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ABSTRACT

This paper is aim to study the effect of combining the method of quarantining an infective with behavioural changes
of the infective and the susceptible as a result of the disease to the transmission of the disease. Therefore, this paper
considers an SIQS model with constant recruitment rate and parameters that measure behavioural changes of the

infective and susceptible. We obtained a threshold Ry which we use to analysis the stabilities of the disease. It is

established that threshold value is not 1 but 1 +£. That is if Ay is less than 1 +%, then the disease-free-

equilibrium exists and is stable. And if Ry, is greater than 1 + i then there exists a unique positive equilibrium and

is stable.
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1. INTRODUCTION

The rapid spread of infectious disease to a large number of people in a given population within a short period of
time has been a great concern to humanity in many ways. One of the negative effects of infectious disease is the
high number of people it can kill within a short period of time. For instance, out of the 66 recorded cases of Ebola
virus in Zaire of Democratic Republic of Congo (DRC) in 2014, 49 (74%) people were reported dead [1]. In 2008
Zimbabwean cholera outbreak that lasted for six months, 4,369 out 98,596 reported cases were killed by the disease
[2]. Apart from this direct killing of the patients, the infectious diseases still did not leave the survivals without an
untold hardship. Huge part of the government’s budget that is supposed to be used to better the life of the citizenry
will be used to control it and economic activities of the affected areas are usually paralyzed. All these among

contribute to the low standard of living of the survivals.
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With respect to the aforementioned reasons among others, the quick response to the control of infectious diseases
cannot be overemphasized. The measures taken by the health workers are vaccination, quarantine and treatment.
Among the adopted measures, quarantine is the quickest measure that can be used to prevent the spread of infectious
disease. Quarantine is the process of separating an individual who is exposed to a communicable disease, and has
high chances of spreading the disease because of his exposure. A lot of researchers have modeled and worked on
quarantining with rest to epidemic. Feng et al [3, 4, and 5], Adebimpe, O. et al [6] and Hethcote et al [7] formulated
and worked on models with different reaction incidence rate and different endemic models with a view of studying

the effects of quarantine.

The spread of disease depend majorly on the interaction between the susceptible and the infective. And because of
the knowledge of the disease among other reasons, the models that consider free interaction-simple mass action
cannot adequately describe the transmission of disease [8, 9, and 10]. The chances are high that due to the
knowledge of the disease, the susceptible and infective will be cautious on how they interact with one another [11].
The consciousness of the disease, apart from the quarantine method measured above, if well managed can help to
control the transmission of the disease.

ksCediie

In this paper, we consider an SIQS model that combined a quarantine method and incidence rate Tras 0180

,proposed by Pathak S et al [11], that consider the behavioural changes in both the susceptible and infective.
Thereafter, we obtained the disease-free and the endemic equilibria and then discuss the local stability at these
equilibria. In conclusion, we carried out the numerical simulation of the model to compare the effectiveness of the

quarantine and the behavioural changes on the transmission of the infectious disease.

2. The Mathematical Model

The SIQS model is given by the following non-linear ordinary differential equation:

ksl

S =b+yl+pQ —dS - Lems+81 (1)
v ks

= teEs+fr +d+p+ol @)

Q =al—(d+@+u)@Q (3)

In the SIQS model, infectious do not confer immunity, some of the susceptible becomes infected and some infective
remains in the infectious class | for their whole infectious period before they return to the susceptible class S, while
some remain in the infective class until they die, while other infective individuals are transferred into the quarantine

class Q. The parameters b.y. u. d.k, &, f, p. 0. and ¢ are positive constants. The constant b is the recruitment rate of
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the susceptible, d is the natural death rate, ¥ is the rate at which infectious individuals recover into the class S, u is
the rate at which quarantine individuals recover into class S, g represents death rate of the infectious of people in the
I class, ¢ represents death rate as a result of the infection on the people in Q class, & is the rate at which infectious
people are isolated from the | class while & is the infectious force constant of the disease. And a and & are

parameters that measure the behavioural changes of the Susceptible and Infective respectively.

From the fact that ¥ =5 + I + @, we obtain the equation
N =b—dN—pl— ¢ 4)

In the absence of disease, the population size N approaches the carrying capacity % The differential equation (4)
implies that the solution of (1-3) starting in 82 = {(5,1,3) € R%|5 = 0.I = 0, @ = 0} either approaches, enters or

remains in the subset of ®2 defined by D = {':'SJ LR) e R?

0<5+1+Q=2,5201200Q 20}

For any parameters, the model (1-3) has disease-free equilibrium E® = (59,17, 0" = {E, 0, 1) and unique endemic

s E
Ry ly-BE-ufQ) -2 1+a5 Fi”

“Nand Q=

- deg+p’

equilibrium (5*.1*, Q") where 5* = g = ‘;é Ry —(

k—mglh+po+df+yarg?

Define the basic reproduction number as &, = ﬁ
L¥F vl

: kad (E-1-g)
I . —y+d+p+old (5)

- d+ob+rd(f-al—adg

Q=cl-{d+eo+ul@Q (6)

_ _ k@
T d+p+n’

We rescale (5 and 6) with x = y t=ld+o+ult

d+a+p’

Then we obtain

d Ax(p-x-y]
B _ AR g (7

dr l+gx—@y

.
T=px—y ®)

kb T _ dld+p+p)f-m _add+g+ _r+d+p+g

= B = T = s . . 5 o
did+o+p) p d+g+p krd+ob) kd+ab) d+@+p

Where 4 = by

d
(d+ely
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The trivial equilibrium (0,0) of the system (7-8) is the disease free equilibrium of the E? of the model (1-3) and the

unique positive equilibrium (x". ¥} of the system (7-8) is the endemic equilibrium E* of the model (1-3) where

. _ An-2
T Alp+D+d m-mm

and ¥* = px”

3. The Local Stability of Disease-Free Steady State

Theorem 3.1: At EY, the disease-free equilibrium of the model is locally asymptotically stable when B, = 1 + i
To establish the local stability of E¥, we use the Jacobian of the system (7-8) evaluated at E”. The Jacobian of the
. fdn—a 0 ]
o
system at E° is ( » 1)

The two eigenvalues of the Jacobian matrix have negative real parts if and only if the coefficients are positive. And

this will only happen if By =1 + i

4. The Local Stability of Endemic Steady State

Theorem 4.1: The system is locally asymptotically stable at E™ if E, = 1 + —, otherwise unstable.

3
oh

Proof: At the endemic equilibriumE™, the Jacobian matrix of system (7-8) is given by

(1+me” -y I ln—2lx"- Ay ) —(dgz"—1x" - 1x"y")m 3 (L+mx® —my -2 - (Anx - Lx"2-2x"y" }{—=)
Je= = [L+mx —mya? [L+mx-—my=?
P -1
The determinant,
(1+me -y (- le=)- (g x - A= 2-dx=y} -
[1+mx —mTy")2

(L +mx—my in-2dx - Ay - (nx-—lx-2-dxyx

det( o) = — | — 8] -l ]

(L+mx —my=)?

2 — 2x" A
:ﬂ+A{p+1J[ or —ap) ¢ L

A +mx* —wpx*)?]| (1 +ax* — @px*)?

With any positive values for the parameters with & = & and after careful analysis, the sign of the determinant is
determined by
i %{;u—[ug—i:r_

Xt = - . Hence det{ Jz-) = 0 provided R, = 1+ i

== T -
d '.§+d+¢J+;£'+F['.d+:p+_r£“..9—n‘:l—n*§
Ig

; (+rx—ay ) n-2dx - Ay —(ln 2 - Az 2-x*y*Ix
The trace is tr(Jz-) = —1 4 o T E 22 (dnx yiE_ o

(l+mx —my-)?
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Alx*Qp +wp® —m) —x*(2 +p + @pr) +1)

=-1-48 .
+ (14 mx* — mpx)?

, we have tr{jz-1 < 0. Therefore, E* is locally

For any positive value of the parameters and R, = 1 + i

asymptotically stable.

5. Numerical Simulations

We present computer simulation of some solutions of the system (1-3):

5.1 Disease-free Equilibrium: Choosing the parameters as :
b=6y=03u=04d=01Lk=02a=038=4p=0Lc=05¢=02(50),.10,.00) =

(50.30,10).

Then E¥ =(60,0,0) and R, < 1 + i and in this case St} approaches to its steady state value while I{(t} and Q{t)

approaches to zero as time goes to infinity, the disease disappears and dies out as seen in (Figure 5.1).
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5.2 Endemic Equilibrium:
Choosing the parameters as:

b=6y=0Lu=04d=01k=08a=038=4,=010=03¢=02(500),100,.000)) =
(50, 30, 10).
Then E*(5*,I*, R} = (32.8984,8.2479,3.3345). 5(¢),I(t) and R(t) get to their steady state and the disease

become endemic as seen in Figure 5.2.
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5.2.1. Modified Endemic Equilibrium 1

If the o, the infectious people isolated from the I class is reduced by 50% i.e ¢ = 0,13 and other parameters remain

the same. Then E*(5*.I*, R*) = (30.6924,11.0894, 2.3765) 5(t).I(t) and R(t) get to their steady state and the

disease is still endemic as seen in Figure 5.3.
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When &, parameters that measure the behavioural changes of the Susceptible is reduced by 50% i.e

TJARSE
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& = 0.15 while other remain constant. E*(5*,1*, R*) = (30.8432,8.8741, 3.8017) 5(t),I(t) and B(t) get to

their steady state and the disease is still endemic as seen in Figure 5.4
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And £, parameter that measures the behavioural changes of the infective is reduced by 50% i.e & = 2 while other

parameters remain constant. E*(5*.1*, R*} = (22.8508,11.3061,4.8457) 5(t),I(t) and R(t) get to their steady

state and the disease is still endemic as seen in Figure 5.5.
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6. Conclusion
This paper has considered the 5125 model with constant recruitment rate with quarantine and incidence rate that

consider the behavioural changes of the population. It is established that in the model, the threshold value
(reproduction number Hp) isnot 1 but 1 + i Thatis, Ry = 1+ i for the disease to die outand R, = 1 + i for

the disease to be endemic.

We also compare the effect of quarantine and behavioural change on the transmission of the disease. It is established
that & that measures the rate of behavioural changes in infective and & that measure the rate of quarantine play vital
role in the propagation of the disease. As seen in Figure 5.3 that 50% reduction in & leads to 34.45% increment in
the infective and 50% reduction £ leads to 37.01% increment in the infective while 50% reduction in &, parameter
that measures the behavioural changes in susceptible, leads to about 7.59% in the infective. Therefore, to get quick

result in the fight against epidemic, more attention should be given to the infective. This attention could be in the

form of quarantine or public enlightenment of the infective class.
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