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ABSTRACT:

In the present work, we limit our considerations to absorption and emission phenomena
where only two and three levels of the system (atoms or molecules) take part and the
dispersion phenomena is dealt with at infrared frequencies. Absorption (or emission) and
scattering phenomena have been investigated classically in which the individual atoms under
the influence of the interacting field are treated as driven harmonic oscillators. The classical
theory is adequate to describe the behavior of familiar microwave amplifiers and oscillators
but shows it's inadequacy in explaining the behavior of a complex atom or a system of atoms
as in maser-like devices. It is interesting to note that the T-matrices of interaction have the
elements which are just the probability amplitudes and their conjugates and are recognizable
as Kayley-Klein parameters which are intimately connected with spatial rotation on quantum
mechanics. The T-transformation method for a single two-level particle has been extended
very elegantly to treat the interaction problem for an assembly for independent or co-related
two level systems. The macroscopic T-transformation operator is constructed from the
product of the T- operators for different constituent atoms while the Hamiltonian operator is
obtained by summing up the phase dependent Hamiltonians for the individual atoms. Other
relevant macroscopic operators, namely the state selection operator, excitation and de-
excitation operators, inversion operators etc. can be constructed from the individual atoms
operator using the principles of quantum mechanics and statistical mechanics, while the
theory for a single two-level particle conforms to the spin formulation, the theory for the

assembly is seen to be based on the general angular moment formalism.

41| Page




International Journal of Advance Research in Science and Engineering
Vol. No.8, Issue No. 11, November 2019 )

- TJARSE
“‘“‘\’\'.IJRI'SE.COI'I]

ISSN 2319 - 8354

KEY WORDS: Classical Theory, Amplification process, Quantum radiation Transition probability.
INTRODUCTION:

A phenomenological treatment of the above processes as well as maser action in such systems
is possible using the concepts of (I) discrete state of matter, (II) statistical distribution of the
elements of matter in these states, (III) Einstein’s principle of stimulated transition between
these states and (IV) the relaxation mechanism in the system (namely spontaneous emission
from excited states).For two - level systems, a net absorption takes place in thermal
equilibrium conditions. To have a net emission, the bulk matter is to be excited such that the
equilibrium population between the levels is inverted. Since two - level schemes employ the
same two Eigen states which are employed in the amplification process it is clear that in
maser - like devices inversion and amplification must be separated from one another in either
space or time. In a time separation, the circulatory used in amplification is also employed in
the inversion process but the system becomes inoperative as an amplifier, during a period at
as long as the time required achieving inversion. Such systems are thus limited to pulse
operation, where as in space separation, the population of an assembly is inverted in a region

external to the maser circulatory proper.

These difficulties are surmounted in devices involving system with three energy levels
because a steady state population inversion can be achieved between either pair of
levels(namely 1-2 and 3-2) depending upon the relaxation rates, by saturating the 1-3 (pump)
transitions. The semi-classical treatments, in which the material system is treated quantum
mechanically and the interacting radiation as a time dependent perturbing field on the other
hand, goes may steps ahead and explains many of the linear as well as non—Ilinear response

of the system qualitatively and quantitatively.

THEORY:
The present work can define a transition rate from level 1to level 2 in the presence of a single
mode field. It is relatively easy to make input and output calculation for a ruby laser in a

hypothetical steady radiating state. Direct solutions of the differential equation are obtained
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from the Schrodinger equation of the problem appeared in literature and where first given by
Einstein in connection with the derivation of induced transition probabilities. Literature point
cut that the most widely used quantum mechanical analysis, for complete and rigorous
treatment of a collection of multilevel atoms is the density matrix approach. The model may
be improved proceeding along a fully quantum mechanical of the interacting systems. The
interacting field should therefore be quantized and the system (atom plus radiation) be

treated as a single quantum mechanical one.

ISOTROPIC RATE OF EMISSION OF POWER:
We are all familiar to the process of spontaneous emission, in which atom in an excited state

E; can emit a quantum radiation of frequency ¥; j » there by dropping to a lower energy state
E; , according to the relation

Ei_ E_,-:hvi_,- (1)
where h is the Planck ‘s constant. These jump occur at a rate Ai_,- with a resultant spatially

isotropic rate of emission of power n; Aij hv;;, Where n;is the population of atoms in the
excited states. Somewhat less familiar is the concept that these same atoms can be stimulated
to emit radiation V;; by being bathed in radiation of the same frequency. The physical

phenomenon which makes the laser possible is that of this stimulated emission of radiation.

The rate of these stimulated jumps is proportional to the energy density u (¥;;) of the

radiation and to the population difference 1; — 1;, between the upper and lower energy

states. Furthermore, the stimulated radiation exhibits the same directional and polarization
characteristics as that of the stimulating radiation. This is the process that gives rise to the
amplification and directional properties of lasers. Einstein showed that in the steady-state, an

expression of the form

P (v) By2Ny=P (v) By N>+AN; (2)
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must be true to account for the transitions that take place under the influence of a broadened
radiation field where P(v) is the energy per unit volume per unit frequency interval A and B
are the spontaneous and induced transition rate coefficients ( or Einstein’s coefficient). As a
matter of fact, Einstein derived them originally, not on the basis of field quantization, but

rather by the use of classical arguments and thermodynamic considerations. The expression

A 8mhv® n? . . .
(eg. By1=B43, /31;.:—3 ) are found to be in agreement with the results obtained on

the basis of field quantization.
The present work can define a transition rate from level 1to level 2 in the presence of a single

mode field as,

wyz =K<n> (3)
Whereas the transition rate from level 2 to level 1 is given by
W,y =K<n>+A (4)
As we pass from the single mode radiation case to the broad band radiation case, the equation
for the population difference in terms of the transition rates still holds, but now the transition
rates Wy, and w3, given by (3) and (4) must be generalized by summation or integration

over frequency. If the frequency distribution of the radiation field represented by < n(v) > and

the mode density P(v) are each assumed to very slowly with respect to the line shape factor

z
T |.u1z|

1
P (. ) v all frequency dependence other than the line
T £

contained in K(v) K =
shape factor may be removed from the integral. With this assumption we arrive at,
w;, =P ()By, (5)
w3y =P (V) B, +A (6)

where P(v) is the energy per unit volume per unit frequency interval defined by

P()= P(w)h<n()> (7)
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with A given by A= —— =V fﬂ K(w) P(w) dw
sp

(Where T, K(w) and P(w) dw represent spontaneous emission time, single mode

spontaneous emission rate and number of modes per unit volume in a frequency range dw,

respectively) We see that the ratio of A to B is as follows:-

grhv? n?

5= h()P) = 8)

(from the results of mode density relationships). From (7) and (8) we find

o2

A 1

il (9)

BF R
where <n> is the expectation value of the number of photons in a single mode. From (9) we
thus see that the induced transition rate B (emission or absorption) is <n> times that for
spontaneous emissions.

The laser consists of vast number of atomic amplifiers placed between two partially
reflecting mirrors which cause radiation to travel back and forth through the amplifying
medium. The electromagnetic field, building up within the laser, may be regarded as a field in
a cavity which is weakly coupled to the outside. The different types of electromagnetic
oscillations of the laser regarded as an isolated cavity are the well known modes of
oscillations or briefly modes. It is relatively easy to make input and output calculation for a
ruby laser in a hypothetical steady radiating state. Such calculations are of little value,

however, because of the large intensity fluctuations which seem inherent in the situation.

The power generated at frequency v, in a uniformly excited ruby laser of volume V is
Po =@y (N; — Np) V huy, (10)
Here w,, is proportional to the radiation density, and N, = N, depends upon the radiation
density as well as on the intensity of excitation. Starting with zero radiation density at
frequency v, when the threshold is first reached, the radiation density start to fall again and

an oscillation of intensity ensues. This oscillation is called pulsation.
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1. Transition probability from T - matrix consideration;
For the interaction problem of radiation and two level system, it is essential to determine the
complex probability amplitudes a (t) and b (t) for the two states |a > and |b > respectively

that solve the mechanical part of the interaction problem, because, these directly (and their
different real combinations 1; and 1, andry) give the various physical quantities of interest

such as power emission from the system, polarization of the system etc. Direct solutions of the
differential equation for a(t) and b(t) which are obtained from the Schrodinger equation of
the problem appeared in literature and where first given by Einstein in connection with the
derivation of induced transition probabilities.

It is interesting to note that the T-matrices of interaction obtained by earlier worker
have the elements which are just the probability amplitudes and their conjugates and are
recognizable as Kayley-Klein parameters which are intimately connected with spatial rotation
on quantum mechanics.

When the system is initially in its higher state represented by the ket |a >, the state

vector | ==, at a later time t, is essentially the transformation of | a > by a matrix

a(t) —b™ (1)
b(t) a™(D)

In terms of the three well known real functions W ;and w4 (mllmez and mJE in

T() = ( ) (11)

the primed frame; Hamiltonians in the primed frame appear as a constant.) of

. dr — o . . .
Feynman equation o ( @ x 7 ), the interaction matrices have been expressed as for

Am = + 1 transitions

at iw'y .t —i ' . s .t
cos —— —= sin— " (w,—Ilw,) sin—

T (t) = ( —i - . E .t ) at iw'y 7 ) (12)
" ml—zmg) sin — cos —+ sin —

2 . .
5+ w' 3 ); and for Am = 0 transitions
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ot iw' .t —imy .0t
cCos ? — P ST ? T s1n ?
T =( iw’y .ot ot | iw'y . 0t ) (13)
sin — cos —+ sin —
n 2 2 2

Since the above matrices refer to the rotating coordinate system (1’, 2, 3’) we obtain, on

comparison of the elements of (11) and (13), the probability amplitudes, to be given by

, nt fw'y —iw'y
2 (t)=cos = —
2 i I

. M . I
s —, b’(t) = SN — (14)

for Am = 0 case of transition.
The transition probability | b (t) | 2 (= | b’ (t) | 2) for the system (initially in the higher state)

to be in the lower state after a time t due to the interaction is therefore given buy

w ] . ﬂt
— sin2—
n 2

b (o) [2=

Fgp Eg

( ) E
=ﬁwﬁLWQEW%J¢%iF+wrwﬂ(m
A o

(from the explicit expression for w;’s given by Feynman et al which for a coherent applied

field E = Eo cOS t appear to be constants in a rotating frame obtained by rotation of the (1-2)

plane about the 3rd axis with an angular velocity w, w3 = wo is the transition frequency of the

two states). Under the resonance condition wo = w the transition probability (15) changes to
E,
Ib(t) |2 = sin? %t(““*’T") (16)

E,
where, a=% (MTD) (17)

The above results are exactly identical to the results obtained for occupation probability for a

two level spin system in a time harmonic field through solving Schrodinger equation.

2. Solution for the Inverted Population Difference between the Lasing Levels of a 3-

levels system
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Literature point cut that the most widely used quantum mechanical analysis, for complete and
rigorous treatment of a collection of multilevel atoms is the density matrix approach.
However, they are not very different from the approximate equations obtained with simple
heuristic arguments.

The approximate approach we will develop in this section amounts in essence to
treating each separate transition in a 3-level (or a multilevel) system as a separate two level
transition and then adding up the various rate equation terms to find the total rate equation
for each level in the system. Siegman points out that if applied signals are present at or near

various transition frequencies Wy ; between various levels E; and Ej, then provided that none

of the applied signals is too strong, the following general principles can be applied:
(a) As far as the stimulated response on any particular transition is concerned, that

transition may be treated as if it were simply an elementary two- level transition between the

two energy levels E; and E;.”

The induced response on the transition, in each case, willbe  proportional to the
population difference AN on the transition and will be independent of the populations of all
of the other energy levels, as well as independent of the presence of any  allied signals on

other transitions(provided they keep AN unchanged ).

(b) “Only the populations 71;(t) of the two levels will be directly changed by the presence

of an applied signal on the particular transition, and these population changes (or more
precisely rates of change) can be described in the same rate equation terms as in the
equivalent two- level case.”
(c) A signal applied at or near a given transition frequency will excite a significant
response on that transition only.
Multiple signals applied simultaneously to several different transitions in the same atomic
system will not directly interact with each other.”

In other words, however, leaving the indirect effects, it not the presence or absence of
the other signals that counts, but simply the population difference that is present, regardless

of how it is brought about.
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(3) Formulation of the Problem:-

Let us suppose that, in the absence of any external radiation, the particles
constituting the medium are in thermal equilibrium at temperature T. We consider that each

of the N particle of the medium can exist in one of the three allowed stationary states, where
Nis the number density of the particles. If n,(t), n,(t) and ns(t) represent a general
distribution of the particles over the states 1,2,3 with energies E; << E, << E; the rate

equations can be written as

% =—P,, n1 + P,; n2— P, ;n1 +P;, n3+w,, (n2—n1) +w,, (n3—n;1)  (18a)
22 = —P,; Nz + Py 11— Pz +Py; Nty (mi-n2) (18b)

%= —P;, n3 + P,3 n1— Py,n3 +P,5 n2+ w, 5 (n1—n2) (18 ¢c)

Where, n, () +n,(t) +ny(t) =N (19a)
n,(t=0) =aq; (19b)

1
Pi;(= — ) and w;; are respectively the thermal and the stimulated transition probabilities
ij

per unit time between the level i and j. The relaxation processes always act to bring the
energy level populations to thermal equilibrium, with a Boltzmann distribution between each
pair of levels. It is reasonable to assume that in a multilevel system every atomic level
population may be connected by longitudinal relaxation process of varying strength, with

every other atomic energy level population, both above and below it. From physical

arguments it is invariably assumed that the relaxation rate from one level E;to a second level

Ej will be given by a relaxation transition probability P; j ber atom per unit time, multiply by

the number of atoms n; available in the originating level. Of course, there will be a similar

relaxation process in the reverse direction with a total rate given byP; M. At thermal

equilibrium the average number of j — i thermal transitions is equal to that of i — j transitions,

so that
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=]
Py _1_ o~ (Ej—Eq)/kt
=]
Fji  my
= (1-hvy; )/kt = €, (say), and [,jk=1,2,3,..... (20)

The terms in the equations (18a, b, and c) are not condensed in any way, but the source of

each term should be clear from the format. The relaxation terms are stated first and are

followed by the stimulated terms. We have also used the fact that @;;= Wj; although this is,

ij=
for course, not true for P;;and Py;.

Population inversion between the levels 1land 2 takes place due to the action of a
pumping field at frequency v,; and the relaxation processes between the levels 3and 2. The

rate of growth of population inversion depends mainly upon (1) rate of pumping, (2) initial
equilibrium population of the levels and (3) the rate of relaxation mechanism. As soon as the

population of level 2 becomes greater than that of 1, downward transition takes place
resulting in an emission at frequency v;, and thereby increasing the energy density of the
inducing field at v 5.

In the present treatment we first solve for the instantaneous population inversion An
(= n,— n,) between the lasing levels taking w; ;as a function of photon density and time. As

noted earlier, in connection with the analogy with a two level system with no loss, we can take

fi1z Eg
i

w;, o sin® at (eqn. 16) where a=-% ( ), l15 being the matrix element for the

component of the dipole moment along the fieldE. In fact, n = sin? at is the solution of the

differential equation for photon number per atom (Venkatesh and Dixit). In the later part of

this chapter we solve the rate equations for the power output from the emissive system at any
instant of time considering @, ; as time independent. The power emitted is found to vary with

time which, ultimately, attains a constant value. In the microwave range the expression for
power tallies with that of Bloembergen.
4 approximate solution:

By manipulating and combining the first two rate equations of (18) we have,
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d2An din dw

2 +EL1—|—2&}12)E+(M1+2 d;z+ ZHMIQ)&TE:F (21)

where An stands for the instantaneous difference of the populations of the lasing levels and
L, M,, K F are constants involving Pl-j and @, 3. The above equation (21) is of the following

form is of the following form

B AOZ s @y=c

dx

and can be solved in a suitable manner. Let us rewrite the equation as under after putting the

aforesaid substitution e.g. w;5,=R sin®at (R is the constant of proportionality)

“H(Ly + 2R sinfat )20
(M, + 2RK sin*at + AR sinat. cosat.a)
An=F (22)

On taking the trial solution of the form y=2,7_,(a,nt)°*™ (Where a, # 0), we solve the
above second order deferential equation (22) for the instantaneous value of the level

population difference (1, — 1, ) to get

n=a, [1—- Y22 _ [pMefe) LiMil.a,
0 2 6h2 6

z z
+a1t[1—%t+{§—‘%}t2+ ---]+§1|:2 [1—%t+{%—f—;}t2+---] (23)

where,
My =Py + Pz + Pyp) (Pp; + P + Py +2053)—(P; —P3z) (Poy — Poy —w13)
Li=Pyy + P + Py + P53+ Py + P35 + 203
F:N[P12P31 + P Pay + PPy — PaoPoy _P31P21]
=[B1 Py — w3 (P, — Py + Py — P3)] (24)
For transient behavior of the population inversion we may neglect the higher powers of t

and write A = ay + a . As w,, & sin®at is true only for short interval of time, the linear
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Further considering J;, as time independent (steady case), we solve for the instantaneous

value of the level populations from equations (18 a, b, c)

ny(t)=4;, +Biat+ Cpt, i=1,2,3.. (25)

Where, 4;= _Fi/g

and
Ki=—[ (P +wy)(a, +a,) + (B, + wy3)(a, +a,)
+a,(Py3 + P33 )]
K,=—[(P; +w)(a; +a,)+2a,w,5 +P;,(a, +az)
+a, (B, + P3)]
K;=—[(P; + wy3)(a, +a3) +P5(a, +a;)

+a; (P, + Py + 2w;,)]

[y ==N[(B; + @y,) (B + Py + @3+ (P + @y3)B5]
[, ==N[(P; + wy;) (Byy + Py + wy3)+(P3 + wy3)PB;]

(26)
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I'; =—N[(P3 + w;3) (Poy + Py + @y, )+ (P, + 15)Ps5]
h=[P,+P, +P3+P; +P; +P, +2w,, + 2w,4]
g=[(Py +wy,) (Py;y + P35 + Py +2w,3)
+(P, + W) (B + By + B, +2w,3)
+(Py; + Pi3 + 2wy3) Py +P3, (P + @wy3)]
D=,/h?—4g (27)

2.5 power emitted and time for maximum power output:
The power P(t), emitted from a three level system at any time t is
P()=An(t) wy  hvy, (28)
Where An(t) is the population difference at any time t between the lasing levels, and is given
by

An(t) =n,(t) — n,(t)

=(A; — A;) +(B, — By)e*"+((; — C1]€'Et (29)

On substitution of the values of the constants (i.e. A, B etc.) and using the approximation that

the spontaneous transition probabilities are much smaller that the induced ones, for the

output power at any time t, we have,

P(t) =7 [Py (e — 1) — Py (e — 1] hvy,
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Wiz + Wiz 2 2 2 2 i
— 1+ [m12+m13 \fmu""mla_mlzmla L

| e z _
ot g~y piyg

.\'I

[N —3nf]

g_ @ )
Mg —13 fyotidyg N
} o owyy hug, +{ . ] 1+ ”
lwi twi—w w3 1z

-"J

22 bew® —
Wygtiyg—yolg

-"J

[P,;(e3 —1)—Pyy(e; —1)]-|1—= Wiz + Wiz L. [N-3nt] )

[..,2 z _ | 2 z _
Wygt g~ dypidyg Wyt Wyg— dyoiiyg

\ \

wWyp hvy, — |5 =ha -t (30)

z z
lwi +wl —wiwyg

-"J

At time=0, the power output is P(t=0) = [n§ — n§] w4, hvy, and is a negative quantity, since
n3 < njg.
For large value of t, the power output is

P()1arge :Z;[leiea —1)— Py, (e; — 1] hy, (31)

To find the time £,,,, at which the output power will be maximum, we have

d
Zitj = [a(B, — By) etm +B (C, — Cy) E"Etm] w4, hvy, =0A

eﬂtm _ {c-z_c.i:l E
or, gBftm - {Hz_ﬂl:] o
or, etm@B) __(&=G) h+D

{HZ_H;L:] h—D
(c;—€,) h+D

or, t,= TR log[ — 2= ] a2

(B,—B,) h—D

Again from the expression (31) for example,
N

P(O)1arge = 3 [Pr1(e; — 1) — B3, (e, — D] hoy,

we have, for microwave frequency range in steady condition,
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N _ — - —
P(0)= 5 [Pale™ ™% — 1) — Py (e7 % 25T — 1)1 hoy,

- 21 (52) - P (-
For hv;; < KT

N R® 12

= 3 o F32V32 = Poypg) (33)

This is exactly the same result as was obtained by Bloembergen.

DISCUSSION:

The semi-classical model explains many laser phenomena, both linear and nonlinear,
qualitatively and in several respects. The inadequacy result mainly due to the model itself
which embodies the material system and the interacting field as two separate systems and as
such cannot give appropriate description of the collective radiation phenomena discussed by
Dicke and Senitzky. Besides, it is not clear from the usual S.C.F.A (self consistent field
approximation) derivations just how the effects of spontaneous emission should be taken into
account. These effects have important bearing on coherence properties of laser such as line
width, amplitude and intensity fluctuation. Further the model sheds almost no light on the
important question of statistical nature of laser radiation. The traditional approach to this
problem has been the phenomenological one of adding suitable source terms based on
equilibrium or other considerations to the semi-classical equations of motion. Lamb,
Bloembergen and several other workers have work along these lines.

The model may be improved proceeding along a fully quantum mechanical of the
interacting systems. The interacting field should therefore be quantized and the system (atom
plus radiation) be treated as a single quantum mechanical one.

Distinctive approaches for the problem are in use under the semi-classical approximation
among which density matrix method of Lamb, Bloembergen and others; Gyroscopic method of
Feynman et al, intuitive approach of Dicken and T-matrix method of Venkatesh et al., are
important because of their wide range of applicability’s on one hand and for providing

physical picturization of the process on the other. Senitzky’s treatment of loss mechanism in
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such systems bears much importance in the discussion of noise sources of laser radiation,
line broadening etc. Feynman on the other hand transformed the amplitude equations for
two - levels system to give a geometrical picture of the interaction process in an abstract
space and at the same time a solution for the physical quantities of interest directly from the
geometrical picture itself. However for a systematic study of the problem, an analytical
solution without any reference to a geometrical representation of the process is always
desirable.
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