Preparation of Soaps by Using Various Oil and Analyse Their Virtues

Mohammad Pazir Hakimi

Research Scholar Associate Professor

Department of Chemistry, Kandahar University (Afghanistan)

ABSTRACT

The molecule of soap consists of two dissimilar and various ends, a hydrophilic end (polar head) which binds with water and another end which is hydrophobic end (non-polar hydrocarbon tail) that binds with oil. The soap is made by thesaponification process, which reacts with the oil that contains triglycerides and lye (NaOH). Oils with dissimilar and variousproperties make them distinct from each other as the composition of fatty acids is incompatible. In the present studyin the process of preparation of soaps, dissimilar and various oils of 5 types i.e., olive oil, palm oil, castor oil, coconut oil and geeoil were utilized. In order to prepare different soap samples, the oils were blended indissimilar and variousratios which are thenchecked to analyse the soap's quality. In this study amount of volatile matter and moisture content, total fatty matercontent, alkali content and pHwere determined. The obtained resultswere compared with some of commercially available soaps such as baby soap (BS-1), elder soap 1 (ES-1), elder soap 2 (ES-2), elder soap 3 (ES-3) and eldersoap 4 (ES-4). With the observed studies, the soap made using olive oil was found to have better properties and virtues that the others. It has the good alkaline content, Total Fatty Matter (TFM) value and pH values.

Keywords: Alkaline, Oil, PH, Soap, Saponification, Volatile.

1. INTRODUCTION

Man's day to day activities include luxurious baths to laundry where soap is an integral part. Although the preparation and virtues of soap is same worldwide, it is produced in different and dissimilar varieties for various purposes. The chemical composition of a soap is a blend of sodium/potassium saltsof the long chain fatty acids, which is made by saponification reaction by the hydrolysis of animal fat and alkali. It is also possible to utilize vegetable oils. Potassium alkali is used to make liquid soaps rather than sodium alkali as soaps produced are hard compared to potassium alkali. After hydrolysis of animal/vegetable oils, they are changed into glycerol and fatty acids. Following the release of water, the fatty acids react with the alkali to form metal salts called soaps. It is

known that there are more than 100 oils that are used in soap production which occur in most varieties [1]. But unfortunately, most of the soaps form non – saponifiable fatty acids and cannot be suitablefor soap production. In soap production, mixtures of oils are usually used to produce a high – quality product. Some components of these combinations may not undergo hydrolysis saponification and may be left out in the soap as unreacted fattyacids [2]. Skin irritation can be caused with the short chain fatty acids in soaps. As there occurs a tendency to bleach the skin with the soap production, it is necessary to wash out the unreacted use of alkali. Unfortunately, for profit, most soap producers sacrifice quality and retain unreacted soap alkali [3]. Sometimes, in order to produce a soap that bleaches, the alkali is left in the soap. Soap is a mixture of Na⁺ or K⁺ ions with fatty acids chemically. It is possible to classify fatty acids into saturated andunsaturated fatty acids. The most abundant saturated fatty acids are palmitic and stearic acids, whereas the most abundant unsaturated fatty acids are oleic and linoleic acids. Production of quality soap consists largely of choosing the right proportions of the right oils with their different fatty acids.

Most commercial soap produces quality skimps due to cost and use oils of low quality such as beef fat tallow. Most of these oils of low quality contain non – saponifiable fatty acids [4]. Using them leaves as unsaponified fatty acids a lot of fatty acids in the soap. This lowers the quality of the produced soap. Soaps made from saponifiable oils of high quality such as olive, hemp and palm oil leave fatty acids well below the maximum accepted levels set by the standard authorities. Saponification reaction involves soap producing hydrolysis of fats and alkali oils.

Inhalation and ingestion of Potassium hydroxide causes toxicity. It is corrosive and causes irritation to skin, eyes and respiratory tract. Soaps which contains large amount of unreacted lye in them have the potential of bleaching the skin. Commercial manufacturers of a soap sometimes will retain excess of lye intentionally to produce a bleaching soap [5]. Poor methods of preparation is also one of the reasons to retain excess lye. Regardless of the intent behind the retaining of lye in soaps, it should not be more than the maximum acceptable level as prescribed by standard boards. Other than the components of soap matter which is not soluble in soap are referred as foreign substances. The presence of these substances should be reduced are avoided as some of them may be harmful effects. The constituents of the soap which are volatile are referred as Volatile matter. Soaps which contain Volatile substances as components will have less quality as the components will vaporize easily and leads to reduction in the quality [6]. So, use of volatile components in soaps should be avoided as much as possible. As specified in commercial transactions the TotalFatty Matter (TFM) is one of the most significant features which describes the quality of soap. This total amount of fatty foods is often referred to as fatty acids, which can be separated from the sample after the split with mineral acid, usually HCl. This is the technique and idea that we used here to determine the total fat content in soap. TotalFatty Matter (TFM) is used to categorize the soaps. The soaps which use TotalFatty Matter (TFM) will contain less as TotalFatty Matter (TFM) is associated with hardness. But as humidity, the finished fillers of commercial soaps, especially laundry soap, as well as to reduce rates or to give special properties, include fillers, emollients, preservatives, etc. Also, TotalFatty Matter (TFM)may be up to 50%. Fillers, usually dry powders able

tomake soap harder which effects on skin harshly and because of more affinity it may become mushy in water. Such low TotalFatty Matter (TFM) substances are usually associated with rigidity and low quality. Bureau of Indian Standards (BIS) are classified bath or toilet soaps as common, baby, transparent and antibacterial soaps. The last threenamed soaps are specially targeted to specific users. Toilet soap is a enhancing by law and itmust fulfill the necessities of the relevant Indian standard [7]. Bureau of Indian Standards (BIS) categorized toilet soaps into three grades based on the total fattymatter present in them. If TotalFatty Matter (TFM)is beyond 76%, grade I, it has good quality. TotalFatty Matter (TFM)above 60% fits tograde II andTotalFatty Matter (TFM) above 50% fits to grade III. According to International Standards (ISO), good quality soaps must have TotalFatty Matter (TFM) above 76%. In the current study, the total alkali content and total fatty matter content of different soap samples were determined and likened with standard values [8]. These values are essential in determining the quality of asoap and suitability in the cleansing applications.

Objective of this research paper is to analyse synthesized soap and compare it with commercially available soap. To achieve this goal, levels of some quality parameters of soap were determined such as volatile matter and moisture content, Total Fatty Matter Content (TMF), Alkali content and pH in soap.

2. MATERIALS AND METHODS

2.1 Soap preparation

Lye (NaOH) was dissolved in distilled water then cooled to room temperature, then it was mixed together with oil and heated to room temperature again. Then it was carefully poured into lye water and blended until to "trace" form. Then it was allowed to mold. The different types of oil were used to synthesis soaps such as coconut oil, olive oil, castor oil, gee oil and palm oil with composition of NaOH, H_2O , oil (1:3:7) respectively.

2.2 Determination of volatile matter and wet content

Soap (10.0 g) was weighed to the nearest 0.01, placed in an oven. The temperature was controlled at 110°C. Consequently, it was weighed after cooled in desiccator [9]. Until the differences in the mass between two successive weighing is achieved less than 0.01 g, theoperation was repeated.

Following this equation, the volatile matter and moisture content was determined.

$$\frac{m_1 - m_2}{m_1 - m_0} \times 100$$

m₀: Mass in grams of the dish, m₁: test portion with dish beforeheating, m₂: test portion with dish after heating.

2.3 Determination of total fatty matter content (TMF)

Soap (5.0 g) was weighed out and the water (100 ml) was added, then it was shaken well and heated directly for (20 - 30 min). Then concentric sulfuric acid was added until fatty acid layer separated. Solution was filtered by using filter paper and transferred to a pre weighed petri dish. Finally, content was evaporated in electric oven and residue was weighed [10].

Calculation of the Total Fatty Matter Content (TMF) is done with the following equation.

$$TMF=(y-x) \times 100 \times weight of soap sample$$

X: weight of petri dish, y: weight of petri dish and soap after drying.

2.4 Determination of alkali content in soap

Soap (5.0g) was weighed out and the water (100 ml) was added, it was dissolved well and heated directly(20-30 min). Then concentric sulfuric acid was added until fatty acid layer separate. Then chloroform (50 ml) was added and solution was added to the separation funnel. Separation funnel was shaken thoroughly until separate chloroformand fatty acid layers. Chloroform layer was separated, and aqueous solution was measured. Aqueous solution (10 ml) was taken to the titration flask and titrated against standard NaOH, methyl orange was added as an indicator. Then alkali contentwas determined using the obtained volume of NaOH [11].

2.5 Determination of PH in soap

Soap (1.0 g) and distilled water (99.0 g) was weighed out and distilled water was heated up to 70°C. Then soap was added to the distilled water and stirred well until soap dissolved. Then solution was cooled in ice bath (40°C) and pH was measured by using pH meter (Table 1) [12].

3 RESULTS AND DISCUSSION

This table shows the moisture content and volatile matter in soap. The ES-1, ES-4 and ES-3 is in good quality according to standard value. But the volatile matters should be very much less in homemade soap because it does not contains any preservatives, colors, essences which give smell to them (Tables 1 and 2).

Table 1: Volatile matter and wet content in soap sample

Soap	Initial Weight of Soap	Final Weight of Soap	Volatile Matter and
	with WatchGlass (G)	with Watch Glass (G)	Moisture Content %
Coconut oil	34.04	24.813	92.27
Gee	42.573	40.628	19.45
Olive oil	52.348	43.928	84.2
Castor oil	34.576	32.228	23.48
Palm oil	48.349	44.197	41.52
BS – 1	30.3	21.21	90.9
ES – 1	33.81	33.07	7.4
ES – 2	48.028	45.763	22.65
ES – 3	52.097	50.913	1.84
ES – 4	44.522	43.412	11.1

Table 2: Total alkali content in the soap samples

Soap	Sulphuric acid volume (ml)	Water volume (ml)	Required NaOH volume (ml)	Alkali content
Coconut oil	0.5	47	9.05	4.076
Gee	0.4	87	2.35	3.652
Olive oil	0.3	58	2.2	2.704
Castor oil	0.4	75	4.77	3.458
Palm oil	0.5	68	4	4.48
BS – 1	0.6	64	3.4	5.488
ES – 1	0.6	91	5.6	5.312
ES – 2	1.8	82	45.68	4.026
ES – 3				
ES – 4	0.7	84	8.45	6.044

Total alkalinity is a measurement of all alkaline substances in the soaps i.e., primarily carbonates, bicarbonates and hydroxides in addition of other substances. The ES-1, BS-1 and ES-4 have higher totalalkaline content than

standard value and other all seven soaps are in below maximum level of alkaline content. According to the results Olive oil is given minimum amount of total alkalinity to soap (Table 3).

Table 3: Total fatty matter content on soap samples

Soap	Weight of china dish	Weight of china dish with Total fatty matter co	
Зоар	(g) (X)	content (g) (Y)	$(Y-X) 100 \times 5$
Coconut oil	54.041	54.068	13.3
Gee	53.25	53.356	53
Olive oil	50.163	50.324	80.5
Castor oil	48.794	48.822	14
Palm oil	52.681	52.714	16.5
BS – 1	55.14	55.31	85
ES – 1	51.521	51.568	23.5
ES – 2	50.817	50.834	8.5
ES – 3	50.921	50.939	9
ES – 4	52.774	52.923	74.5

Higher TotalFatty Matter (TFM)confirms that soaps are less damaging to the skin and do not cause dryness in bars for "bathing". Less TotalFatty Matter (TFM)means veryharmful soap, soap captures all themoisture in the skin that makes it dry. While dry skin progresses, it becomes more sensitive to skin break down, and causes the infection and rashes. This disorder is sometimes referred to as xerosis. Bathing soaps are categorized into three grades, Grade 1: Soaps should have a minimum of 76% TotalFatty Matter (TFM), Grade 2: soaps should have a minimum of 70% TotalFatty Matter (TFM)and Grade 3: 60% minimum TotalFatty Matter (TFM).

For washing soaps, they are categorized in two grades. Grade 1: 62% lowest TotalFatty Matter (TFM)and Grade 2: 50% of lowest TotalFatty Matter (TFM)according to Ghana Standards Authority (GSA, 2008). Basically, higher the TotalFatty Matter (TFM)of soap better is its cleansing capacity.

The soaps made using Olive oil and BS-1 have TotalFatty Matter (TFM) value more than minimum Total Fatty Matter Content (TMF) value and ES-4 haveTotal Fatty Matter Content (TMF) value near to minimum TotalFatty Matter (TFM)value. These 3 soaps can conclude as good soap when consider Total Fatty Matter Content (TMF) value. When Total Fatty Matter Content (TMF) value is less than standard value it causes skin dryness. When Total Fatty Matter Content (TMF) value was found it is difficult to evaporate the content in it, approximately it takes 1

week. When TotalFatty Matter (TFM)value was determined the fatty matter are stick in beaker wall, glass rod wall and on filter paper, it is affected to the accuracy of the data that was finally calculated (Figure 1).

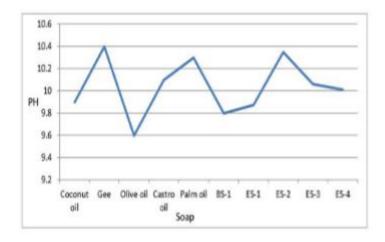


Figure 1: Graphical representation of pH in soap

The pH measures the acidity or alkalinity of a substance. The skin also contains PH. Once materials with completely different PH levels acquire contact, chemical reactions often occur. The soaps, lotions and different merchandise you employ will have an impact on the PH, and thereby the health of the skin. All the soaps have healthy PH values. When determined, the PH of the soap, must be at 40°C, if the temperature exceeds the solution becomes thicker and it's difficult to measure the PH.

The olive oil soap is best soap among the prepared soaps that have good alkaline content, TotalFatty Matter (TFM) value and PH value. The ghee oil is a saturated fat and it is animal fat it gives hardness to soap quickly than other oils. The coconut oil is cheapest oil and it is very common oil, the olive oil, sunflower oil is very expensive and they are not common oil hence they are not very much suitable to prepare soap commercially. The palm oil, coconut oil is beneficial when soap is produced commercially but they are not good for skin health. According to the results obtained ghee oil is also suitable for preparation of soap. Most people have heard about saturated fats and their link to obesity and heart disease and other ailments.

To aid the soap to last longer in the shower, the bars soaps are provided with soaps hardness. The Common saturated fat used to hardness the soap is coconut oil. The improved water solubility helps to make more suds and enhances the ability to clean. Unfortunately, soaps made from coconut oil would dry the skin, to overcome that some conditioning and moisturizing components have to be added. Palm oil is another common saturated fat. It is similarly a good fat to skin sensitivity. A common recipe for homemade vegan soap consists of palm, coconut, and olive oil. Unsaturated fats are the best components for balancing saturated fats in a soap formula.

These are usually vegetable oils, on the other hand, which are liquid at room temperature and mainly contains bent and branched chain molecules. They have the property of acting as emollients or moisturizers in soap formulae. In the right amounts, they can effectively offset the drying abilities of saturated fats and create a bar soap that is hard, conditioning, sudsy as well as white. Olive oil is one of the finest conditions of oils. It is mainly composed of oleic acid, but most of the conditioning action comes from the unsaponifiable, which are organic ingredients in the oil that alkali does not act on.

4. CONCLUSION

Based on the results it was realized that ES - 1, ES - 3 and ES - 4, coconut oil, olive oil, Palm oil, BS - 1, castor oil, ES - 2, contains more amount of moisture content and volatile matter falls above the minimum accepted value as prescribed by the standard authority. Based on the results obtained from the analysis, it can be decided that except ES - 1, ES - 4, alkaline content is less than the Ghana standards board and can therefore be classified as good quality. The olive oil soap, BS - 1 and ES - 4 contain higherTotalFatty Matter (TFM) value than the standard Total Fatty Matter Content (TMF) value which should not be less than 63. For other soaps Total Fatty Matter Content (TMF) value is less than 63 hence we can conclude that Olive oil soap, baby soap and ES - 4 is good when TotalFatty Matter (TFM)value was considered. The PH of healthy skin is between 4.5 and 5.5. The too alkaline soap is truly good for skin, hence all the tested 10 soaps have healthy PH value.

5. ACKNOWLEDGEMENTS

First and foremost, I would like to thanks Almighty Allah for giving me the strength, knowledge, ability and opportunity to undertake this study and to complete it successfully, without his blessing, this achievement would not have possible. I would like to express my appreciation from Chancellor of Kandahar UniversityDr. HazratmirTotakhil to support me about this research paper.

References

- [1]. Amponsah D, Sebiawu GE, Nagai H (2014) Quality analysis of selected liquid soaps in Ghana. International Journal of Advancements in Research and Technology 3: 124-128.
- [2]. Ahmed I (1984) Palm Oil Research Institute of Malaysia (PORIM). Selangor, Malaysia, pp. 1-17.
- [3]. Idoko O, Emmanuel SA, Salau AA, Obigwa PA (2018) Quality assessmenton some soaps sold in Nigeria. Nigerian J Technol 37: 1137-1140.
- [4]. Sharma H, Giriprasad R, Goswami M (2013) Animal fat-processing andits quality control. J Food Process Technol 4: 252.
- [5]. Benn EK, Alexis A, Mohamed N, Wang YH, Khan IA, et al. (2016) Skinbleaching and dermatologic health of African and Afro Caribbeanpopulations in the US: New directions for methodologically rigorous, multidisciplinary, and culturally sensitive research. DermatolHer 6:453-459.
- [6]. 6hro j H, Diedrichs PC, Craddock N (2018) Skin color, cultural capital, and beauty products: An investigation of the use of skin fairness products in Mumbai, India. Front Public Health 5: 365.
- [7].O'Connor RT, Herb SF (1970) 6pecifications of fatty acid composition foridentification of fats and oils by gas liquid chromatography. J AmericanOil ChemSoc 47: 186-195.
- [8]. Kanyua NP (2016) He potential of Telfairiapedata for liquid biofuel andsoap production. Dissertation, School of Pure and Applied Sciences, Kenyatta University.
- [9]. Joyner NT, Rini SJ (1939) Some notes on the determination of moisture and volatile matter in fats and oils. Oil and Soap 16: 233-236.
- [10]. Kundu MK, Deb AT, Gupta SP (1977) A simple rapid method for direct determination of total fatty matter in soaps. FetteSeifenAnstrichmittel79: 285-288.
- [11]. Maron SH, Ulevitch IN, Elder ME (1952) Determination of soap, acid, and alkali in synthetic lattices. AnalyChem 24: 1068-1070.
- [12]. Tarun J, Susan J, Suria J, Susan VJ, Criton S (2014) Evaluation of pH ofbathing soaps and shampoos for skin and hair care. Indian J Dermatol 59:442.