed for desktops or servers, must 

be restructured to reduce code size and dynamic memory 

usage due to the limited memory capacity of WSN nodes—

typically less than 50 kB for code memory and even less for 

data memory. Recently, researchers have addressed these 

challenges by adapting conventional compression 

techniques and, in some cases, by proposing new 

approaches002E 

I. LITRERAUTRE REVIEW 

 

The observation of researchers in recent years has deployed 

for the utilization of data aggregation methods on basis CS 

for enhancing the lifetime of network for the reduction of 

data transmission and traffic balance across the entire sensor 

network. 

Feizi et al., [10] shown as the scheme of data transmission, 

firstly it can use sensing compression for data compression, 

it can be applied and simulated for the coding of network. 

Since these two methods are not dependent among 

themselves, this cannot be utilized fully for the combination 

of two algorithms and its characteristics which can further 

enhance signal processing and its efficiency respectively. 

 Luo C. et al in [11] determines the compression of sensing 

in multi-hop wireless sensor network for data collection in 

large-scale. The reduction of traffic in the network can be 

more effective and the load balancing can be maintained 

which can prolong the execution time of the network in this 

method. This author also addresses the random projection 

which is dense will not show execution enhancement of the 

networks that also furnishes the strategy for data collection 

of sensing in hybrid compression.  

Vuranet al.[12] indicated in sensor networks, the addressed 

circumstances have high spatial and correlated temporally 

by sensors. The sparsity of sensor can results in these 

correlations with the sensor readings also with the wavelet 

transform with sparse requirements to satisfy the CS theory.  

In [13] the authors address the framework of Compressive 

Data Gathering (CDG) to utilize the intersignals of sparsity 

in fashion of multi-hop in wide dense in the sensor 
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networks. Matrix Completion (MC) is used to reconstruct 

full data matrix from part of its entries. In recent 

developments, E. J. candès et al. proves that this approach 

can recover missing entries from an incomplete set of 

entries, when the data matrix is at lower rank or at low rank 

matrix approximately.  

Wang et al., in [14] indicates the scheme of energy 

efficiency: the random vector of sparse has been generated 

by each node. The adding up of vector from previous 

node(s) can result in next hop node for forwarding. The total 

number of communications by generating Sparse Random 

Projections (SRP) has been reduces by this scheme. 

Although, the frequent changes of routing paths leads to 

SRP, which are difficult to achieve in wireless sensor 

networks.  

 

II. PROPOSED OBJECTIVE 

 

• In the proposed system, we are using compressive 

sensing(CS) algorithm/Lossy compression which 

reduces the size of the data. 

• The CS shows that sparse signals and information 

in WSNs can be exactly reconstructed from a small 

number of random linear measurements.  

• This project provides most recent survey of CS 

theory as it is applied in WSN. 

• Here few environmental data samples are 

considered, found MSE and Autocorrelation for 

each data set. 

• The data sets which are giving the autocorrelation 

ranges from 0.2 to 0.9 and MSE <0.5 are used for 

prediction purpose. 

• The data sets which are giving better results, 

should be given to CS algorithm such that it 

reduces the size of the data. 

 

III. COMPRESSED SENSING 

Three inherent inefficiencies of transform coding motivate 

the need for alternative compression techniques: First, 

compressing high-dimensional signal means processing a 

large number of samples n. Second, the encoder must 

compute all transform coefficients θ(n), even though it will 

discard all but K(n K) of them. Finally, the encoder must 

encode the indices of large coefficients. This increases the 

coding rate, since these indices change with each signal. In 

this context, compressed sensing (CS) has been proposed as 

This section describes the high level architecture for the 

smart parking system along with a mathematical model. The 

parking system that we propose comprises of various actors 

that work in sync with one another. Below is the 

mathematical model that defines our smart parking system. 

a potential alternative, since the number of samples required 

(i.e., proposed number of sensors that need to transmit data), 

depends on the characteristics (sparseness) of the signal 

[Donoho 2006, Candes et al. 2006, Candes and Romberg 

2007].  

 

Sparsity arises in WSN data due to spatiotemporal 

correlations within the sensor readings. The asymmetric 

computational nature of CS also makes it attractive for 

WSN data compression. In CS, most computation takes 

place at the decoder (sink), rather than at the encoder 

(sensors), thus sensors with minimal computational 

performance can efficiently encode data. The CS field (also 

known as compressive sampling) field has existed for at 

least four decades, but recently (about 2004) researchers’ 

interest in the field has exploded due to several important 

results obtained by Donoho [2005, 2006] and Candes et al. 

[2006]. CS is a novel sensing/sampling paradigm that goes 

against the traditional understanding of data acquisition. 

These works on CS milestone showed that if a signal has a 

sparse representation in one basis, then it can be recovered 
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from a small number of projections onto a second basis, 

which is incoherent with the first one.  

 

A prerequisite for CS is a tractable recovery procedure that 

can provide exact recovery of a signal of length n and 

sparsity K. In other words, a signal can be written as a sum 

of K basis functions from some known basis, where n K. CS 

is promising for many applications, especially in sensing 

signals that have a sparse representation in some basis. 

Rather than sampling a K-sparse signal n times, only M = 

O(Klogn) incoherent measurements are sufficient. 

Moreover, at the encoder, no manipulation is required for 

the M measurements except, possibly, some quantization. 

For more advanced and detailed information on CS theory, 

readers are referred to Candes and Wakin [2008], ` Haupt et 

al. [2008], and Balouchestani et al. [2011] and references 

therein. 

 

 

• X=[x1 x2 ……xN] of matrix order 1*N 

• Y=[y1 y2 ……yM] of matrix order 1*M 

 

 

 

 

 

Fig.1 Flowchart of CS Algorithm 

 

• Newsampling theory that leverages 

compressibility. 

y= ϕ s      (1) 

y-reduced set of signal(x). 

ϕ -measurement matrix(ϕ 1, ϕ 2,…. Φm). 

s-sparse signal which is given as 

s= Ψ.x(2) 

Therefore, 

From (1) and (2), y= ϕ (Ψ.x) 

= [A].[x] 

=[y] 

A is CS Matrix. 

In the technique of Lossy compression, it decreases the bits 

by recognizing the not required information and by 

eliminating it.[3]The system of decreasing the size of the 

file of data is commonly termed as the data-compression, 

though its formal name is the source-coding that is coding 

get done at source of data before it gets stored or sent[4]. In 

these methods few loss of the information is acceptable. 

Dropping non-essential information from the source of data 

can save the storage area. The Lossy data-compression 

methods are aware by the researches on how the people 

anticipate data in the question. As an example, the 

humaneye is very sensitive to slight variations in the 

luminance as compare that there are so many variations in 

the color. The Lossy image compression technique is used 

in the digital cameras, to raise the storage ability with the 

minimal decline of the quality of picture. Similarly in 

theDVDs which uses the lossy MPEG-2 Video codec 

technique for the compression of the video. In the lossy 

audiocompression, the techniques ofpsychoacoustics have 

been used to eliminate the non-audible or less audible 

components of signal. 
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Data Sets(Samples) for M=100 Auto Correlation 

pH of soil 0.0677 

Di-Urnal Temperature 0.0254 

Sea Temperature 0.892 

Total Organic Carbon 0.2977 

 

Table-1   Data sets Sample(1200 ) 

 

IV. IMPLEMENTATION & WORKING 

 

In the Encoder part,first we have given 250 samples of 

data(x) to prediction filter(Auto Regression Model),this AR 

model will predict the values upto 1200(x’)(according to 

algorithm used in code).Now, the error values(e) will be 

calculated by subtracting the predicted values from the 

original data set. These error(e) values will be given to CS 

algorithm which reduces the size of the data (e’) (upto 

100).These  error values(e’) which are obtained from CS 

algorithm will be transmitted to receiver part i.e to CS 

reconstruction which will give the original error values(e). 

And this original error values will be given to prediction 

part which produce the original data(x). 

Data Compression ratio=US/CS 

                 US-Uncompressed size of data. 

                  CS-Compressed size of data. 

In this project, Uncompressed size is 1200 and compressed 

size is 100. 

Therefore, Compression ratio=1200/100 

                                              =12/1(read as 12 to 1) 

Space Savings =  (1 - CS/US)×100 

                        =  (1 – 100/1200)×100 

=91.67% 

 

 

Fig.2 Block Diagram of the System 

 

Fig.3.Temperature Wave Form 

 

DATA SET-ORIGINAL AND RECONSTRUCTION 

SIGNAL: 
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Fig.4 pH of soil 

 

 
 

Fig.5 DiurnalTemperature 

 
 

Fig.6 Sea Temperature 

 

 

 

Fig.7 Total Organic Carbon 
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V. CONCLUSION 

With the emergence of new technologies such as IoT where 

heterogeneous networking architectures need to be 

integrated to perform a variety of tasks, handling and 

integration of a large amount of data generated by the 

interaction of multiple factors/sensors keeps continuously 

challenging. In particular, future WSNs are expected to 

integrate with a variety of other networks such as wireless 

mesh networks, Wi-Fi, and vehicular networks to make 

smart platforms for IoT applications.  

Understanding the role of CS, as a tool to cope with the 

problem of data deluge, is of great importance in making 

such applications realizable.  

A Scalable Network Processing Exploiting Sparsity in 

Multiple Dimensions with Heterogeneous Data As 

discussed in Section III, in CS based data gathering, the 

attention is mainly given to the case when sparsity is 

defined with respect to a single vector; temporal as in III-A 

and spatial as in III-B. To exploit spatio-temporal 

correlation in data gathering, there are a few approaches as 

discussed in Section III-C which define sparsity in 2-

dimensions (2-D). Mainly, the ideas of Kronecker CS and 

matrix completion [14], [18] have been exploited under 

restricted assumptions such as centralized processing. 

Further, when exploiting Kronecker CS ideas, 

reconstruction is performed after transforming 2- D (spatio-

temporal) data to a single vector which requires large 

memory and computational costs. Such requirements are not 

desirable especially with on-line WSN applications.  
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