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ABSTRACT 

This paper is aim to study the effect of combining the method of quarantining an infective with behavioural  changes 

of the infective and the susceptible as a result of the disease to the transmission of the disease. Therefore, this paper 

considers an SIQS model with constant recruitment rate and parameters that measure behavioural changes of the 

infective and susceptible. We obtained a threshold  which we use to analysis the stabilities of the disease.  It is 

established that threshold value is not 1 but   That is if  is less than  then the disease-free-

equilibrium exists and is stable. And if  is greater than , then there exists a unique positive equilibrium and 

is stable. 
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1. INTRODUCTION 

 The rapid spread of infectious disease to a large number of people in a given population within a short period of 

time has been a great concern to humanity in many ways. One of the negative effects of infectious disease is the 

high number of people it can kill within a short period of time. For instance, out of the 66 recorded cases of Ebola 

virus in Zaire of Democratic Republic of Congo (DRC) in 2014, 49 (74%) people were reported dead [1]. In 2008 

Zimbabwean cholera outbreak that lasted for six months, 4,369 out 98,596 reported cases were killed by the disease 

[2]. Apart from this direct killing of the patients, the infectious diseases still did not leave the survivals without an 

untold hardship. Huge part of the government’s budget that is supposed to be used to better the life of the citizenry 

will be used to control it and economic activities of the affected areas are usually paralyzed. All these among 

contribute to the low standard of living of the survivals. 
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 With respect to the aforementioned reasons among others, the quick response to the control of infectious diseases 

cannot be overemphasized. The measures taken by the health workers are vaccination, quarantine and treatment. 

Among the adopted measures, quarantine is the quickest measure that can be used to prevent the spread of infectious 

disease. Quarantine is the process of separating an individual who is exposed to a communicable disease, and has 

high chances of spreading the disease because of his exposure. A lot of researchers have modeled and worked on 

quarantining with rest to epidemic. Feng et al [3, 4, and 5], Adebimpe, O. et al [6] and Hethcote et al [7] formulated 

and worked on models with different reaction incidence rate and different endemic models with a view of studying 

the effects of quarantine.  

The spread of disease depend majorly on the interaction between the susceptible and the infective. And because of 

the knowledge of the disease among other reasons, the models that consider free interaction-simple mass action 

cannot adequately describe the transmission of disease [8, 9, and 10]. The chances are high that due to the 

knowledge of the disease, the susceptible and infective will be cautious on how they interact with one another [11]. 

The consciousness of the disease, apart from the quarantine method measured above, if well managed can help to 

control the transmission of the disease.  

In this paper, we consider an SIQS model that combined a quarantine method and incidence rate   

,proposed by Pathak S et al [11], that consider the behavioural changes in both the susceptible and infective. 

Thereafter, we obtained the disease-free and the endemic equilibria and then discuss the local stability at these 

equilibria. In conclusion, we carried out the numerical simulation of the model to compare the effectiveness of the 

quarantine and the behavioural changes on the transmission of the infectious disease. 

 

2. The Mathematical Model 

The SIQS model is given by the following non-linear ordinary differential equation: 

                  (1) 

                  (2) 

                   (3) 

In the SIQS model, infectious do not confer immunity, some of the susceptible becomes infected and some infective 

remains in the infectious class I for their whole infectious period before they return to the susceptible class S, while 

some remain in the infective class until they die, while other infective individuals are transferred into the quarantine 

class Q. The parameters  are positive constants. The constant b is the recruitment rate of 
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the susceptible, d is the natural death rate,  is the rate at which infectious individuals recover into the class S,  is 

the rate at which quarantine individuals recover into class S,  represents death rate of the infectious of people in the 

I class,  represents death rate as a result of the infection on the people in Q class,  is the rate at which infectious 

people are isolated from the I class while  is the infectious force constant of the disease. And  and  are 

parameters that measure the behavioural changes of the Susceptible and Infective respectively. 

From the fact that , we obtain the equation 

                          (4) 

In the absence of disease, the population size N approaches the carrying capacity   . The differential equation (4) 

implies that the solution of (1-3) starting in  either approaches, enters or 

remains in the subset of  defined by  

For any parameters, the model (1-3) has disease-free equilibrium  and unique endemic 

equilibrium  where   , )] and . 

Define the basic reproduction number as  

                                                                                                        (5) 

                                                                                                                                          (6) 

We rescale (5 and 6) with  

Then we obtain  

                     (7) 

                                     (8) 

Where  
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The trivial equilibrium (0,0) of the system (7-8) is the disease free equilibrium of the  of the model (1-3) and the 

unique positive equilibrium (  of the system (7-8) is the endemic equilibrium  of the model (1-3) where 

  and  

3. The Local Stability of Disease-Free Steady State 

Theorem 3.1: At , the disease-free equilibrium of the model is locally asymptotically stable when    

To establish the local stability of  we use the Jacobian of the system (7-8) evaluated at  The Jacobian of the 

system at  is   . 

The two eigenvalues of the Jacobian matrix have negative real parts if and only if the coefficients are positive. And 

this will only happen if  

 

4. The Local Stability of Endemic Steady State 

Theorem 4.1: The system is locally asymptotically stable at  if   , otherwise unstable. 

Proof: At the endemic equilibrium , the Jacobian matrix of system (7-8) is given by 

  

The determinant, 

 

                           

With any positive values for the parameters with   and after careful analysis, the sign of the determinant is 

determined by  

 . Hence  provided   . 

The trace is  
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For any positive value of the parameters and , we have . Therefore,  is locally 

asymptotically stable. 

5. Numerical Simulations 

We present computer simulation of some solutions of the system (1-3): 

5.1 Disease-free Equilibrium: Choosing the parameters as : 

 

Then  and  and in this case  approaches to its steady state value  while  and  

approaches to zero as time goes to infinity, the disease disappears and dies out as seen in  (Figure 5.1). 
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5.2 Endemic Equilibrium: 

Choosing the parameters as: 

Then .  and  get to their steady state and the disease 

become endemic as seen in Figure 5.2. 
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5.2.1. Modified Endemic Equilibrium I 

If the , the infectious people isolated from the I class is reduced by 50% i.e  and other parameters remain 

the same. Then    and  get to their steady state and the 

disease is still endemic as seen in Figure 5.3. 
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5.2.2 Modified Equilibrium II 

When , parameters that measure the behavioural changes of the Susceptible is reduced by 50% i.e 

while other remain constant.    and  get to 

their steady state and the disease is still endemic as seen in Figure 5.4 
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And , parameter that measures the behavioural changes of the infective is reduced by 50% i.e   while other 

parameters remain constant.    and  get to their steady 

state and the disease is still endemic as seen in Figure 5.5. 
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6. Conclusion 

This paper has considered the  model with constant recruitment rate with quarantine and incidence rate that 

consider the behavioural changes of the population. It is established that in the model, the threshold value 

(reproduction number ) is not 1 but . That is,  for the disease to die out and  for 

the disease to be endemic. 

We also compare the effect of quarantine and behavioural change on the transmission of the disease. It is established 

that  that measures the rate of  behavioural changes in infective and  that measure the rate of quarantine play vital 

role in the propagation of the disease. As seen in Figure 5.3 that 50% reduction in  leads to 34.45% increment in 

the infective and 50% reduction  leads to 37.01% increment in the infective while 50% reduction in , parameter 

that measures the behavioural changes in susceptible, leads to about 7.59% in the infective. Therefore, to get quick 

result in the fight against epidemic, more attention should be given to the infective. This attention could be in the 

form of quarantine or public enlightenment of the infective class. 
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