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ABSTRACT:           

In the present work, we limit our considerations to absorption and emission phenomena 

where only two and three levels of the system (atoms or molecules) take part and the 

dispersion phenomena is dealt with at infrared frequencies. Absorption (or emission) and 

scattering phenomena have been investigated classically in which the individual atoms under 

the influence of the interacting field are treated as driven harmonic oscillators. The classical 

theory is adequate to describe the behavior of familiar microwave amplifiers and oscillators 

but shows it’s inadequacy in explaining the behavior of a complex atom or a system of atoms 

as in maser-like devices. It is interesting to note that the T-matrices of interaction have the 

elements which are just the probability amplitudes and their conjugates and are recognizable 

as Kayley-Klein parameters which are intimately connected with spatial rotation on quantum 

mechanics. The T-transformation method for a single two-level particle has been extended 

very elegantly to treat the interaction problem for an assembly for independent or co-related 

two level systems. The macroscopic T-transformation operator is constructed from the 

product of the T- operators for different constituent atoms while the Hamiltonian operator is 

obtained by summing up the phase dependent Hamiltonians for the individual atoms. Other 

relevant macroscopic operators, namely the state selection operator, excitation and de-

excitation operators, inversion operators etc. can be constructed from the individual atoms 

operator using the principles of quantum mechanics and statistical mechanics, while the 

theory for a single two-level particle conforms to the spin formulation, the theory for the 

assembly is seen to be based on the general angular moment formalism.                              
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INTRODUCTION:           

A phenomenological treatment of the above processes as well as maser action in such systems 

is possible using the concepts of (I) discrete state of matter, (II) statistical distribution of the 

elements of matter in these states, (III) Einstein’s principle of stimulated transition between 

these states and (IV) the relaxation mechanism in the system (namely spontaneous emission 

from excited states).For two - level systems, a net absorption takes place in thermal 

equilibrium conditions. To have a net emission, the bulk matter is to be excited such that the 

equilibrium population between the levels is inverted. Since two - level schemes employ the 

same two Eigen states which are employed in the amplification process it is clear that in 

maser – like devices inversion and amplification must be separated from one another in either 

space or time. In a time separation, the circulatory used in amplification is also employed in 

the inversion process but the system becomes inoperative as an amplifier, during a period at 

as long as the time required achieving inversion. Such systems are thus limited to pulse 

operation, where as in space separation, the population of an assembly is inverted in a region 

external to the maser circulatory proper.      

These difficulties are surmounted in devices involving system with three energy levels 

because a steady state population inversion can be achieved between either pair of 

levels(namely 1-2 and 3-2) depending upon the relaxation rates, by saturating the 1-3 (pump) 

transitions. The semi-classical treatments, in which the material system is treated quantum 

mechanically and the interacting radiation as a time dependent perturbing field on the other 

hand, goes may steps ahead and explains many of the linear as well as non—linear response 

of the system qualitatively and quantitatively.      

THEORY:           

The present work can define a transition rate from level 1to level 2 in the presence of a single 

mode field. It is relatively easy to make input and output calculation for a ruby laser in a 

hypothetical steady radiating state. Direct solutions of the differential equation are obtained 
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from the Schrodinger equation of the problem appeared in literature and where first given by 

Einstein in connection with the derivation of induced transition probabilities. Literature point 

cut that the most widely used quantum mechanical analysis, for complete and rigorous 

treatment of a collection of multilevel atoms is the density matrix approach. The model may 

be improved proceeding along a fully quantum mechanical of the interacting systems. The 

interacting field should therefore be quantized and the system (atom plus radiation) be 

treated as a single quantum mechanical one.          

                                                       

ISOTROPIC  RATE  OF  EMISSION OF POWER:     

We are all familiar to the process of spontaneous emission, in which atom in an excited state 

can emit a quantum radiation of frequency  , there by dropping to a lower energy state 

, according to the relation                                

  ⎯    =  h       (1)     

where h is the Planck ‘s constant. These jump occur at a rate  with a resultant spatially 

isotropic rate of emission of power  h , Where is the population of atoms in the 

excited states. Somewhat less familiar is the concept that these same atoms can be stimulated 

to emit radiation by being bathed in radiation of the same frequency. The physical 

phenomenon which makes the laser possible is that of this stimulated emission of radiation. 

The rate of these stimulated jumps is proportional to the energy density u ( ) of the 

radiation and to the population difference , between the upper and lower energy 

states. Furthermore, the stimulated radiation exhibits the same directional and polarization 

characteristics as that of the stimulating radiation. This is the process that gives rise to the 

amplification and directional properties of lasers. Einstein showed that in the steady-state, an 

expression of the form           

 P (𝛖) = P (𝛖) +A                           (2)         
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must be true to account for the transitions that take place under the influence of a broadened 

radiation field where P(𝛖) is the energy per unit volume per unit frequency interval A and B 

are the spontaneous and induced transition rate coefficients ( or Einstein’s coefficient). As a 

matter of fact, Einstein derived them originally, not on the basis of field quantization, but 

rather by the use of classical arguments and thermodynamic considerations. The expression 

(e.g. =  , = ) are found to be in agreement with the results obtained on 

the basis of field quantization.      

The present work can define a transition rate from level 1to level 2 in the presence of a single 

mode field as,                            

    = K < n >         (3)    

   Whereas the transition rate from level 2 to level 1 is given by                    

         = K < n > + A         (4)       

As we pass from the single mode radiation case to the broad band radiation case, the equation 

for the population difference in terms of the transition rates still holds, but now the transition 

rates   and  given by (3) and (4) must be generalized by summation or integration 

over frequency. If the frequency distribution of the radiation field represented by < n(𝛖) > and 

the mode density  P(𝛖) are each assumed to very slowly with respect to the line shape factor 

contained in K(𝛖) K =     (𝛚.  )   , all frequency dependence other than the line 

shape factor may be removed from the integral. With this assumption we arrive at,                    

     = P (𝛖)          (5)                           

     = P (𝛖) + A         (6)       

where P(𝛖) is the energy per unit volume per unit frequency interval defined by   

   P (𝛖) =   P (𝛖) h < n (𝛖) >       (7)       

and     = = B =(  ) V           
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 with  A  given by          A =   = V                   

(Where ,  and  represent spontaneous emission time, single mode 

spontaneous emission rate and number of modes per unit volume in a frequency range , 

respectively) We see that the ratio of A to B is as follows:-      

       h (𝛖) P(𝛖)  =      (8)      

(from the results of mode density relationships). From (7) and (8) we find    

    =                    (9)           

where <n> is the expectation value of the number of photons in a single mode. From (9) we 

thus see that the induced transition rate B (emission or absorption) is <n> times that for 

spontaneous emissions.             

 The laser consists of vast number of atomic amplifiers placed between two partially 

reflecting mirrors which cause radiation to travel back and forth through the amplifying 

medium. The electromagnetic field, building up within the laser, may be regarded as a field in 

a cavity which is weakly coupled to the outside. The different types of electromagnetic 

oscillations of the laser regarded as an isolated cavity are the well known modes of 

oscillations or briefly modes. It is relatively easy to make input and output calculation for a 

ruby laser in a hypothetical steady radiating state. Such calculations are of little value, 

however, because of the large intensity fluctuations which seem inherent in the situation.      

 The power generated at frequency in a uniformly excited ruby laser of volume V is   

 =              (10)         

Here  is proportional to the radiation density, and   depends upon the radiation 

density as well as on the intensity of excitation. Starting with zero radiation density at 

frequency  when the threshold is first reached, the radiation density start to fall again and 

an oscillation of intensity ensues. This oscillation is called pulsation. 
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1. Transition probability from T - matrix consideration:             

For the interaction problem of radiation and two level system, it is essential to determine the 

complex probability amplitudes a (t) and b (t) for the two states │a > and │b > respectively 

that solve the mechanical part of the interaction problem, because, these directly (and their 

different real combinations and ) give the various physical quantities of interest 

such as power emission from the system, polarization of the system etc. Direct solutions of the 

differential equation for a(t) and b(t) which are obtained from the Schrodinger equation of 

the problem appeared in literature and where first given by Einstein in connection with the 

derivation of induced transition probabilities.          

 It is interesting to note that the T-matrices of interaction obtained by earlier worker 

have the elements which are just the probability amplitudes and their conjugates and are 

recognizable as Kayley-Klein parameters which are intimately connected with spatial rotation 

on quantum mechanics.                            

 When the system is initially in its higher state represented by the ket │a >, the state 

vector │ψ , at a later time t, is essentially the transformation of │a > by a matrix        

T (t)   =   (     )                                                (11)     

 In terms of the three well known real functions and (  in 

the primed frame; Hamiltonians in the primed   frame   appear  as  a  constant.)      of      

Feynman     equation      =   x  ) , the interaction matrices have been expressed as for 

m =  1  transitions                               

T (t) = (    ) (12)  

 with   =  ) ;  and for m = transitions       
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 T (t) =(    )      (13)  

with   𝛺 = ( )½                

 Since the above matrices refer to the rotating coordinate system (1’, 2’, 3’) we obtain, on 

comparison of the elements of (11) and (13), the probability amplitudes, to be given by   

a’(t)=  ,     b’(t) =                                       (14)                     

for m = case of transition.                                     

The transition probability │ b (t) │2 (=│ b’ (t) │2) for the system (initially in the higher state) 

to be in the lower state after a time t due to the interaction is therefore given buy     

│b (t) │2 =    sin2                                        

           =  sin2½ t      (15)       

(from the explicit expression for ’s given by Feynman et al which for a coherent applied 

field E = E0  appear to be constants in a rotating frame obtained by rotation of the (1-2) 

plane about the 3rd axis with an angular velocity 𝛚, 𝛚3 = 𝛚0 is the transition frequency of the 

two states). Under the resonance condition 𝛚0 = 𝛚 the transition probability (15) changes to                                    

     │b (t) │2   =   sin2   ½ t (  )                          (16)   

where,          α = ½ (  )                                                                  (17)   

The above results are exactly identical to the results obtained for occupation probability for a 

two level spin system in a time harmonic field through solving Schrödinger equation.                                                                  

 

2. Solution for the Inverted Population Difference between the Lasing Levels of a 3-

levels system                                          



 
 

48 | P a g e  
 

Literature point cut that the most widely used quantum mechanical analysis, for complete and 

rigorous treatment of a collection of multilevel atoms is the density matrix approach. 

However, they are not very different from the approximate equations obtained with simple 

heuristic arguments.     

 The approximate approach we will develop in this section amounts in essence to 

treating each separate transition in a 3-level (or a multilevel) system as a separate two level 

transition and then adding up the various rate equation terms to find the total rate equation 

for each level in the system. Siegman points out that if applied signals are present at or near 

various transition frequencies  between various levels  and , then provided that none 

of the applied signals is too strong, the following general principles can be applied:       

(a) As far as the stimulated response on any particular transition is concerned, that 

transition may be treated as if it were simply an elementary two- level transition between the 

two energy levels and .”               

 The induced response on the transition, in each case, will be  proportional to the 

population difference  on the transition and will be independent of the populations of all 

of the other  energy levels, as well as independent of the presence of any  allied signals on 

other transitions(provided they keep   unchanged ).                                              

(b) “Only the populations (t) of the two levels will be directly changed by the presence 

of an applied signal on the particular transition, and these population changes (or more 

precisely rates of change) can be described in the same rate equation  terms as in the 

equivalent two- level case.”      

(c) A signal applied at or near a given transition frequency will excite a significant 

response on that transition only.   

Multiple signals applied simultaneously to several different transitions in the same atomic 

system will not directly interact with each other.”                      

 In other words, however, leaving the indirect effects, it not the presence or absence of 

the other signals that counts, but simply the population difference that is present, regardless 

of how it is brought about.         
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(3)   Formulation of the Problem:-                                                               

  Let us suppose that, in the absence of any external radiation, the particles 

constituting the medium are in thermal equilibrium at temperature T. We consider that each 

of the N particle of the medium can exist in one of the three allowed stationary states, where 

Nis the number density of the particles. If (t), (t) and (t) represent a general 

distribution of the particles over the states 1,2,3 with energies   the rate 

equations can be written as              

 = ⎯  n1 +  n2 ⎯ n1 +  n3+  (n2⎯n1) +  (n3⎯n1)       (18a) 

  = ⎯  n2 +  n1 ⎯ n2 +  n3+  (n1⎯n2)      (18b) 

= ⎯  n3 +  n1 ⎯ n3 +  n2+  (n1⎯n2)                      (18 c)   

Where,                                 (19a)      

                                                      (19b)   

 (=  ) and  are respectively the thermal and the stimulated transition probabilities 

per unit time between the level i and j. The relaxation processes always act to bring the 

energy level populations to thermal equilibrium, with a Boltzmann distribution between each 

pair of levels. It is reasonable to assume that in a multilevel system every atomic level 

population may be connected by longitudinal relaxation process of varying strength, with 

every other atomic energy level population, both above and below it. From physical 

arguments it is invariably assumed that the relaxation rate from one level to a second level 

 will be given by a relaxation transition probability  per atom per unit time, multiply by 

the number of atoms  available in the originating level. Of course, there will be a similar 

relaxation process in the reverse direction with a total rate given by . At thermal 

equilibrium the average number of j → i thermal transitions is equal to that of i → j transitions, 

so that                                                               
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     =            

 =  = ,(say), and I,j,k=1,2,3,…..                         (20)   

The terms in the equations (18a, b, and c) are not condensed in any way, but the source of 

each term should be clear from the format. The relaxation terms are stated first and are 

followed by the stimulated terms. We have also used the fact that  =  although this is, 

for course, not true for .     

  Population inversion between the levels 1and 2 takes place due to the action of a 

pumping field at frequency   and the relaxation processes between the levels 3and 2. The 

rate of growth of population inversion depends mainly upon (1) rate of pumping, (2) initial 

equilibrium population of the levels and (3) the rate of relaxation mechanism. As soon as the 

population of level 2 becomes greater than that of 1, downward transition takes place 

resulting in an emission at frequency   and thereby increasing the energy density of the 

inducing field at .                                                        

 In the present treatment we first solve for the instantaneous population inversion n 

(= ⎯  ) between the lasing levels taking as a function of photon density and time. As 

noted earlier, in connection with the analogy with a two level system with no loss, we can take 

 (eqn. 16) where   α = ⎯ ½ (  ),   being the matrix element for the 

component of the dipole moment along the field . In fact, n =   is the solution of the 

differential equation for photon number per atom (Venkatesh and Dixit). In the later part of 

this chapter we solve the rate equations for the power output from the emissive system at any 

instant of time considering as time independent. The power emitted is found to vary with 

time which, ultimately, attains a constant value. In the microwave range the expression for 

power tallies with that of Bloembergen.      

4 approximate solution:         

 By manipulating and combining the first two rate equations of (18) we have,   
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 +   +   = F  (21) 

where  stands for the instantaneous difference of the populations of the lasing levels and 

, , K, F  are constants involving  and . The above equation (21) is of the following 

form is of the following form     

 +   +  = C        

and can be solved in a suitable manner. Let us rewrite the equation as under after putting the 

aforesaid substitution e.g. = R  (R is the constant of proportionality)

 + +

 

 = F                                                                      (22) 

On taking the trial solution of the form y=  (Where  ≠ 0), we solve the 

above second order deferential equation (22) for the instantaneous value of the level 

population difference  to get        

n=       

+  +      (23) 

where,           

 =     

 =     

F = N   

                                   (24)  

      For transient behavior of the population inversion we may neglect the higher powers of t 

and write =  As  is true only for short interval of time, the linear 
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dependence of the population inversion is valid for that interval only.     

       

Further considering  as time independent (steady case), we solve for the instantaneous 

value of the level populations from equations (18 a, b, c)     

(t) =   ,     = 1, 2, 3…           (25)   

Where,  =           

   =   +  +          

   =   +    

    =              

    =           (26)  

and              

 =   +   

       +   

  =   +  +    

        +     

           =   +     

     +      

 = N  +      

 = N  +    
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 = N  +    

 h =     

g =       

  +    

  +  +   

D =             (27)  

2.5 power emitted and time for maximum power output:  

The power P(t), emitted from a three level system at any time t is    

P(t)=                    (28) 

Where  is the population difference at any time t between the lasing levels, and is given 

by         

  = (t) (t)      

  =  + +    (29)  

On substitution of the values of the constants (i.e. A, B etc.) and using the approximation that 

the spontaneous transition probabilities are much smaller that the induced ones, for the 

output power at any time t, we have,     

 P  =                    

  +   
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+  

 t                                              (30) 

At time=0, the power output is P(t=0) =   and is a negative quantity, since  

 .              

For large value of t, the power output is       

       =      (31)  

To find the time , at which the output power will be maximum, we have     

 = [     ]   = 0A 

or,   =           

or,   =             

or,  =  log [     ]          (32) 

Again from the expression (31) for example,           

 =     

we have, for microwave frequency range in steady condition,     
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P (t) =   [       

 =     [            

For   KT     

  =                              (33) 

This is exactly the same result as was obtained by Bloembergen.  

      

DISCUSSION:  

 The semi-classical model explains many laser phenomena, both linear and nonlinear, 

qualitatively and in several respects. The inadequacy result mainly due to the model itself 

which embodies the material system and the interacting field as two separate systems and as 

such cannot give appropriate description of the collective radiation phenomena discussed by 

Dicke and Senitzky. Besides, it is not clear from the usual S.C.F.A (self consistent field 

approximation) derivations just how the effects of spontaneous emission should be taken into 

account. These effects have important bearing on coherence properties of laser such as line 

width, amplitude and intensity fluctuation. Further the model sheds almost no light on the 

important question of statistical nature of laser radiation. The traditional approach to this 

problem has been the phenomenological one of adding suitable source terms based on 

equilibrium or other considerations to the semi-classical equations of motion. Lamb, 

Bloembergen and several other workers have work along these lines.       

 The model may be improved proceeding along a fully quantum mechanical of the 

interacting systems. The interacting field should therefore be quantized and the system (atom 

plus radiation) be treated as a single quantum mechanical one.                                                        

Distinctive approaches for the problem are in use under the semi-classical approximation 

among which density matrix method of Lamb, Bloembergen and others; Gyroscopic method of 

Feynman et al, intuitive approach of Dicken and T-matrix method of Venkatesh et al., are 

important because of their wide range of applicability’s on one hand and for providing 

physical picturization of the process on the other. Senitzky’s treatment  of  loss  mechanism  in   
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such  systems  bears much importance in the discussion of noise sources of laser radiation, 

line broadening etc. Feynman on the other hand transformed the amplitude equations for   

two – levels system to give a geometrical picture of the interaction process in an abstract 

space and at the same time a solution for the physical quantities of interest directly from the 

geometrical picture itself. However for a systematic study of the problem, an analytical 

solution without any reference to a geometrical representation of the process is always 

desirable.                    
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