High quality optimization of artificial intelligent with SMC

Afaf Ahmed Abed

Technical Institute of Babylon, Al-Furat Al-Awsat Technical University, Kufa, Iraq

Abstract:

The artificial intelligent is widely used in electrical and control engineering to enhance the system performance but still the system with artificial intelligent is either complicated or weaken the response of system. Therefore, sliding mode control SMC with neural network together is suggested to improve the system performance. The benefit of SMC is that no sensitive to variation of system parameters and easy to implementation and decreasing the feedback complexity. The results using matlab show the system with SMC and neural network is more precise.

Key words: SMC, neural network, artificial intelligent.

Introduction:

Sliding mode control is proposed by many authors to optimize high order system with nonlinear system [1] [2] [3] .in addition, other suggested SMC with fuzzy logic to improved maximum power point tracking with boost converter [4][5][6]. Hybrid SMC with fuzzy is also applied to inverter with LC filter and photovoltaic system repectively [7] [8] [9]. Power system based on grid connection is reported in [10] and applied to PMSM [11] [12] via SMC with ANFIS to classified the system. Finally, learning machine with grid-connected PV system using SMC with GA-ANFIS under altered conditions.

Materials and Results:

In this article, the Sliding Mode Control is useful for the system to increase the stability for that system and to minimize the even and odd harmonics. Figure 1, 2, and 3show that the behaviour of system with SMC and neural network is fast response as compare with classical system.

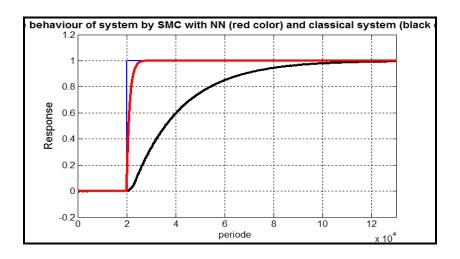


Figure 1: comparison of two systems output



Figure 2: comparison of output oscillation

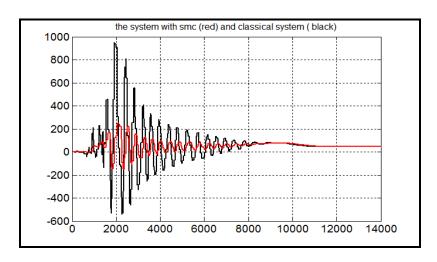


Figure 1: comparison of fauls

Conclusion

The main target for using the SMC with artificial intelligent AI is to minimizing the difficulty and the disadvantages of AI as results to modify the nonlinear system. the simulation results exhibit that the system with SMC has the ability and the expert as compare with traditional system.

References

- [1]. Mishra, J.; Yu, X.; Jalili, M.; Feng, Y. On fast terminal sliding-mode control design for higher order systems. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 252–257.
- [2]. Mobayen, S. Fast terminal sliding mode controller design for nonlinear second-order systems withtime-varying uncertainties. Complexity 2015, 21, 239–244.
- [3]. Veluvolu, K.C.; Defoort, M.; Soh, Y.C. High-gain observer with sliding mode for nonlinear state estimation and fault reconstruction. J. Frankl. Inst. 2014, 351, 1995–2014.
- [4]. Guisser, M.; L-Jouni, A.E.; Abdelmounim, E.L.H. Robust Sliding Mode MPPT Controller Based on High GainObserver of a Photovoltaic Water Pumping System. Int. Rev. Autom. Control 2014, 7, 225–232.
- [5]. Vidal-Idiarte, E.; Martinez-Salamero, L.; Gispert, F.G.; Gomariz, S. Sliding and fuzzy control of a boostconverter using a 8-bit microcontroller. IEE Proc. Electr. Power Appl. 2004, 151, 5–11.
- [6]. Cao, J.B.; Cao, B.G. Fuzzy-Logic-Based Sliding-Mode Controller Design for Position-Sensorless ElectricVehicle. IEEE Trans. Power Electron. 2009, 24, 2368–2378.
- [7]. Radu, S.M.; Tudoroiu, E.R.; Kecs, W.; Ilias, N.; Tudoroiu, N. Real Time Implementation of an ImprovedHybrid Fuzzy Sliding Mode Observer Estimator. Adv. Sci. Technol. Eng. Syst. J. 2017, 2, 214–226.
- [8]. Guzman, R.; Vicuna, L.G.; Morales, J.; Castilla, M.; Miret, J. Model-Based Active Damping Control forThree-Phase Voltage Source Inverters with LCL Filter. IEEE Trans. Power Electron. 2017, 32, 5637–5650.
- [9]. Fei, J.T.; Zhu, Y.K. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter. In Proceedingsof the IEEE Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018;pp. 1233–1238.
- [10]. Wai, R.J.; Lin, Y.F.; Liu, Y.K. Design of Adaptive Fuzzy-Neural-Network Control for a Single-Stage BoostInverter. IEEE Trans. Power Electron. 2015, 30, 7282–7298.
- [11]. Mohammad, M. Optimal Operation Management of a Typical Microgrid as Grid Connected in PowerSystems Using Fuzzy Sliding-Mode Control (FSMC) Approach. World Appl. Sci. J. 2013, 28, 440–448.
- [12]. Leu, V.Q.; Choi, H.H.; Jung, J.W. Fuzzy Sliding Mode Speed Controller for PM Synchronous Motors with aLoad Torque Observer. IEEE Trans. Power Electron. 2012, 27, 1530–1539.

- [13]. Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence; Prentice-Hall: Upper Saddle River, NJ, USA, 1997.
- [14]. Vafaei, S.; Rezvani, A.; Gandomkar, M.; Izadbakhsh, M. Enhancement of grid-connected photovoltaic systemusing ANFIS-GA under different circumstances. Front. Energy 2015, 9, 322–334.
- [15]. Abdulwahid, A.H.; Wang, S.R. A Novel Approach for Microgrid Protection Based upon Combined ANFISand Hilbert Space-Based Power Setting. Energies 2016, 9, 1042. [CrossRef]