

57 | P a g e

Reduced Energy Optimization in Operating System

Khalid Hassan

Research Scholar, Department of Mathematics, Magadh University, Bodh-Gaya

Abstract:

This paper reveals that the memory and energy optimization strategies are essential for the

resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-

optimized and energy-optimized multithreaded WSN operating system (OS) Live OS is designed

and implemented. Memory cost of Live OS is optimized by using the stack-shifting hybrid

scheduling approach. Different from the traditional multithreaded OS in which thread stacks are

allocated statically by the pre-reservation, thread stacks in Live OS are allocated dynamically by

using the stack-shifting technique. As a result, memory waste problems caused by the static pre-

reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the

hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the

thread stack number is also implemented in Live OS. With these mechanisms, the stack memory

cost of Live OS can be reduced more than 50% if compared to that of a traditional multithreaded

OS. Not is memory cost optimized, but also the energy cost is optimized in Live OS, and this is

achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy

conservation approaches. By using these approaches, energy cost of Live OS can be reduced

more than 30% when compared to the single-core WSN system. Memory and energy optimization

strategies in Live OS not only prolong the lifetime of WSN nodes, but also make the

multithreaded OS feasible to run on the memory-constrained WSN nodes.

Keywords: memory optimization, energy conservation, operating system, wireless sensor

network, multi-core

Introduction:

A wireless sensor network (WSN) consists of distributed wireless sensor nodes which monitor

the environmental conditions (temperature, sound, pressure, etc.) and send the collected data

cooperatively through the network to a main location (e.g., the sink node) [1,2]. Currently, WSN

technology has played a significant role in daily life [3,4] and is viewed as one of the key

technologies of the 21st century [5].

For widespread use in different application domains, WSN nodes need to be small and

inexpensive. Consequently, WSN nodes are mostly constrained in the memory resource (e.g.,

MicaZ node has only 4 KB RAM) and energy resource (most nodes are powered by small-sized

batteries) [2]. Therefore, the memory and energy optimization strategy becomes essential for the

WSN node. With these optimizations, the lifetime of the WSN nodes can be prolonged.

Moreover, a software system, which has high memory cost, can become more feasible to run on

the nodes.

58 | P a g e

An operating system (OS) is important for the WSN as it can manage the hardware resources and

serve the application development. The current WSN OSes can be classified into two kinds:

event-driven OS and multithreaded OS [6,7]. In the event-driven OS, preemption is not

supported; one task can be executed only after the previous one runs to completion (Figure 1b).

Due to this feature, memory cost of event-driven OS is low [8]. However, tasks in the event-

driven OS cannot be blocked during the run-time, thus split-phase state-machine programming is

commonly needed [9], and this is difficult for common users to manipulate. Moreover, the real-

time performance of the event-driven system is poor, since the time-critical task cannot be

executed immediately by the preemption. Multithreaded OS is different from the event-driven

OS in that several tasks can run concurrently, and the split-phase programming is not necessary.

Moreover, real-time scheduling can be achieved by using the thread preemption (Figure 1a).

Since the preemption can be performed, each task in the multithreaded OS needs to have an

independent run-time stack. Consequently, memory cost of the OS becomes high, and this makes

the multithreaded OS not suitable to run on the severe resource-constrained WSN nodes.

Therefore, the memory optimization mechanism becomes significant for the multithreaded OS,

especially on the memory-constrained WSN nodes. Besides the memory optimization, energy

optimization is also critical for a multithreaded WSN OS [2]. With the energy optimization, the

lifetime of WSN nodes can be prolonged. As a result, the work of recollecting all the deployed

nodes at intervals to recharge the energy can be eased. This is quite essential for the nodes

deployed outdoors in harsh environments.

Figure-1

(a) Multithreaded scheduling system. Threads can preempt each other, thus each thread needs to

have an independent stack; (b) Event-driven scheduling system. Events which are triggered

will be posted into the scheduling queue, and then be withdrawn one by one by the

scheduler. Tasks cannot preempt each other, and only one shared run-time stack is needed.

In this article, a new multithreaded WSN OS LiveOS (former name MIROS) is designed and

implemented. LiveOS aims to be a both memory-efficient and energy-efficient multithreaded

WSN OS. To achieve the memory-efficient objective, LiveOS uses the stack-shifting hybrid

scheduling mechanism. In contrast to a traditional multithreaded OS in which the stacks are

allocated statically by the pre-reservation, stacks in LiveOS are allocated dynamically in terms

of the run-time requirement. By doing this, memory waste caused by the static pre-reservation

59 | P a g e

can be avoided. Since the dynamic-stack scheduling has higher run-time overhead, the hybrid

scheduling mechanism, which can reduce the thread preemption frequency, is implemented in

LiveOS. With the hybrid scheduling, the memory cost of the dynamic-stack scheduling can be

decreased, while the performance of the dynamic-stack scheduling is maintained. To achieve the

energy-efficient objective, LiveOS implements two energy-conservation approaches: the multi-

core “context-aware” approach and the multi-core “power-off/wakeup” approach. As opposed to

the other conservation approaches in which energy is conserved only from the software aspect,

energy conservation in LiveOS is achieved from both the software aspect and the multi-core

hardware aspect. By so doing, energy utilization efficiency is improved and the lifetime of WSN

nodes can be prolonged.

The Stack-Size Analysis Approach

In a traditional multithreaded OS, the size of each stack is pre-reserved heuristically. If the

reserved size is too small, memory overflow will occur. To avoid this problem, stack size is

commonly reserved to a large value, e.g., 128 bytes in the mantisOS (on the 8-bit AVR

microcontroller). However, memory waste will occur in this case. Ideally, the stack size will be

reserved to the minimal but system-safe size, and this is the objective of the stack-size analysis

approach. With the stack-size analysis approach, the thread execution process can be modeled as

a control-flow graph. The thread functions and the local stack usages represent the nodes in the

graph, whereas the branch instructions represent the edges in the graph (Figure 2). After this

model is built, the stack usage of each thread can be calculated by the straightforward depth-first

search. During the search process, if a “PUSH” or “CALL” instruction is observed, the stack

usage value will increase. Otherwise, if a “POP” instruction is met, the stack usage value will

decrease. By doing this, the stack size which will be required during the run-time can be

computed, and the stack memory waste caused by the heuristic pre-reservation approach can be

avoided.

Figure-2

The thread control-flow graph modeled by the stack-size analysis approach. Stack usage can be

calculated by the straightforward depth-first search in this graph.

With the stack-size analysis approach, the thread memory cost can be optimized. However, there

are several cases in which the stack usage cannot be calculated, such as interruption reentrancy,

60 | P a g e

recursive calls and indirect function calls. If interrupt is reenterable, the number of received

interruptions during the run-time cannot be pre-known. If recursive calls exist, the cycle will

appear in the control-flow graph. If indirect function calls exist, the disconnection will appear in

the control-flow graph (Figure 2). To solve these problems, several solutions are proposed in the

article [10]. However, the final evaluation results show that these solutions are not ideal,

although the guesswork in determining the stack size is eliminated. As a result, stack-size

analysis approach is not effective in some WSN systems.

Energy Conservation to the WSN Node

The energy conservation strategy is significant for the WSN nodes for two key reasons. First,

many WSN nodes are deployed outdoors and need to be powered by small-sized batteries; the

available energy resource is therefore limited. Second, WSN nodes are prone to be deployed in

the harsh environment where human access is difficult; thus the recollection of the deployed

nodes to recharge the energy is quite difficult. Since the lifetime of the nodes is determined by

the energy supply, the energy conservation mechanism is essential to the WSN nodes. Currently,

the “sleep/wakeup” approach is used popularly in most WSN OSes to conserve energy resources,

and this approach has been achieved through two aspects: the OS scheduling aspect and the

network protocol aspect. In TinyOS, Contiki and SOS, the “sleep/wakeup” mechanism is

achieved from the scheduling aspect. A scheduling queue is polled in these OSes by the event-

driven scheduler. In the case that no events are pending in the queue, the sleep directive will be

called, and then the node will fall asleep to conserve energy. In openWSN, the “sleep/wakeup”

mechanism is also applied, but it is achieved from the network protocol aspect. In openWSN, the

IEEE 802.15.4e protocol is developed. With this protocol, the WSN nodes can wake up

synchronously to communicate with each other within a given period, whereas fall asleep or

power off the transceivers during the other periods.

The “sleep/wakeup” approach can conserve the node energy resource in a degree. However, the

conservation effect is not adequate. Currently, the energy constraint is still a critical challenge for

the WSN nodes [2], and the research of the new conservation approaches is still significant.

Discussion

The mechanism of using the multi-core technique to achieve the energy conservation in LiveOS

is presented. Besides the energy conservation, the multi-core technique can also be used to

improve the OS real-time performance, the node reliability, etc.

The real-time performance can be improved in the multi-core node by distributing different tasks

onto different microcontrollers to be executed concurrently. In the single-core node, if several

real-time tasks become active simultaneously, these real-time tasks may not be schedulable even

if an appropriate real-time scheduling algorithm is used (CPU computation resource is not

enough). However, this problem can be solved on the multi-core node if these tasks are

distributed.

In addition, the node reliability can be improved by using the multi-core WSN technique. If the

single-core node is used, the node will fail once the microcontroller runs incorrectly. However, if

61 | P a g e

the multi-core node is used, a high reliable auxiliary microcontroller can be used to manage the

less reliable working microcontroller. Then, once the working microcontroller runs abnormally,

the auxiliary microcontroller can catch this event and restart it. By doing this, the working

microcontroller can be recovered from the faults and the WSN tasks can continuously be

performed. Since the reliability of the auxiliary microcontroller is high, multi-core WSN node

becomes more reliable if compared to the single-core node (auxiliary microcontroller can be high

reliable as the program running on it is quite simple). Currently, this multi-core reliability

approach has been applied to the LiveWSN node. With this approach, three deployed LiveWSN

nodes have been working effectively for more than two years in the ISIMA garden.

Since many microcontrollers are equipped, as opposed to just one, the manufacturing price of the

multi-core node will increase. However, the increase is not high. This is because most WSN

microcontrollers are low-cost ones, e.g., the selling price of the AVR Atmega1281

microcontroller can be lower than five dollars (the selling price of some Ph sensors can be more

than 100 dollars; the microcontroller is relatively cheaper). As a result, the price of the multi-

core node is acceptable. More significantly, the integrated performance of the WSN node can be

improved significantly by using the WSN multi-core technique (energy cost can be lowered,

real-time performance and node reliability can be improved, etc.). Therefore, it is essential to use

the multi-core technique in the WSN.

Conclusions

In this paper, the memory and energy optimization strategies for the multithreaded WSN OS

LiveOS is presented. LiveOS uses the stack-shifting hybrid scheduling mechanism to achieve the

memory optimization objective. By using the stack-shifting dynamic allocation, the size of each

stack in LiveOS can be reduced. By using the hybrid scheduling, the number of the stacks in

LiveOS can be decreased. As a result, LiveOS becomes memory-efficient and can cost the

memory resource less than 50% of that in the traditional multithreaded mantisOS. With this

memory optimization, LiveOS becomes feasible for running on the memory-constrained WSN

nodes (TelosB, SenseNode, iLive, etc.). Not only optimized in terms of memory cost, LiveOS is

also optimized for energy saving, and this is achieved by using the multi-core “context-aware”

and multi-core “power-off/wakeup” energy conservation approaches. With these approaches,

more than 30% of the energy resource can be conserved by LiveOS when compared to a typical

single-core WSN system. With the energy optimization strategy, the lifetime of WSN nodes can

be prolonged. Consequently, the WSN nodes become more competent to be deployed in harsh

outdoor environments. Currently, an online demo about LiveOS can be accessed from the

websites.

References:

1. Dargie W., Poellabauer C. Fundamentals of Wireless Sensor Networks: Theory and

Practice. John Wiley & Sons; Chichester, UK: 2010.

2. Akyildiz I. F., Vuran M.C. Wireless Sensor Networks. John Wiley & Sons; Chichester, UK:

2010.

62 | P a g e

3. Sohraby K., Minoli D., Znati T. Wireless Sensor Networks: Technology, Protocols, and

Applications. John Wiley & Sons; Chichester, UK: 2007.

4. Yick J., Mukherjee B., Ghosal D. Wireless sensor network survey. Comput.

Netw. 2008;52:2292–2330.

5. Gross N. Ideas for the 21st century. Business Week. 1999 Aug 30;:78–167.

6. Ousterhout J. Why threads are a bad idea (for most purposes). Proceedings of the 1996

Usenix Annual Technical Conference; San Diego, CA, USA. 22–26 January1996;

7. Von Behren R., Condit J. R., Brewer J. Why Events Are a Bad Idea (for High-Concurrency

Servers). Proceedings of the 9th Workshop on Hot Topics in Operating Systems (HotOS

IX); Lihue, HI, USA. 18–21 May 2003; pp. 19–24.

8. Li S.F., Sutton R., Rabaey J. Compilers and Operating Systems for Low Power. Kluwer

Academic Publishers; Norwell, MA, USA: 2003. Low Power Operating System for

Heterogeneous Wireless Communication Systems; pp. 1–16.

9. Levis P. TinyOS programming. 2006. [(accessed on 19 September 2014)]. Available

online: http://www.tinyos.net/tinyos2.x/doc/pdf/tinyos-programming.pdf.

10. Torgerson A. Master's Thesis. University of Colorado; at Boulder, Boulder, CO, USA: May,

2005. Automatic Thread Stack Management for Resource-Constrained Sensor Operating

Systems.

11. AbsInt Corporation Stack Analyzer: Stack Usage Analysis. [(accessed on 6 September

2014)]. Available online: http://www.absint.com/stackanalyzer/index.htm.

12. Bhatti S., Carlson J., Dai H., Deng J. MANTIS OS: An embedded multithreaded operating

system for wireless micro sensor platforms. ACM Kluwer Mob. Netw. Appl.

J. 2005;10:563–579.

