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ABSTRACT 

The aim of the present paper is to obtain a common fixed point theorem by using the notion of weakly 

compatible mappings in symmetric space satisfying a contractive condition of integral type and a property E.A. 

introduced by Aamri and El. Moutawakil [1]. Our result substantially extended the theorem of Aliouche [2]. 
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1. INTRODUCTION  

In 2002, Branciari [3] obtained a fixed point theorem for a single mapping satisfying an analogue of Banach's 

contraction principle for an integral type inequality. Aliouche [2] established a common fixed point theorem for 

weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type and a 

property (E.A.) introduced by Aamri and El. Moutawakil [1]. Boikanyo and Choudhary [4] prove some common 

fixed point theorem for pointwise R-weakly commuting mappings in symmetric space with atleast one pair non 

compatible satisfying a contractive condition of integral type. They also prove some results for weakly 

compatible mappings. 

Since then there have been many theorems dealing with mappings satisfying a general contractive condition of 

integral type. Some of these works are noted in B.E. Rhoades [8], Vijayaraju [10], Gairola & Rawat [5]. 

Inspired and motivated by the above results, using the concept of weak compatibility and commutativity, we 

prove some common fixed point theorem for six mapping in symmetric spaces, which generalize several known 

corresponding results.  

 We recall that a symmetric on a set X is a non negative real valued function d on X×X such that 

(i) d(x,y)=0 if and only if x=y, 

(ii) d(x,y)= d(y,x). 

 Let d be a symmetric on a set X and for r>0 and any xX, let B(x,r)={yX:d(x,y)<r}. A topology t(d) 

on X is given by Ut(d) if and only if for each xU, B(x,r)U for some r>0. A symmetric d is a semi-metric if 
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for each xX and each r>0, B(x,r) is a neighbourhood of x in the topology t(d). Note that limn d(xn,x)=0 if and 

only if xnx in the topology t(d). 

 

The following two axioms were given by Wilson [11]. Let (X,d) be a symmetric space.  

(W.3) Given {xn}, x and y in X, limn d(xn,x)=0 and limn d(xn,y)=0 implies x=y. 

(W.4) Given {xn}, {yn} and x in X, limn d(xn,x)=0 and limn d(xn, yn)=0 implies that  limn d(yn,x)=0. 

 It is easy to see that for a semi-metric d, if t(d) is a Hausdorff, then (W.3) holds.  

 

2. PRELIMINARIES  

In the sequel, we need a function F*={:R+ R+} such that  is a Lebesgue integrable mapping which is 

summable, non-negative and satisfy   0dtt

0




  for all >0 and  will be a function defined by, :R+ R+ 

such that 0<(t)<t for all t>0. 

Definition 1 Let S and T be two self mappings of a symmetric space (X,d). S and T are said to be compatible if 

limn d(STxn, TSxn)=0 whenever {xn} is a sequence in X such that limn d(Sxn, t)= limn d(Txn, t)=0 for 

some tX. 

Definition 2 Two self mappings S and T of a symmetric space (X,d) are said to be weakly compatible if they 

commute at their coincidence points. 

Definition 3 Let S and T be two self mappings of a symmetric space (X,d). We say that S and T satisfy the 

property (E.A) if there exist a sequence {xn} such that  

limn d(Sxn, t)= limn d(Txn, t)=0 for some tX. 

Example 1. Let X=[0,). Let d be a symmetric on X defined by d(x,y)=e
|y-x| 

–1 for all x, y in X. Define S, T:XX 

as follows: 

 Sx = 2x +1 and Tx = x +2, for all xX. 

Note that the function d is not a metric. Consider the sequence xn=1+1/n, n=1,2,… 

Clearly  limn d(Sxn, 3)= limn d(Txn, 3)=0. 

Then S and T satisfy property (E.A), but S and T are not weakly compatible. 

Definition 4 Let (X,d) be a symmetric space. We say that (X,d) satisfy property (H.E) if given {xn}, {yn} and x 

in X, limn d(xn, x)=0 and limn d(yn, x)=0 implies limnd(xn,yn)=0. 

Example 2.  

(i) Every metric space (X,d) satisfies property (H.E). 

(ii) Let X=[0,) with the symmetric function d defined in Example 1. It is easy to see that the symmetric space 

(X,d) satisfies property (H.E).  
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3. MAIN RESULT 

Theorem 3.1   Let (X,d)  be a symmetric space that satisfy (W.3), (W.4) and H.E. Let A, B, S, T, I and J be self 

mappings on X,satisfying the following conditions: 

(i) I(X)  AB(X),  J(X) ST(X), 

(ii)  
 

 
 














 

y,xM

0

Jy,Ixd

0

dttdtt    … (1) 

for all x,yX, F* and  

M(x,y)=max{d(STx, ABy),[ d(Ix,STx)+d(Jy,ABy)],
2

1
[d(Ix,ABy)+d(Jy,STx)]} 

(iii) I(X) or J(X) is sequentially complete subspace of X. 

(iv) (I,ST) and (J,AB) are weakly compatible and (I,ST) or (J,AB) satisfied the property (E.A). 

 Then AB, ST, I and J have a unique common fixed point. 

 Furthermore, if the pair (I,S), (I,T), (S,T), (J,A), (J,B) and (A,B) are commuting mappings. Then A, B, S, 

T, I and J have a unique common fixed point in X. 

Proof: Suppose that, I and ST satisfy property (E.A.). Then there exists a sequence {xn} in X such that limn 

d(Ixn,z)= limn d(STxn,z)=0  for some zX. Therefore, by (H.E.) limn d(Ixn, STxn)=0. Since  I(X)  AB(X),  

there exists in X a sequence {yn} such that Ixn=AByn. Hence, limn d(AByn,z)=0. Let us show that limn 

d(Jyn,z)=0. 

 Suppose that limn Sup d(Ixn, Jyn)>0. Then, using (1), we have  

  
 

 
 














 



ny,nxM

0n

nJy,nIxd

0n
dttSuplimdttSuplim     

where (xn,yn)=max{d(STxn,AByn),[d(Ixn,STxn)+ d(Jyn,AByn)],
2

1
[d(Ixn,AByn)+d(Jyn,STxn)]} 

 =max{0,[ 0+  d(Ixn,Jyn)],
2

1
[0 + d(Jyn,Ixn)]}  

 

 
 

 
 

 
 




















nJy,nIxd

0n

nJy,nIxd

0n

nJy,nIxd

0n
dttSuplimdttSuplimdttSuplim   

which is a contradiction. Hence  
 


nJy,nIxd

0

dtt =0 and limn d(Ixn, Jyn)=0. By (W.4), we have limn d(Jyn, 

z)=0. 

 Suppose that, I(X) is complete subspace of X and I(X)  AB(X),  then there exists uX such that ABu=z. 

We have, 
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 limnd(Jyn,ABu)=limnd(Ixn,ABu)=limnd(STxn,ABu)=limnd(AByn,ABu)=0. 

Now, we claim that ABu=Ju. If not, then from (1), we have 

   
 

 
 














 

u,nxM

0

Ju,nIxd

0

dttdtt    

where M(xn,u) =max{d(STxn,ABu),[d(Ixn,STxn)+ d(Ju,ABu)],
2

1
[d(Ixn,ABu)+d(Ju,STxn)]} 

 =max{0,[0+ d(Ixn,Ju)],
2

1
[0 + d(Ju,Ixn)]} 

 =d(Ixn,Ju). 

 
 

 
 














 

Ju,nIxd

0

Ju,nIxd

0

dttdtt  . Letting n, we obtain  
 

0dttlim

Ju,nIxd

0n



 , which implies limn d(Ixn, 

Ju)=0. By (W.3), we have Ju=z=ABu. 

 Using the weak compatibility of AB and J implies that ABJu=JABu i.e. ABz=Jz. On the other hand  J(X) 

 ST(X), there exists vX such that Ju=STv. 

 We claim that STv=Jv. If not then from (1), we have 

 

  
 

 
 

 
 














 

u,vM

0

Ju,Ivd

0

Iv,STvd

0

dttdttdtt   

where M(v,u) = max{d(STv,ABu),[ d(Iv,STv)+ d(Ju,ABu)],
2

1
[d(Iv,ABu)+d(Ju,STv)]} 

 =max{ d(Ju,Ju), [d(Iv,Ju)+  d(Ju,Ju)],
2

1
[ d(Iv,Ju) + 0]} 

 =d(Iv,Ju). 

 
 

 
 

 
 

 
Iv,STvd

0

Iv,STvd

0

Iv,STvd

0

dttdttdtt   which is a contradiction. Hence  
 



Iv,STvd

0

dtt =0 which implies 

that d(STv,Iv)=0. Then z=Ju=ABu=STv=Iv. 

 Now using the weak compatibility of ST and I implies that STIv=ISTv i.e. STz=Iz. Let us show that z is 

a common fixed point of AB, ST, I and J. 

 If z Jz, using (i), we get 

  
 

 
 

 
 














 

z,vM

0

Iz,Ivd

0

Iz,zd

0

dttdttdtt   

where M(v,z) = max{d(STv,ABz),[ d(Iv,STv)+ d(Jz,ABz)],
2

1
[d(Iv,ABz)+d(Jz,STv)]} 
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 =max{d(Iv,Jz), [d(Iv,Iv)+  d(Jz,Jz)],
2

1
[ d(Iv,Jz) + d(Jz,Iv)]} 

 =d(Iv,Jz). 

Therefore,  
 

 
 

 
 

 















Iz,zd

0

Iz,zd

0

Iz,zd

0

dttdttdtt  , which is a contradiction. Thus, z=Jz=ABz. 

 If z Iz, using (i), we get 

  
 

 
 

 
 














 

z,zM

0

Jz,Izd

0

z,Izd

0

dttdttdtt   

where M(z,z) = max{d(STz,ABz),[ d(Iz,STz)+d(Jz,ABz)],
2

1
[d(Iz,ABz)+d(Jz,STz)]} 

 =max{d(Iz,z), 0,
2

1
[ d(Iz,z) + d(Jz,Iz)]} 

 =d(Iz,z). 

Therefore,  
 

 
 

 
 

 















z,Izd

0

z,Izd

0

z,Izd

0

dttdttdtt  , which is a contradiction. Thus, z=Iz=STz. 

 Therefore, z=Iz=STz =Jz=ABz. i.e. z is the common fixed point of AB, ST, I and J. For the uniqueness of 

z, suppose that z  is another common fixed point of AB, ST, I and J. Using (1), we have 

  
 

 
 

 
 














 




,zM

0

J,Izd

0

,zd

0

dttdttdtt  

where M(z,) = max{d(STz,AB), [d(Iz,STz)+d(J,AB)],
2

1
[d(Iz,AB)+d(J,STz)]} 

 =d(z,). 

Therefore,  
 

 
 

 
 

 


















,zd

0

,zd

0

,zd

0

dttdttdtt , which is a contradiction. Therefore,  
 

0dtt
,zd

0





 , 

which implies that z=. 

Now we prove that z is a common fixed point of A, B, S, T, I and J. For this let z is a unique common 

fixed point of both the pair (I, ST) and (J, AB). Using the commutativity of (I, S), (I, T) and (S, T) then 

 Sz = S(STz) = S(TSz) = ST(Sz),   Sz = S(Iz) = I(Sz) 

and Tz = T(STz) = TS(Tz) = ST(Tz),   Tz = T(Iz) = I(Tz) 

which shows that Sz and Tz are a common fixed point of (I,ST), yielding thereby Sz=z=Tz=Iz=STz. Similarly, 

using the commutativity of (J,A), (J,B) and (A,B) it can be shown that Az=z=Bz=Jz=ABz. 

 Now, we need to show that Az=Sz (Bz=Tz). For this let Az Sz, using (1), we get 
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  
 

 
 

 
 

 
 

 
)()()()( AzJ,SzId

0

JzA,IzSd

0

Az,Szd

0

Sz,Azd

0

dttdttdttdtt   

  
 














 

Az,SzM

0

dtt  

where M(Sz,Az)  = max{d(ST(Sz),AB(Az)), [ d(I(Sz),ST(Sz))+ d(J(Az),AB(Az))], 

  
2

1
[d(I(Sz),AB(Az))+d(J(Az),ST(Sz))]} 

 =d(Sz,Az). 

Therefore,  
 

 
 

 
 

 















Sz,Azd

0

Sz,Azd

0

Sz,Azd

0

dttdttdtt  , which is a contradiction. Therefore,  

 
 

0dtt
Sz,Azd

0

  which implies that Az=Sz. Similarly, it can be shown that Bz=Tz. Thus, z is the unique 

common fixed point of A, B, S, T, I and J. This completes the proof. 
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