Volume No 07, Issue No. 01, January 2018 www.ijarse.com

Reliability and Availability Analysis of a Dissimilar Units Cold Standby System with Repair or Replacement of Degraded Unit after Inspection

R.K. Bhardwaj¹, Komaldeep Kaur²

Department of Statistics, Punjabi University Patiala-147002, India

ABSTRACT:

In this paper a stochastic model of a cold standby system is investigated. The system has two dissimilar units and a service facility. An original unit is in working mode and another duplicate unit is in cold standby mode. The working unit fails after a pre specified time limit. The duplicate unit becomes degraded after post failure repair. The degraded unit went under inspection to check feasibility of repair or replacement, after failure. The semi-Markov processes are used to investigate the model at different regenerative points. A special case of Weibull distribution is discussed to derive the results.

Keywords-Cold Standby, Degradation, Dissimilar Unit, Inspectionand Stochastic Processes.

1. INTRODUCTION

The performance of a working system can be outlined in terms of its reliability and availability [1]. The reliability of a system is the measure of probability that the system performs its intended function without any failure for a stated period of time [2]. The reliability can be estimated with the idea of average time to system failure. Similarly the availability is also the measure of probability that the system is available for use [3]. There are various ways to amplify these two characteristics of the system. The use of cold standby redundancy is one such mean to improve system performance. The cold standby system models are debated by various researchers in the literature [4-7]. Some researchers raised the issue of server failure [8-12]. In these studies identical units are taken as standby irrespective of its impact on system costs. Some studies considered the concept of failure of unit in cold standby mode [13-15]. Therefore keeping the behavioral aspect in view in this paper a cold standby system is considered with a duplicate unit, having low price, as cold standby. Furthermore, the worth of original unit is utilized by giving it priority for operation as well repairs advocated in some studies [16]. The system starts its operation with the original unit in working and duplicate unit in standby mode. The standbyduplicate unit fails after crossing maximum redundancy time and goes under repair and become degraded after repair. If it further fails then goes under inspection for checking the feasibility of repair orreplacement. The original unit works as new after each repair. All the random variables follow general distribution. The switch is perfect and prompt. The expressions are derived using semi-Markov processes [17] and regenerative point technique [18] of

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

IJARSE ISSN: 2319 - 8354

stochastic processes. A special case is discussed by considering Weibull distribution for all the random variables and results are obtained to facilitate further numerical analysis of results if desired.

2. NOTATIONS

E/\overline{E}	The set of regenerative/ Non-regenerative states
$No_1/No_2/Do_2$	Original unit/ Duplicate unit/ Degraded unit in operation.
Cs_2/DCs_2	Duplicate unit/ Degraded unit in cold-standby mode.
F_{ur_i}/F_{UR_i}	Failed unit i= 1, 2 under repair /under repair continuously from previous state.
$F_{_{Wr_i}}/F_{_{WR_i}}$	$Failed \ unit \ i=1, \ 2 \ waiting \ for \ repair \ / \ waiting \ for \ repair \ continuously \ from \ previous \ state.$
DF_{ui_2}/DF_{UI_2}	Degraded failed unit under inspection / under inspection continuously from previous state.
DF_{wi_2}/DF_{WI_2}	Degraded failed waiting for inspection / waiting for inspection continuously from previous state.
$DF_{ur_{2}}/DF_{UR_{2}}$	Degraded failed unit under repair / under repair continuously from previous state.
$DF_{urp_{_{2}}}\big/DF_{\mathit{URp}_{_{2}}}$	Degraded failed unit under replacement / under replacement continuously from previous state.
a^{d}/b^{d}	Probability that repair/replacement of degraded unit is feasible.
$z_i(t)/Z_i(t)$	pdf / cdf of failure time of i= 1, 2 unit.
$z_{d2}(t)/Z_{d2}(t)$	pdf / cdf of failure time of degraded unit 2.
$s_2(t)/S_2(t)$	pdf / cdf of maximum redundancy time of duplicate unit 2.
$s_{d2}(t)/S_{d2}(t)$	pdf / cdf of maximum redundancy time of degraded unit 2.
$g_i(t)/G_i(t)$	pdf / cdf of repair time of i=1, 2 unit.
$g_{d2}(t)/G_{d2}(t)$	pdf / cdf of repair time of degraded unit 2.
$f_{d2}(t)/F_{d2}(t)$	pdf / cdf of replacement time of degraded unit 2.
$h_{d2}(t)/H_{d2}(t)$	pdf / cdf of inspection time of degraded unit 2.
$q_{ij}(t)\big/Q_{ij}(t)$	pdf/cdf of first passage time from regenerative state S_i to regenerative State S_j or failed
	state S_j without visiting any other regenerative state in $(0,t]$.
$q_{ij.kr}(t)\big/Q_{ij.kr}(t)$	pdf/cdf of first passage time from regenerative state S_i to regenerative state S_j or failed
	state S_j visiting state S_k , S_r once in $(0,t]$.
$\mu_i(t)$	Probability that the system up initially in state $S_i \in E$ is up at time t without visiting to

Volume No 07, Issue No. 01, January 2018

ISSN: 2319 - 8354

any regenerative state

[s]/[c] Symbol for Laplace-Stietjes convolution/Laplace convolution

pdf/cdf Probability density/distribution function

Considering these symbols, the following are possible transition states of the system model

The regenerative states:

$$\begin{split} S_0 = &(N_{O_1}, C_{S_2}), \ S_1 = &(F_{ur_1}, N_{O_2}), \ S_2 = &(N_{O_1}, F_{ur_2}), \ S_3 = &(N_{O_1}, DC_{S_2}), \ S_4 = &(F_{ur_1}, D_{O_2}), \ S_5 = &(N_{O_1}, DF_{urp_2}), \ S_{10} = &(N_{O_1}, DF_{ui_2}), \ S_{12} = &(N_{O_1}, DF_{ur_2}) \end{split}$$

The non-regenerative states:

$$\begin{split} S_6 = &(F_{UR_1}, F_{wr_2}), \ S_7 = (F_{wr_1}, F_{UR_2}), \ S_8 = (F_{UR_1}, DF_{wi_2}), \ S_9 = (F_{wr_1}, DF_{URp_2}), \ S_{11} = (F_{wr_1}, DF_{UR_2}), \\ S_{13} = &(F_{wr_1}, DF_{UI_2}), \ S_{14} = (F_{WR_1}, DF_{ur_2}), \ S_{15} = (F_{WR_1}, DF_{urp_2}) \end{split}$$

3. TRANSITION PROBABILITIES AND MEAN SOJOURN TIMES

Simple probabilistic considerations yield the following expressions for the non-zero elements

$$\begin{aligned} p_{ij} &= Q_{ij}(\infty) = \int_0^\infty q_{ij}(t) dt \end{aligned} \tag{1} \\ p_{01} &= \int_0^\infty z_1(t) \overline{S}_2(t) dt, \quad p_{02} = \int_0^\infty s_2(t) \overline{Z}_1(t) dt, \quad p_{10} = \int_0^\infty g_1(t) \overline{Z}_2(t) dt, \quad p_{16} = \int_0^\infty z_2(t) \overline{G}_1(t) dt, \\ p_{23} &= \int_0^\infty g_2(t) \overline{Z}_1(t) dt, \quad p_{27} = \int_0^\infty z_1(t) \overline{G}_2(t) dt, \quad p_{34} = \int_0^\infty z_1(t) \overline{S}_{d2}(t) dt, \quad p_{3,10} = \int_0^\infty s_{d2}(t) \overline{Z}_1(t) dt, \\ p_{43} &= \int_0^\infty g_1(t) \overline{Z}_{d2}(t) dt, \quad p_{48} = \int_0^\infty z_{d2}(t) \overline{G}_1(t) dt, \quad p_{50} = \int_0^\infty f_{d2}(t) \overline{Z}_1(t) dt, \quad p_{59} = \int_0^\infty z_1(t) \overline{F}_{d2}(t) dt, \\ p_{62} &= \int_0^\infty g_1(t) dt, \quad p_{74} = \int_0^\infty g_2(t) dt, \quad p_{8,10} = \int_0^\infty g_1(t) dt, \quad p_{91} = \int_0^\infty f_{d2}(t) dt, \\ p_{10,5} &= \int_0^\infty b^d h_{d2}(t) \overline{Z}_1(t) dt, \quad p_{10,12} = \int_0^\infty a^d h_{d2}(t) \overline{Z}_1(t) dt, \quad p_{10,13} = \int_0^\infty z_1(t) \overline{H}_{d2}(t) dt, \quad p_{11,4} = \int_0^\infty g_{d2}(t) dt, \\ p_{12,3} &= \int_0^\infty g_{d2}(t) \overline{Z}_1(t) dt, \quad p_{12,11} = \int_0^\infty z_1(t) \overline{G}_{d2}(t) dt, \quad p_{13,14} = \int_0^\infty a^d h_{d2}(t) dt, \quad p_{13,15} = \int_0^\infty b^d h_{d2}(t) dt, \\ p_{14,4} &= \int_0^\infty g_{d2}(t) dt, \quad p_{15,1} &= \int_0^\infty f_{d2}(t) dt, \quad p_{12,6} &= p_{16} p_{62}, \quad p_{24,7} = p_{27} p_{74}, \quad p_{4,108} = p_{48} p_{8,10}, \\ p_{51,9} &= p_{59} p_{91}, \quad p_{10,1,13,15} &= p_{10,13} p_{13,15} p_{15,1}, \quad p_{10,4,13,14} &= p_{10,13} p_{13,14} p_{14,4}, \quad p_{12,4,11} &= p_{12,11} p_{11,4} \end{aligned}$$
 For these Transition Probabilities, it can be verified that

$$\begin{split} &p_{01} + p_{02} = p_{10} + p_{16} = p_{23} + p_{27} = p_{34} + p_{3,10} = p_{43} + p_{48} = p_{50} + p_{59} = p_{62} = p_{74} = p_{8,10} = p_{91} \\ &= p_{10,5} + p_{10,12} + p_{10,13} = p_{11,4} = p_{12,3} + p_{12,11} = p_{13,14} + p_{13,15} = p_{14,4} = p_{15,1} = p_{10} + p_{12,6} = p_{23} + p_{24,7} \\ &= p_{43} + p_{4,108} = p_{50} + p_{51,9} = p_{10,5} + p_{10,12} + p_{10,113,15} + p_{10,413,14} = p_{12,3} + p_{12,4,11} = 1 \end{split}$$

The Mean sojourn time μ_i in state S_i are given by:

$$\mu_i = E(t) = \int_0^\infty P(T_i > t)dt \tag{2}$$

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

$$\mu_0 = \int_0^\infty \overline{Z}_1(t)\overline{S}_2(t)dt, \quad \mu_1 = \int_0^\infty \overline{G}_1(t)\overline{Z}_2(t), \quad \mu_2 = \int_0^\infty \overline{G}_2(t)\overline{Z}_1dt, \quad \mu_3 = \int_0^\infty \overline{S}_{d2}(t)\overline{Z}_1dt,$$

$$\mu_{4} = \int_{0}^{\infty} \overline{G}_{1}(t) \overline{Z}_{d2} dt, \quad \mu_{5} = \int_{0}^{\infty} \overline{Z}_{1}(t) \overline{F}_{d2}(t) dt \; , \qquad \mu_{10} = \int_{0}^{\infty} \overline{Z}_{1}(t) \overline{H}_{d2}(t) dt, \quad \mu_{12} = \int_{0}^{\infty} \overline{Z}_{1}(t) \overline{G}_{d2}(t) dt$$

4. RELIABILITY AND MEAN TIME TO SYSTEM FAILURE (MTSF)

Let $\phi_i(t)$ be the cdf of first passage time from regenerative state S_i to a failed state. Regarding the failed state as absorbing state, we have the following recursive relations for $\phi_i(t)$:

$$\phi_0(t) = Q_{01}(t)[s]\phi_1(t) + Q_{02}(t)[s]\phi_2(t)$$

$$\phi_1(t) = Q_{10}(t)[s]\phi_0(t) + Q_{16}(t)$$

$$\phi_2(t) = Q_{23}(t)[s]\phi_3(t) + Q_{27}(t)$$

$$\phi_3(t) = Q_{34}(t)[s]\phi_4(t) + Q_{310}(t)[s]\phi_{10}(t)$$

$$\phi_A(t) = Q_{A3}(t)[s]\phi_3(t) + Q_{A8}(t)$$

$$\phi_5(t) = Q_{50}(t)[s]\phi_0(t) + Q_{59}(t)$$

$$\phi_{10}(t) = Q_{105}(t)[s]\phi_5(t) + Q_{1012}(t)[s]\phi_{12}(t) + Q_{1013}(t)$$

$$\phi_{12}(t) = Q_{12,3}(t)[s]\phi_3(t) + Q_{12,11}(t)$$
(3)

Taking LST of above relation (3) and solving for $\tilde{\phi}_0(s)$ we have

$$R^{*}(s) = \frac{1 - \tilde{\phi}_{0}(s)}{s} \tag{4}$$

The reliability of system model can be obtained by taking Laplace inverse transform of (4). The mean time to system failure (MTSF) is given by

$$MTSF = \lim_{s \to 0} \frac{1 - \widetilde{\phi}_0(s)}{s} = \frac{N_1}{D_1}$$
 (5)

Where

$$\begin{split} N_1 = & [\mu_0 + p_{01}\mu_1 + p_{02}\mu_2][(1 - p_{34}p_{43}) - p_{3,10}p_{10,12}p_{12,3}] + p_{02}p_{23}p_{3,10}[p_{10,5}\mu_5 + p_{10,12}\mu_{12}] \\ & + p_{02}p_{23}[\mu_3 + p_{34}\mu_4 + p_{3,10}\mu_{10}] \end{split}$$

$$D_1 = [1 - p_{01}p_{10}][1 - p_{34}p_{43} - p_{3,10}p_{10,12}p_{12,3}] - p_{02}p_{23}p_{02}p_{3,10}p_{50}p_{10,5}$$

5. STEADY STATE AVAILABILITY

Let $A_i(t)$ be the probability that the system is in upstate at instant 't' given that the system entered regenerative state S_i at t=0. The recursive relations for $A_i(t)$ are as follows:

Volume No 07, Issue No. 01, January 2018

www.ijarse.com

$$A_0(t) = M_0(t) + q_{01}(t)[c]A_1(t) + q_{02}(t)[c]A_2(t)$$

$$A_1(t) = M_1(t) + q_{10}(t)[c]A_0(t) + q_{126}(t)[c]A_2(t)$$

$$A_2(t) = M_2(t) + q_{23}(t)[c]A_3(t) + q_{247}(t)[c]A_4(t)$$

$$A_3(t) = M_3(t) + q_{34}(t)[c]A_4(t) + q_{310}(t)[c]A_{10}(t)$$

$$A_4(t) = M_4(t) + q_{43}(t)[c]A_3(t) + q_{4108}(t)[c]A_1(t)$$

$$A_5(t) = M_5(t) + q_{50}(t)[c]A_0(t) + q_{519}(t)[c]A_1(t)$$

$$A_{10}(t) = M_{10}(t) + q_{101.1315}(t)[c]A_1(t) + q_{104.1314}(t)[c]A_4(t) + q_{10.5}(t)[c]A_5(t) + q_{1012}(t)[c]A_{12}(t)$$

$$A_{12}(t) = M_{12}(t) + q_{123}(t)[c]A_3(t) + q_{124.11}(t)[c]A_4(t)$$
 (6)

 $M_i(t)$ be the probability that system is up initially in state $S_i \in E$ is up at time t without visiting any other regenerative state, we have

$$M_{0}(t) = \overline{Z}_{1}(t)\overline{S}_{2}(t), \qquad M_{1}(t) = \overline{G}_{1}(t)\overline{Z}_{2}(t), \qquad M_{2}(t) = \overline{Z}_{1}(t)\overline{G}_{2}(t), M_{3}(t) = \overline{Z}_{1}(t)\overline{S}_{d2}(t),$$

$$M_4(t) = \overline{G}_1(t)\overline{Z}_{d2}(t), \ M_5(t) = \overline{Z}_1(t)\overline{F}_{d2}(t), \ M_{10}(t) = \overline{Z}_1(t)\overline{H}_{d2}(t), \ M_{12}(t) = \overline{Z}_1(t)\overline{G}_{d2}(t)$$

Taking LST of above relation (6) and solving for $A_0^*(s)$ the steady state availability is given by

$$A_{0}(\infty) = \lim_{s \to 0} s A_{0}^{*}(s) = \frac{N_{2}}{D_{2}}$$
 (7)

Where

$$\begin{split} N_2 = & [1 - p_{34} p_{43}] [p_{10,5} + p_{10,1.13,15}] [\mu_0 + p_{01} \mu_1] + [1 - p_{34} p_{43}] [p_{10,1.13,15} + p_{10,5} p_{51,9}] [p_{02} \mu_1 - p_{12.6} \mu_0] \\ + & [1 - p_{01} p_{10}] [1 - p_{34} p_{43}] [\{p_{10,5} + p_{10,1.13,15}\} \mu_2 + p_{10,5} \mu_5 + \mu_{10} + p_{10,12} \mu_{12} + [1 - p_{01} p_{10}] \{\{1 - p_{24.7} p_{4,10.8}\} \mu_3 + \{1 - p_{23} p_{3,10}\} \mu_4] + [1 - p_{01} p_{10}] [p_{4,10.8} \mu_3 - p_{3,10} \mu_4] [p_{10,12} p_{12,3} - p_{23} p_{10,4.13,14} - p_{23} p_{10,12}] \end{split}$$

$$\begin{split} D_2 = & [1 - p_{34} p_{43}] [p_{10,5} + p_{10,1.13,15}] [\mu_0 + p_{01} \mu_1^{'}] + [1 - p_{34} p_{43}] [p_{10,1.13,15} + p_{10,5} p_{51,9}] [p_{02} \mu_1^{'} - p_{12,6} \mu_0] \\ + & [1 - p_{01} p_{10}] [1 - p_{34} p_{43}] [\{p_{10,5} + p_{10,1.13,15}\} \mu_2^{'} + p_{10,5} \mu_5^{'} + \mu_{10}^{'} + p_{10,12} \mu_{12}^{'} + [1 - p_{01} p_{10}] [\{1 - p_{24,7} p_{4,10,8}\} \mu_3 + \{1 - p_{23} p_{3,10}\} \mu_4^{'}] + [1 - p_{01} p_{10}] [p_{4,10,8} \mu_3 - p_{3,10} \mu_4^{'}] [p_{10,12} p_{12,3} - p_{23} p_{10,4.13,14} \\ - & p_{23} p_{10,12}] \end{split}$$

6. SPECIAL CASE-WEIBULL DISTRIBUTION

In the following the values of different performance measures are obtained assuming all the random variables as Weibull distributed with common shape parameter (η) and different scale parameters as follows:

$$z_1(t) = \lambda_1 \eta t^{\eta - 1} \exp(-\lambda_1 t^{\eta}), \qquad \qquad z_2(t) = \lambda_2 \eta t^{\eta - 1} \exp(-\lambda_2 t^{\eta}), \qquad \qquad z_{d2}(t) = \lambda_2^d \eta t^{\eta - 1} \exp(-\lambda_2^d t^{\eta}),$$

$$s_{2}(t) = \mu_{2}^{c} \eta t^{\eta - 1} \exp(-\mu_{2}^{c} t^{\eta}), \qquad \qquad s_{d2}(t) = \mu_{2}^{d} \eta t^{\eta - 1} \exp(-\mu_{2}^{d} t^{\eta}), \qquad \qquad g_{1}(t) = \beta_{1} \eta t^{\eta - 1} \exp(-\beta_{1} t^{\eta}),$$

Volume No 07, Issue No. 01, January 2018

$$\begin{split} g_{2}(t) &= \beta_{2} \eta t^{\eta - 1} \exp(-\beta_{2} t^{\eta}) \,, \qquad \qquad f_{d2}(t) = \gamma_{2}^{d} \eta t^{\eta - 1} \exp(-\gamma_{2}^{d} t^{\eta}) \,, \qquad \qquad h_{d2}(t) = \alpha_{2}^{d} \eta t^{\eta - 1} \exp(-\alpha_{2}^{d} t^{\eta}) \,, \\ g_{d2}(t) &= \beta_{2}^{d} \eta t^{\eta - 1} \exp(-\beta_{2}^{d} t^{\eta}) \,. \end{split}$$

where $t \ge 0$ and η , λ_1 , λ_2 , λ_2^d , μ_2^c , μ_2^d ,

We can obtain the following result

$$\mbox{MTSF} = \frac{N_1}{D_1} \; , \qquad \mbox{Availability} \; (A_0) = \frac{N_2}{D_2} \label{eq:mtsf}$$

$$\begin{split} [\{(\beta_{1}+\lambda_{2})(\lambda_{1}+\beta_{2})\}^{\frac{1}{\eta}} + (\lambda_{1}+\mu_{2}^{c})^{\frac{1}{\eta}-1} \{\lambda_{1}(\lambda_{1}+\beta_{2})^{\frac{1}{\eta}} + \mu_{2}^{c}(\beta_{1}+\lambda_{2})^{\frac{1}{\eta}}\}][(\lambda_{1}+\alpha_{2}^{d}) \\ (\lambda_{1}+\beta_{2}^{d})\{\lambda_{1}\lambda_{2}^{d} + \mu_{2}^{d}(\beta_{1}+\lambda_{2}^{d})\} - a^{d}\alpha_{2}^{d}\mu_{2}^{d}\beta_{2}^{d}(\beta_{1}+\lambda_{2}^{d})]\{(\lambda_{1}+\mu_{2}^{d})(\beta_{1}+\lambda_{2}^{d}) \\ (\lambda_{1}+\alpha_{2}^{d})(\lambda_{1}+\beta_{2}^{d})\}^{\frac{1}{\eta}-1} (\lambda_{1}+\gamma_{2}^{d})^{\frac{1}{\eta}} + \mu_{2}^{c}\beta_{2}\{(\lambda_{1}+\mu_{2}^{c})(\lambda_{1}+\beta_{2})\}^{\frac{1}{\eta}-1} (\beta_{1}+\lambda_{2})^{\frac{1}{\eta}} [\alpha_{2}^{d} + \alpha_{2}^{d})^{\frac{1}{\eta}} + a^{d}(\lambda_{1}+\gamma_{2}^{d})\}\{(\lambda_{1}+\mu_{2}^{d})(\lambda_{1}+\alpha_{2}^{d})\}^{\frac{1}{\eta}-1} (\beta_{1}+\lambda_{2})^{\frac{1}{\eta}} + \{((\beta_{1}+\lambda_{2}^{d})^{\frac{1}{\eta}} + \alpha_{2}^{d}(\lambda_{1}+\gamma_{2}^{d})^{\frac{1}{\eta}} + \alpha_{2}^{d}(\lambda_{1}+\beta_{2}^{d})\}^{\frac{1}{\eta}} (\lambda_{1}(\lambda_{1}+\alpha_{2}^{d})^{\frac{1}{\eta}} + \mu_{2}^{d}(\lambda_{1}+\beta_{2}^{d})^{\frac{1}{\eta}})\}\{(\lambda_{1}+\gamma_{2}^{d})(\lambda_{1}+\beta_{2}^{d})\}^{\frac{1}{\eta}} + (\lambda_{1}+\mu_{2}^{d})(\lambda_{1}+\beta_{2}^{d})^{\frac{1}{\eta}} + \mu_{2}^{d}(\lambda_{1}+\beta_{2}^{d})^{\frac{1}{\eta}}\}\{(\lambda_{1}+\gamma_{2}^{d})(\lambda_{1}+\beta_{2}^{d})^{\frac{1}{\eta}} + \alpha_{2}^{d}(\lambda_{1}+\beta_{2}^{d})^{\frac{1}{\eta}} + \alpha_{2}^{d}(\lambda_{1}+\beta_{2}^{d})^{\frac{1}{\eta}}\}\{(\lambda_{1}+\beta_{2}^{d})^{\frac{1}{\eta}} + \alpha_{2}^{d}(\lambda_$$

$$\begin{split} [\lambda_1 \lambda_2 + \mu_2^c (\beta_1 + \lambda_2)] [(\lambda_1 + \alpha_2^d)(\lambda_1 + \beta_2^d) \{\lambda_1 \lambda_2^d + \mu_2^d (\beta_1 + \lambda_2^d)\} - a^d \alpha_2^d \mu_2^d \beta_2^d \\ D_1 &= \Gamma (1 + \frac{1}{\eta}) \cdot \frac{(\beta_1 + \lambda_2^d)](\lambda_1 + \beta_2)(\lambda_1 + \gamma_2^d) - b^d \alpha_2^d \mu_2^c \beta_2 \mu_2^d \gamma_2^d (\beta_1 + \lambda_2)(\beta_1 + \lambda_2^d)(\lambda_1 + \beta_2^d)}{\lambda_1 + \mu_2^c)(\beta_1 + \lambda_2)(\lambda_1 + \beta_2)(\lambda_1 + \mu_2^d)(\lambda_1 + \beta_2^d)(\beta_1 + \lambda_2^d)(\lambda_1 + \gamma_2^d)(\lambda_1 + \alpha_2^d)} \end{split}$$

$$\begin{split} [\lambda_{1}\lambda_{2}^{d} + \mu_{2}^{d} (\beta_{1} + \lambda_{2}^{d})]b^{d} \{(\lambda_{1} + \mu_{2}^{d})(\beta_{1} + \lambda_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \beta_{2})(\lambda_{1} + \beta_{2}^{d})\}^{\frac{1}{\eta}} [\{(\beta_{1} + \lambda_{2})^{\frac{1}{\eta}} + \lambda_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \lambda_{2}^{d})\}b^{d} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \lambda_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \lambda_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} + \mu_{2}^{d})\}^{\frac{1}{\eta}-1} \{(\lambda_{1} + \mu_{2}^{d})(\lambda_{1} +$$

Volume No 07, Issue No. 01, January 2018 www.ijarse.com

ISSN: 2319 - 8354

$$\begin{split} &[\lambda_{1}\lambda_{2}^{d} + \mu_{2}^{d}(\beta_{1} + \lambda_{2}^{d})]b^{d}\{(\lambda_{1} + \mu_{2}^{d})(\beta_{1} + \lambda_{2}^{d})(\lambda_{1} + \gamma_{2}^{d})(\lambda_{1} + \gamma_{2}^{d})(\lambda_{1} + \alpha_{2}^{d})\}^{\frac{1}{n-1}}\{\beta_{2}\alpha_{2}^{d}\beta_{2}^{d}\gamma_{2}^{d}\\ &(\lambda_{1} + \beta_{2})(\lambda_{1} + \beta_{2}^{d})\}^{\frac{1}{n}}[\{(\beta_{1}(\beta_{1} + \lambda_{2}))^{\frac{1}{n}} + \lambda_{1}(\lambda_{1} + \mu_{2}^{d})^{\frac{1}{n-1}} + \lambda_{2}^{\frac{1}{n-1}} + \lambda_{2}(\beta_{1} + \lambda_{2})^{\frac{1}{n-1}}\}\}(\lambda_{1} \\ &+ \gamma_{2}^{d})(\lambda_{1} + \alpha_{2}^{d}) + \lambda_{1}(\lambda_{1} + \gamma_{2}^{d} + \alpha_{2}^{d})\{\mu_{2}^{c}(\beta_{1}^{\frac{1}{n}} + \lambda_{2}(\beta_{1} + \lambda_{2})^{\frac{1}{n-1}})(\lambda_{1} + \mu_{2}^{d})^{\frac{1}{n}} - \lambda_{2}(\beta_{1}^{d})^{\frac{1}{n}}\\ &+ \gamma_{2}^{d})(\lambda_{1} + \alpha_{2}^{d}) + \lambda_{1}(\lambda_{1} + \gamma_{2}^{d} + \alpha_{2}^{d})\{\mu_{2}^{c}(\beta_{1}^{1} + \lambda_{2}) + \lambda_{2}(\beta_{1}^{d} + \lambda_{2}^{d})^{\frac{1}{n-1}} + \lambda_{2}^{d}(\lambda_{1}^{d} + \mu_{2}^{d})^{\frac{1}{n-1}} - \lambda_{2}(\beta_{1}^{d})^{\frac{1}{n}}\\ &+ (\beta_{1} + \lambda_{2})^{\frac{1}{n-1}}\{b^{d}\{\beta_{2}^{\frac{1}{n}} + \lambda_{1}(\lambda_{1} + \beta_{2}^{d})^{\frac{1}{n-1}}\}(\lambda_{1}^{d} + \alpha_{2}^{d})\{\beta_{2}^{d}(\lambda_{1}^{d} + \beta_{2}^{d})^{\frac{1}{n}} + \alpha^{d}\alpha_{2}^{d}\{(\beta_{2}^{d})^{\frac{1}{n}} + \alpha^{d}\alpha_{2}^{d}\{(\beta_{2}^{d})^{\frac{1}{n}} + \lambda_{1}(\lambda_{1}^{d} + \beta_{2}^{d})^{\frac{1}{n}}\}(\beta_{2}(\lambda_{1}^{d} + \beta_{2}^{d})^{\frac{1}{n}}\}\{\beta_{2}(\lambda_{1}^{d} + \beta_{2}^{d})^{\frac{1}{n}}\}\{\beta_{2}(\lambda$$

7. CONCLUSION

A stochastic model of a dissimilar unit cold standby system is developed by using the theory of semi-Markov regenerative processes. The idea of assigning priority to the main unit is explored. The expressions are derived for system reliability and availability using the tools of mathematical transforms. Assuming the general probability distribution initially for all the random variables, the results are also given for Weibull distribution. Which in turns, allowedfor the scope of further numerical illustration of the study.

Acknowledgement: The authors would like to thanks the reviewers for their valuable suggestions which has helped in refining the first draft of this paper.

REFERENCES

- [1] W. Kuo and M.J. Zuo, Optimal reliability modeling: principles and applications, Wiley, 2003.
- [2] R. E. Barlow and F. Proshan, *Statistical theory of reliability and life testing*, Holt, Rinchart and Winston, Inc., New York 1975.

Volume No 07, Issue No. 01, January 2018

IJARSE ISSN: 2319 - 8354

- [3] A. Birolini, Reliability Engineering-Theory and Practice, Springer Verlag, 2007.
- [4] S. K. Singh and B. Srinivasu, Stochastic analysis of a two unit cold standby system with preparation time for repair, *Microelectronics Reliability*, 27(1), 1987, 55-60.
- [5] K. M. El-Said and M. S. El-Sherbeny, Stochastic analysis of a two-unit cold standby system with two-stage repair and waiting time, *Sankhya B*, 72(1), 2010, 1-10.
- [6] X. Bao and L. Cui, A study on reliability for a two-item cold standby Markov repairable system with neglected failures, *Communications in Statistics-Theory and Methods*, 41(21), 2012, 3988-3999.
- [7] J. Cao and Y. Wu, Reliability analysis of a two-unit cold standby system with a replaceable repair facility, *Microelectronics Reliability*, 29(2), 1989, 145-150.
- [8] R. K. Bhardwaj and S, C. Malik, Asymptotic performance analysis of 2003 cold standby system with constrained repair and arbitrary distributed inspection time, *International Journal of Applied Engineering Research*, 6(08), 2011, 1493-1502.
- [9] R. K. Bhardwaj and R. Singh, Semi Markov approach for asymptotic performance analysis of a standby system with server failure, *Int. J Comput. Appl, 98(3),* 2014, 9-14.
- [10] R. K. Bhardwaj and R. Singh, Steady state behavior of a cold standby system with server failure and arbitrary repair, replacement & treatment, *International Journal of Applied Engineering Research*, 9(24), 2014, 26563-26578.
- [11] R. K. Bhardwaj and R. Singh, An inspection-repair-replacement model of a stochastic standby system with server failure, *Mathematics in Engineering, Science & Aerospace (MESA)*, 6(2), 2015, 191-203.
- [12] A. K. Dhankhar, R. K. Bhardwaj and S. C. Malik, Reliability Modeling and Profit Analysis of a System with Different Failure Modes and Replaceable Server Subject to Inspection, *Int. j. of Stats & Analysis 2 (3)*, 2012, 245-255.
- [13] R. K. Bhardwaj, K. Kaur and S. C. Malik, Reliability indices of a redundant system with standby failure and arbitrary distribution for repair and replacement times, *International Journal of System Assurance Engineering and Management*, 8(2), 2017, 423-431.
- [14] R. K. Bhardwaj, K. Kaur and S. C. Malik, Stochastic Modeling of a System with Maintenance and Replacement of Standby Subject to Inspection, *American J. of Theoretical & Applied Statistics*, 4(5), 2015, 339–346.
- [15] R. K. Bhardwaj and K. Kaur, Reliability and Profit Analysis of a Redundant System with Possible Renewal of Standby Subject to Inspection, *Int. J. of Stat. & Reliab. Eng, 1(1),* 2014, 36–46.
- [16] Y. L. Zhang and G. J. Wang, An optimal repair—replacement policy for a cold standby system with use priority, *Applied Mathematical Modelling*, 35, 2011, 1222-1230.
- [17] N. Limnios and G. Oprisan, Semi-Markov Processes and Reliability, Birkhauser, Boston 2001.
- [18] Smith W. L., Regenerative stochastic processes, Proc. Roy. Soc., 1955, Series A, 232, 6-31.