Vol. No.9, Issue No. 02, February 2020 www.ijarse.com

FIXED POINT THEOREM FOR INTEGRAL TYPE INEQUALITY IN SYMMETIC SPACES

A.K. Goyal and Somita Jaiswal

Department of Mathematics, M.S.J. Govt. P.G. College, Bharatpur (Rajasthan)

ABSTRACT

The aim of the present paper is to obtain a common fixed point theorem by using the notion of weakly compatible mappings in symmetric space satisfying a contractive condition of integral type and a property E.A. introduced by Aamri and El. Moutawakil [1]. Our result substantially extended the theorem of Aliouche [2].

KEY WORDS

Weakly compatible maps, fixed points, symmetric spaces.

2000 AMS SUBJECT CLASSIFICATION CODE: 54H25

1. INTRODUCTION

In 2002, Branciari [3] obtained a fixed point theorem for a single mapping satisfying an analogue of Banach's contraction principle for an integral type inequality. Aliouche [2] established a common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type and a property (E.A.) introduced by Aamri and El. Moutawakil [1]. Boikanyo and Choudhary [4] prove some common fixed point theorem for pointwise R-weakly commuting mappings in symmetric space with atleast one pair non compatible satisfying a contractive condition of integral type. They also prove some results for weakly compatible mappings.

Since then there have been many theorems dealing with mappings satisfying a general contractive condition of integral type. Some of these works are noted in B.E. Rhoades [8], Vijayaraju [10], Gairola & Rawat [5].

Inspired and motivated by the above results, using the concept of weak compatibility and commutativity, we prove some common fixed point theorem for six mapping in symmetric spaces, which generalize several known corresponding results.

We recall that a symmetric on a set X is a non negative real valued function d on $X \times X$ such that (i) d(x,y)=0 if and only if x=y,

(ii) d(x,y) = d(y,x).

Let *d* be a symmetric on a set *X* and for r>0 and any $x \in X$, let $B(x,r) = \{y \in X : d(x,y) < r\}$. A topology t(d) on *X* is given by $U \in t(d)$ if and only if for each $x \in U$, $B(x,r) \subset U$ for some r>0. A symmetric *d* is a semi-metric if

Vol. No.9, Issue No. 02, February 2020

www.ijarse.com

IJARSE SSN 2319 - 8354

for each $x \in X$ and each r > 0, B(x,r) is a neighbourhood of x in the topology t(d). Note that $\lim_{n \to \infty} d(x_n, x) = 0$ if and only if $x_n \to x$ in the topology t(d).

The following two axioms were given by Wilson [11]. Let (X,d) be a symmetric space.

(W.3) Given $\{x_n\}$, x and y in X, $\lim_{n\to\infty} d(x_n,x)=0$ and $\lim_{n\to\infty} d(x_n,y)=0$ implies x=y.

(W.4) Given $\{x_n\}$, $\{y_n\}$ and x in X, $\lim_{n\to\infty} d(x_n,x)=0$ and $\lim_{n\to\infty} d(x_n,y_n)=0$ implies that $\lim_{n\to\infty} d(y_n,x)=0$.

It is easy to see that for a semi-metric d, if t(d) is a Hausdorff, then (W.3) holds.

2. PRELIMINARIES

In the sequel, we need a function $F^*=\{\varphi:R_+\to R_+\}$ such that φ is a Lebesgue integrable mapping which is

summable, non-negative and satisfy $\int_{0}^{\varepsilon} \varphi(t)dt > 0$ for all $\varepsilon > 0$ and ϕ will be a function defined by, $\phi: R_+ \to R_+$

such that $0 < \phi(t) < t$ for all t > 0.

Definition 1 Let *S* and *T* be two self mappings of a symmetric space (X,d). *S* and *T* are said to be compatible if $\lim_{n\to\infty} d(STx_n, TSx_n)=0$ whenever $\{x_n\}$ is a sequence in *X* such that $\lim_{n\to\infty} d(Sx_n, t)=\lim_{n\to\infty} d(Tx_n, t)=0$ for some $t\in X$.

Definition 2 Two self mappings S and T of a symmetric space (X,d) are said to be weakly compatible if they commute at their coincidence points.

Definition 3 Let S and T be two self mappings of a symmetric space (X,d). We say that S and T satisfy the property (E.A) if there exist a sequence $\{x_n\}$ such that

$$\lim_{n\to\infty} d(Sx_n, t) = \lim_{n\to\infty} d(Tx_n, t) = 0$$
 for some $t \in X$.

Example 1. Let $X=[0,\infty)$. Let d be a symmetric on X defined by $d(x,y)=e^{|y-x|}-1$ for all x, y in X. Define S, $T:X\to X$ as follows:

$$Sx = 2x + 1$$
 and $Tx = x + 2$, for all $x \in X$.

Note that the function d is not a metric. Consider the sequence $x_n=1+1/n$, n=1,2,...

Clearly
$$\lim_{n\to\infty} d(Sx_n, 3) = \lim_{n\to\infty} d(Tx_n, 3) = 0$$
.

Then S and T satisfy property (E.A), but S and T are not weakly compatible.

Definition 4 Let (X,d) be a symmetric space. We say that (X,d) satisfy property (H.E) if given $\{x_n\}$, $\{y_n\}$ and x in X, $\lim_{n\to\infty} d(x_n, x)=0$ and $\lim_{n\to\infty} d(y_n, x)=0$ implies $\lim_{n\to\infty} d(x_n, y_n)=0$.

Example 2.

- (i) Every metric space (X,d) satisfies property (H.E).
- (ii) Let $X=[0,\infty)$ with the symmetric function d defined in Example 1. It is easy to see that the symmetric space (X,d) satisfies property (H.E).

Vol. No.9, Issue No. 02, February 2020

www.ijarse.com

IJARSE ISSN 2319 - 8354

3. MAIN RESULT

Theorem 3.1 Let (X,d) be a symmetric space that satisfy (W.3), (W.4) and H.E. Let A, B, S, T, I and J be self mappings on X, satisfying the following conditions:

(i) $I(X) \subset AB(X)$, $J(X) \subset ST(X)$,

(ii)
$$\int_{0}^{d(Ix,Jy)} \varphi(t)dt \le \phi \begin{pmatrix} M(x,y) \\ \int_{0}^{d} \varphi(t)dt \end{pmatrix} \dots (1)$$

for all $x,y \in X$, $\varphi \in F^*$ and

$$M(x,y)=\max\{d(STx,ABy),[d(Ix,STx)+d(Jy,ABy)],\frac{1}{2}[d(Ix,ABy)+d(Jy,STx)]\}$$

- (iii) I(X) or J(X) is sequentially complete subspace of X.
- (iv) (I,ST) and (J,AB) are weakly compatible and (I,ST) or (J,AB) satisfied the property (E.A).

Then AB, ST, I and J have a unique common fixed point.

Furthermore, if the pair (I,S), (I,T), (S,T), (J,A), (J,B) and (A,B) are commuting mappings. Then A, B, S, T, I and J have a unique common fixed point in X.

Proof: Suppose that, I and ST satisfy property (E.A.). Then there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} d(Ix_n,z) = \lim_{n\to\infty} d(STx_n,z) = 0$ for some $z \in X$. Therefore, by (H.E.) $\lim_{n\to\infty} d(Ix_n,STx_n) = 0$. Since $I(X) \subset AB(X)$, there exists in X a sequence $\{y_n\}$ such that $\lim_{n\to\infty} d(Ix_n,STx_n) = 0$. Let us show that $\lim_{n\to\infty} d(Ix_n,STx_n) = 0$.

Suppose that $\lim_{n\to\infty} \text{Sup } d(Ix_n, Jy_n) > 0$. Then, using (1), we have

$$\lim_{n \to \infty} \sup_{0} \int_{0}^{d(lx_n, Jy_n)} \int_{n \to \infty} \sup_{0} \phi \begin{pmatrix} M(x_n, y_n) \\ \int_{0}^{d(lx_n, y_n)} \phi(t) dt \end{pmatrix}$$

where $(x_n, y_n) = \max\{d(STx_n, ABy_n), [d(Ix_n, STx_n) + d(Jy_n, ABy_n)], \frac{1}{2}[d(Ix_n, ABy_n) + d(Jy_n, STx_n)]\}$

=\max{0,[0+
$$d(Ix_n,Jy_n)$$
], $\frac{1}{2}$ [0 + $d(Jy_n,Ix_n)$]}

$$\lim_{n\to\infty}\sup_{0}\int\limits_{0}^{d(Ix_{n},Jy_{n})}\int\limits_{0}^{d(Ix_{n},Jy_{n})}\sup_{n\to\infty}\left(\int\limits_{0}^{d(Ix_{n},Jy_{n})}\int\limits_{0}^{d(Ix_{n},Jy_{n}$$

which is a contradiction. Hence $\int_{0}^{d(Ix_{n},Jy_{n})} \varphi(t)dt = 0 \text{ and } \lim_{n\to\infty} d(Ix_{n},Jy_{n}) = 0. \text{ By (W.4), we have } \lim_{n\to\infty} d(Jy_{n},Jy_{n}) = 0.$

z)=0.

Suppose that, I(X) is complete subspace of X and $I(X) \subset AB(X)$, then there exists $u \in X$ such that ABu = z. We have,

Vol. No.9, Issue No. 02, February 2020

www.ijarse.com

IJARSE ISSN 2319 - 8354

 $\lim_{n\to\infty}d\left(Jy_n,ABu\right)=\lim_{n\to\infty}d\left(Ix_n,ABu\right)=\lim_{n\to\infty}d\left(STx_n,ABu\right)=\lim_{n\to\infty}d\left(ABy_n,ABu\right)=0.$

Now, we claim that ABu=Ju. If not, then from (1), we have

$$\int_{0}^{d(Ix_{n},Ju)} \varphi(t)dt \leq \phi \left(\int_{0}^{M(x_{n},u)} \varphi(t)dt\right)$$

where $M(x_n, u) = \max\{d(STx_n, ABu), [d(Ix_n, STx_n) + d(Ju, ABu)], \frac{1}{2}[d(Ix_n, ABu) + d(Ju, STx_n)]\}$

=\max{0,[0+ d(Ix_n,Ju)],
$$\frac{1}{2}$$
 [0+ d(Ju,Ix_n)]}

$$=d(Ix_n,Ju).$$

$$\int\limits_{0}^{d(Ix_{n},Ju)} \varphi(t)dt \leq \phi \begin{pmatrix} d(Ix_{n},Ju) \\ \int\limits_{0}^{d} \varphi(t)dt \\ 0 \end{pmatrix}. \text{ Letting } n \to \infty, \text{ we obtain } \lim_{n \to \infty} \int\limits_{0}^{d(Ix_{n},Ju)} \varphi(t)dt = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{ which implies } \lim_{n \to \infty} d(Ix_{n},Iu) \\ 0 = 0, \text{$$

Ju)=0. By (W.3), we have Ju=z=ABu.

Using the weak compatibility of AB and J implies that ABJu=JABu i.e. ABz=Jz. On the other hand $J(X) \subset ST(X)$, there exists $v \in X$ such that Ju=STv.

We claim that STv=Jv. If not then from (1), we have

$$\int_{0}^{d(STv,Iv)} \varphi(t)dt = \int_{0}^{d(Iv,Ju)} \varphi(t)dt \le \phi \left(\int_{0}^{M(v,u)} \varphi(t)dt\right)$$

where $M(v,u) = \max\{d(STv,ABu),[d(Iv,STv)+d(Ju,ABu)],\frac{1}{2}[d(Iv,ABu)+d(Ju,STv)]\}$

=\max{
$$d(Ju,Ju), [d(Iv,Ju)+ d(Ju,Ju)], \frac{1}{2}[d(Iv,Ju)+0]}}$$

$$=d(Iv,Ju).$$

$$\int\limits_{0}^{d(STv,Iv)} \varphi(t)dt \leq \phi \int\limits_{0}^{d(STv,Iv)} \varphi(t)dt < \int\limits_{0}^{d(STv,Iv)} \varphi(t)dt \text{ which is a contradiction. Hence } \int\limits_{0}^{d(STv,Iv)} \varphi(t)dt = 0 \text{ which implies } 0$$

that d(STv,Iv)=0. Then z=Ju=ABu=STv=Iv.

Now using the weak compatibility of ST and I implies that STIv=ISTv i.e. STz=Iz. Let us show that z is a common fixed point of AB, ST, I and J.

If $z \neq Jz$, using (i), we get

$$\int_{0}^{d(z,Iz)} \varphi(t)dt = \int_{0}^{d(Iv,Iz)} \varphi(t)dt \le \phi \left(\int_{0}^{M(v,z)} \varphi(t)dt\right)$$

where
$$M(v,z) = \max\{d(STv,ABz), [d(Iv,STv) + d(Jz,ABz)], \frac{1}{2}[d(Iv,ABz) + d(Jz,STv)]\}$$

Vol. No.9, Issue No. 02, February 2020

www.ijarse.com

IJARSE ISSN 2319 - 8354

=
$$\max\{d(Iv,Jz), [d(Iv,Iv) + d(Jz,Jz)], \frac{1}{2}[d(Iv,Jz) + d(Jz,Iv)]\}$$

= $d(Iv,Jz)$.

Therefore, $\int\limits_{0}^{d(z,Iz)} \varphi(t)dt \leq \phi \left(\int\limits_{0}^{d(z,Iz)} \varphi(t)dt\right) < \int\limits_{0}^{d(z,Iz)} \varphi(t)dt \text{ , which is a contradiction. Thus, } z=Jz=ABz.$

If $z \neq Iz$, using (i), we get

$$\int_{0}^{d(Iz,z)} \varphi(t)dt = \int_{0}^{d(Iz,Jz)} \varphi(t)dt \le \phi \begin{pmatrix} M(z,z) \\ \int_{0}^{d} \varphi(t)dt \end{pmatrix}$$

where $M(z,z) = \max\{d(STz,ABz),[d(Iz,STz)+d(Jz,ABz)],\frac{1}{2}[d(Iz,ABz)+d(Jz,STz)]\}$

$$=d(Iz,z)$$

Therefore, $\int\limits_{0}^{d(Iz,z)} \varphi(t)dt \leq \phi \left(\int\limits_{0}^{d(Iz,z)} \varphi(t)dt\right) < \int\limits_{0}^{d(Iz,z)} \varphi(t)dt \text{ , which is a contradiction. Thus, } z=Iz=STz.$

Therefore, z=Iz=STz=Jz=ABz. i.e. z is the common fixed point of AB, ST, I and J. For the uniqueness of z, suppose that $z \neq \omega$ is another common fixed point of AB, ST, I and J. Using (1), we have

$$\int_{0}^{d(z,\omega)} \varphi(t)dt = \int_{0}^{d(Iz,J\omega)} \varphi(t)dt \le \phi \left(\int_{0}^{M(z,\omega)} \varphi(t)dt \right)$$

 $\text{where } M(z,\ \omega) = \max\{d(STz,AB\omega),\ [d(Iz,STz) + d(J\omega,AB\omega)], \frac{1}{2}\ [d(Iz,AB\omega) + d(J\omega,STz)]\}$

$$=d(z,\omega)$$

Therefore, $\int\limits_{0}^{d(z,\omega)} \varphi(t) dt \leq \phi \begin{pmatrix} d(z,\omega) \\ \int\limits_{0} \varphi(t) dt \end{pmatrix} < \int\limits_{0}^{d(z,\omega)} \varphi(t) dt \,, \text{ which is a contradiction. Therefore, } \int\limits_{0}^{d(z,\omega)} \varphi(t) dt = 0 \,,$

which implies that $z=\omega$.

Now we prove that z is a common fixed point of A, B, S, T, I and J. For this let z is a unique common fixed point of both the pair (I, ST) and (J, AB). Using the commutativity of (I, S), (I, T) and (S, T) then

$$Sz = S(STz) = S(TSz) = ST(Sz),$$
 $Sz = S(Iz) = I(Sz)$

and
$$Tz = T(STz) = TS(Tz) = ST(Tz),$$
 $Tz = T(Iz) = I(Tz)$

which shows that Sz and Tz are a common fixed point of (I,ST), yielding thereby Sz=z=Tz=Iz=STz. Similarly, using the commutativity of (J,A), (J,B) and (A,B) it can be shown that Az=z=Bz=Jz=ABz.

Now, we need to show that Az=Sz (Bz=Tz). For this let $Az\neq Sz$, using (1), we get

Vol. No.9, Issue No. 02, February 2020

www.ijarse.com

IJARSE ISSN 2319 - 8354

$$\int_{0}^{d(Az,Sz)} \varphi(t)dt = \int_{0}^{d(Sz,Az)} \varphi(t)dt = \int_{0}^{d(S(Iz),A(Jz))} \varphi(t)dt = \int_{0}^{d(I(Sz),J(Az))} \varphi(t)dt$$

$$\leq \phi \begin{pmatrix} M(Sz,Az) \\ \int_{0}^{} \varphi(t)dt \end{pmatrix}$$

where $M(Sz,Az) = \max\{d(ST(Sz),AB(Az)), [d(I(Sz),ST(Sz)) + d(J(Az),AB(Az))],$

$$\frac{1}{2}\left[d(I(Sz),AB(Az))+d(J(Az),ST(Sz))\right]\}$$

=d(Sz,Az).

Therefore, $\int_{0}^{d(Az,Sz)} \varphi(t)dt \le \phi \begin{pmatrix} d(Az,Sz) \\ \int \varphi(t)dt \\ 0 \end{pmatrix} < \int_{0}^{d(Az,Sz)} \varphi(t)dt , \text{ which is a contradiction. Therefore,}$

d(Az,Sz) $\int_{0}^{\infty} \varphi(t)dt = 0$ which implies that Az=Sz. Similarly, it can be shown that Bz=Tz. Thus, z is the unique

common fixed point of A, B, S, T, I and J. This completes the proof.

References

- [1] M. Aamri, D.El Moutawakil (2002). Some new common fixed point theorems under strict contractive condition. *J. Math. Anal. Appl.* **270**, 181-188.
- [2] A. Aliouche (2006). A common fixed point theorem for weakly compatible mappings in symmetric space satisfying a contractive condition of integral type. *J. Math. Anal. Appl.* **322**, 796-802.
- [3] A. Branciari (2002). A fixed point theorem for mapping satisfying a general contractive condition of integral type. *Int. J. Math. Math. Sci.* **29**, 531-536.
- [4] O. A Boikanyo and B. Choudhary (2007). Some common fixed point theorems for mappings satisfying a general contractive condition of integral type. *Int. J. Math. Anal.* **1** (24), 1157-1175.
- [5] U. C. Gairola and A. S. Rawat (2008). A fixed point theorem for integral type inequality. *Int. J. Math. Anal.* **2 (15)**, 709-712.
- [6] G. Jungck (1986). Compatible mappings and common fixed points, *Inter. J. Math. & Math. Sci.* **9**, 771-779.
- [7] G. Jungck and B.E. Rhoades (1998). Fixed points for set valued functions without continuity, *Indian J. Pure and Appl. Math.* **29**, 227-238.
- [8] B. E. Rhoades (2003). Two fixed point theorems for mappings satisfying a general contractive condition of integral type. *Int. J. Math. Math. Sci.* **63**, 4007-4013.
- [9] S. Sessa (1982). On weak commutativity conditions in fixed point consideration, *Publ. Inst. Math.* **32**(46), 175-180.
- [10] P. Vijayaraju, B. E. Rhoades and R. Mohanraj (2005). A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type. *Int. J. Math. Math. Sci.* **15**, 2359-2364.
- [11] W. A. Wilson (1931). On semi-metric spaces. Amer. J. Math. 53, 361-373.