International Journal of Advance Research in Science and Engineering
Vol. No.8, Issue No. 11, November 2019

- TJARSE
W\\“.l] arse.com

ISSN 2319 - 8354

Reduced Energy Optimization in Operating System
Khalid Hassan

Research Scholar, Department of Mathematics, Magadh University, Bodh-Gaya
Abstract:

This paper reveals that the memory and energy optimization strategies are essential for the
resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-
optimized and energy-optimized multithreaded WSN operating system (OS) Live OS is designed
and implemented. Memory cost of Live OS is optimized by using the stack-shifting hybrid
scheduling approach. Different from the traditional multithreaded OS in which thread stacks are
allocated statically by the pre-reservation, thread stacks in Live OS are allocated dynamically by
using the stack-shifting technique. As a result, memory waste problems caused by the static pre-
reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the
hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the
thread stack number is also implemented in Live OS. With these mechanisms, the stack memory
cost of Live OS can be reduced more than 50% if compared to that of a traditional multithreaded
OS. Not is memory cost optimized, but also the energy cost is optimized in Live OS, and this is
achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy
conservation approaches. By using these approaches, energy cost of Live OS can be reduced
more than 30% when compared to the single-core WSN system. Memory and energy optimization
strategies in Live OS not only prolong the lifetime of WSN nodes, but also make the
multithreaded OS feasible to run on the memory-constrained WSN nodes.

Keywords: memory optimization, energy conservation, operating system, wireless sensor
network, multi-core

Introduction:

A wireless sensor network (WSN) consists of distributed wireless sensor nodes which monitor
the environmental conditions (temperature, sound, pressure, etc.) and send the collected data
cooperatively through the network to a main location (e.g., the sink node) [1,2]. Currently, WSN
technology has played a significant role in daily life [3,4] and is viewed as one of the key
technologies of the 21st century [5].

For widespread use in different application domains, WSN nodes need to be small and
inexpensive. Consequently, WSN nodes are mostly constrained in the memory resource (e.g.,
MicaZ node has only 4 KB RAM) and energy resource (most nodes are powered by small-sized
batteries) [2]. Therefore, the memory and energy optimization strategy becomes essential for the
WSN node. With these optimizations, the lifetime of the WSN nodes can be prolonged.
Moreover, a software system, which has high memory cost, can become more feasible to run on
the nodes.

57| Page

International Journal of Advance Research in Science and Engineering
Vol. No.8, Issue No. 11, November 2019

L TJARSE
www.jarse.com

ISSN 2319 - 8354

An operating system (OS) is important for the WSN as it can manage the hardware resources and
serve the application development. The current WSN OSes can be classified into two kinds:
event-driven OS and multithreaded OS [6,7]. In the event-driven OS, preemption is not
supported; one task can be executed only after the previous one runs to completion (Figure 1b).
Due to this feature, memory cost of event-driven OS is low [8]. However, tasks in the event-
driven OS cannot be blocked during the run-time, thus split-phase state-machine programming is
commonly needed [9], and this is difficult for common users to manipulate. Moreover, the real-
time performance of the event-driven system is poor, since the time-critical task cannot be
executed immediately by the preemption. Multithreaded OS is different from the event-driven
OS in that several tasks can run concurrently, and the split-phase programming is not necessary.
Moreover, real-time scheduling can be achieved by using the thread preemption (Figure 1a).
Since the preemption can be performed, each task in the multithreaded OS needs to have an
independent run-time stack. Consequently, memory cost of the OS becomes high, and this makes
the multithreaded OS not suitable to run on the severe resource-constrained WSN nodes.
Therefore, the memory optimization mechanism becomes significant for the multithreaded OS,
especially on the memory-constrained WSN nodes. Besides the memory optimization, energy
optimization is also critical for a multithreaded WSN OS [2]. With the energy optimization, the
lifetime of WSN nodes can be prolonged. As a result, the work of recollecting all the deployed
nodes at intervals to recharge the energy can be eased. This is quite essential for the nodes

deployed outdoors in harsh environments.
! !
szilch Preomps)swilch
IEE | C WY

Event Event Scheduling Queue Event Event-driven

(®). | Generator | post “m Extraction Scheduler

Figure-1

Thread 1

preempt
B

(a).

(a) Multithreaded scheduling system. Threads can preempt each other, thus each thread needs to
have an independent stack; (b) Event-driven scheduling system. Events which are triggered
will be posted into the scheduling queue, and then be withdrawn one by one by the
scheduler. Tasks cannot preempt each other, and only one shared run-time stack is needed.

In this article, a new multithreaded WSN OS LiveOS (former name MIRQOS) is designed and
implemented. LiveOS aims to be a both memory-efficient and energy-efficient multithreaded
WSN OS. To achieve the memory-efficient objective, LiveOS uses the stack-shifting hybrid
scheduling mechanism. In contrast to a traditional multithreaded OS in which the stacks are
allocated statically by the pre-reservation, stacks in LiveOS are allocated dynamically in terms
of the run-time requirement. By doing this, memory waste caused by the static pre-reservation

58| Page

International Journal of Advance Research in Science and Engineering
Vol. No.8, Issue No. 11, November 2019

L TJARSE
www.jarse.com

ISSN 2319 - 8354

can be avoided. Since the dynamic-stack scheduling has higher run-time overhead, the hybrid
scheduling mechanism, which can reduce the thread preemption frequency, is implemented in
LiveOS. With the hybrid scheduling, the memory cost of the dynamic-stack scheduling can be
decreased, while the performance of the dynamic-stack scheduling is maintained. To achieve the
energy-efficient objective, LiveOS implements two energy-conservation approaches: the multi-
core “context-aware” approach and the multi-core “power-off/wakeup” approach. As opposed to
the other conservation approaches in which energy is conserved only from the software aspect,
energy conservation in LiveOS is achieved from both the software aspect and the multi-core
hardware aspect. By so doing, energy utilization efficiency is improved and the lifetime of WSN
nodes can be prolonged.

The Stack-Size Analysis Approach

In a traditional multithreaded OS, the size of each stack is pre-reserved heuristically. If the
reserved size is too small, memory overflow will occur. To avoid this problem, stack size is
commonly reserved to a large value, e.g., 128 bytes in the mantisOS (on the 8-bit AVR
microcontroller). However, memory waste will occur in this case. Ideally, the stack size will be
reserved to the minimal but system-safe size, and this is the objective of the stack-size analysis
approach. With the stack-size analysis approach, the thread execution process can be modeled as
a control-flow graph. The thread functions and the local stack usages represent the nodes in the
graph, whereas the branch instructions represent the edges in the graph (Figure 2). After this
model is built, the stack usage of each thread can be calculated by the straightforward depth-first
search. During the search process, if a “PUSH” or “CALL” instruction is observed, the stack
usage value will increase. Otherwise, if a “POP” instruction is met, the stack usage value will
decrease. By doing this, the stack size which will be required during the run-time can be
computed, and the stack memory waste caused by the heuristic pre-reservation approach can be
avoided.

‘ Function A -_Indirect function call (broken branch)

w % Function A-1
s Function B-1
Function C-1 __,,,{ Function C |
/ Function B-2
’ FunctionD —

i ~—_ (cannot be predicted)
Function C-2 ‘ I

recursive call (loop will appear)
Figure-2

The thread control-flow graph modeled by the stack-size analysis approach. Stack usage can be
calculated by the straightforward depth-first search in this graph.

With the stack-size analysis approach, the thread memory cost can be optimized. However, there
are several cases in which the stack usage cannot be calculated, such as interruption reentrancy,

59| Page

International Journal of Advance Research in Science and Engineering
Vol. No.8, Issue No. 11, November 2019

- TJARSE
W\\“.l] arse.com

ISSN 2319 - 8354

recursive calls and indirect function calls. If interrupt is reenterable, the number of received
interruptions during the run-time cannot be pre-known. If recursive calls exist, the cycle will
appear in the control-flow graph. If indirect function calls exist, the disconnection will appear in
the control-flow graph (Figure 2). To solve these problems, several solutions are proposed in the
article [10]. However, the final evaluation results show that these solutions are not ideal,
although the guesswork in determining the stack size is eliminated. As a result, stack-size
analysis approach is not effective in some WSN systems.

Energy Conservation to the WSN Node

The energy conservation strategy is significant for the WSN nodes for two key reasons. First,
many WSN nodes are deployed outdoors and need to be powered by small-sized batteries; the
available energy resource is therefore limited. Second, WSN nodes are prone to be deployed in
the harsh environment where human access is difficult; thus the recollection of the deployed
nodes to recharge the energy is quite difficult. Since the lifetime of the nodes is determined by
the energy supply, the energy conservation mechanism is essential to the WSN nodes. Currently,
the “sleep/wakeup” approach is used popularly in most WSN OSes to conserve energy resources,
and this approach has been achieved through two aspects: the OS scheduling aspect and the
network protocol aspect. In TinyOS, Contiki and SOS, the “sleep/wakeup” mechanism is
achieved from the scheduling aspect. A scheduling queue is polled in these OSes by the event-
driven scheduler. In the case that no events are pending in the queue, the sleep directive will be
called, and then the node will fall asleep to conserve energy. In openWSN, the “sleep/wakeup”
mechanism is also applied, but it is achieved from the network protocol aspect. In openWSN, the
IEEE 802.15.4e protocol is developed. With this protocol, the WSN nodes can wake up
synchronously to communicate with each other within a given period, whereas fall asleep or
power off the transceivers during the other periods.

The “sleep/wakeup” approach can conserve the node energy resource in a degree. However, the
conservation effect is not adequate. Currently, the energy constraint is still a critical challenge for
the WSN nodes [2], and the research of the new conservation approaches is still significant.

Discussion

The mechanism of using the multi-core technique to achieve the energy conservation in LiveOS
is presented. Besides the energy conservation, the multi-core technique can also be used to
improve the OS real-time performance, the node reliability, etc.

The real-time performance can be improved in the multi-core node by distributing different tasks
onto different microcontrollers to be executed concurrently. In the single-core node, if several
real-time tasks become active simultaneously, these real-time tasks may not be schedulable even
if an appropriate real-time scheduling algorithm is used (CPU computation resource is not
enough). However, this problem can be solved on the multi-core node if these tasks are
distributed.

In addition, the node reliability can be improved by using the multi-core WSN technique. If the
single-core node is used, the node will fail once the microcontroller runs incorrectly. However, if

60| Page

International Journal of Advance Research in Science and Engineering
Vol. No.8, Issue No. 11, November 2019

- TJARSE
W\\“.l] arse.com

ISSN 2319 - 8354

the multi-core node is used, a high reliable auxiliary microcontroller can be used to manage the
less reliable working microcontroller. Then, once the working microcontroller runs abnormally,
the auxiliary microcontroller can catch this event and restart it. By doing this, the working
microcontroller can be recovered from the faults and the WSN tasks can continuously be
performed. Since the reliability of the auxiliary microcontroller is high, multi-core WSN node
becomes more reliable if compared to the single-core node (auxiliary microcontroller can be high
reliable as the program running on it is quite simple). Currently, this multi-core reliability
approach has been applied to the LiveWSN node. With this approach, three deployed LiveWSN
nodes have been working effectively for more than two years in the ISIMA garden.

Since many microcontrollers are equipped, as opposed to just one, the manufacturing price of the
multi-core node will increase. However, the increase is not high. This is because most WSN
microcontrollers are low-cost ones, e.g., the selling price of the AVR Atmegal281
microcontroller can be lower than five dollars (the selling price of some Ph sensors can be more
than 100 dollars; the microcontroller is relatively cheaper). As a result, the price of the multi-
core node is acceptable. More significantly, the integrated performance of the WSN node can be
improved significantly by using the WSN multi-core technique (energy cost can be lowered,
real-time performance and node reliability can be improved, etc.). Therefore, it is essential to use
the multi-core technique in the WSN.

Conclusions

In this paper, the memory and energy optimization strategies for the multithreaded WSN OS
LiveOS is presented. LiveOS uses the stack-shifting hybrid scheduling mechanism to achieve the
memory optimization objective. By using the stack-shifting dynamic allocation, the size of each
stack in LiveOS can be reduced. By using the hybrid scheduling, the number of the stacks in
LiveOS can be decreased. As a result, LiveOS becomes memory-efficient and can cost the
memory resource less than 50% of that in the traditional multithreaded mantisOS. With this
memory optimization, LiveOS becomes feasible for running on the memory-constrained WSN
nodes (TelosB, SenseNode, iLive, etc.). Not only optimized in terms of memory cost, LiveOS is
also optimized for energy saving, and this is achieved by using the multi-core “context-aware”
and multi-core “power-off/wakeup” energy conservation approaches. With these approaches,
more than 30% of the energy resource can be conserved by LiveOS when compared to a typical
single-core WSN system. With the energy optimization strategy, the lifetime of WSN nodes can
be prolonged. Consequently, the WSN nodes become more competent to be deployed in harsh
outdoor environments. Currently, an online demo about LiveOS can be accessed from the
websites.

References:

1. Dargie W., Poellabauer C.Fundamentals of Wireless Sensor Networks: Theory and
Practice. John Wiley & Sons; Chichester, UK: 2010.

2. Akyildiz 1. F., Vuran M.C. Wireless Sensor Networks. John Wiley & Sons; Chichester, UK:
2010.

6l|Page

International Journal of Advance Research in Science and Engineering
Vol. No.8, Issue No. 11, November 2019

www.ijarse.com

10.

11.

12.

TJARSE
ISSN 2319 - 8354

Sohraby K., Minoli D., Znati T. Wireless Sensor Networks: Technology, Protocols, and
Applications. John Wiley & Sons; Chichester, UK: 2007.

Yick J., Mukherjee B., Ghosal D. Wireless sensor network survey. Comput.
Netw. 2008;52:2292-2330.

Gross N. Ideas for the 21st century. Business Week. 1999 Aug 30;:78-167.

Ousterhout J. Why threads are a bad idea (for most purposes). Proceedings of the 1996
Usenix Annual Technical Conference; San Diego, CA, USA. 22-26 January1996;

Von Behren R., Condit J. R., Brewer J. Why Events Are a Bad Idea (for High-Concurrency
Servers). Proceedings of the 9th Workshop on Hot Topics in Operating Systems (HotOS
IX); Lihue, HI, USA. 18-21 May 2003; pp. 19-24.

Li S.F., Sutton R., Rabaey J. Compilers and Operating Systems for Low Power. Kluwer
Academic Publishers; Norwell, MA, USA: 2003. Low Power Operating System for
Heterogeneous Wireless Communication Systems; pp. 1-16.

Levis P. TinyOS programming. 2006. [(accessed on 19 September 2014)]. Available
online: http://www.tinyos.net/tinyos2.x/doc/pdf/tinyos-programming.pdf.

Torgerson A. Master's Thesis. University of Colorado; at Boulder, Boulder, CO, USA: May,
2005. Automatic Thread Stack Management for Resource-Constrained Sensor Operating
Systems.

AbsInt Corporation Stack Analyzer: Stack Usage Analysis. [(accessed on 6 September
2014)]. Available online: http://www.absint.com/stackanalyzer/index.htm.

Bhatti S., Carlson J., Dai H., Deng J. MANTIS OS: An embedded multithreaded operating
system for wireless micro sensor platforms. ACM Kluwer Mob. Netw. Appl.
J. 2005;10:563-579.

62 |Page

