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ABSTRACT 

3D Object recognition is an important task in computer vision applications. After the success of convolutional 

neural networks for object recognition in 2D images, many researchers have designed convolution neural net-

work (CNN) for 3D object recognition. The state of art methods provide favourable results. However, the avail-

ability of large/dynamic 3D dataset and computational complexity of CNN are the biggest challenge in 3D 

CNN. In this paper, a model for object recognition problem using volumetric data representation has been pro-

posed. The aim of this paper is to improve CNN architecture for volume based 3D objects. We implemented two 

separate CNN architectures and tested them on ModelNet datasets, which represent data in the form of CAD 

models. We compare our results with VoxNet, which is a state-of-art recognition method. 
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I.  INTRODUCTION  

Object Recognition is an important part of modern intelligent machines and systems. It is used in many applica-

tions related to multiple fields such as character recognition for mail sorting service [1], traffic monitoring [2], 

surveillance for security purposes [3], self-driving vehicle [4], human behaviour analysis [5], and medical imag-

ing [6]. Object recognition has been performed generally using volumetric parts (i.e. generalized cylinders, 

geons and super-quadrics) [7], appearance based (i.e. edges, lines, corners) [8], pattern recognition (i.e. SIFT, 

HOG) [9], graph-based [10], and learning based methods [11]. Although the techniques mentioned above are 

still used in many applications, after the success of the award winning deep learning architecture alexnet [12], 

Convolutional Neural Networks (CNN) become ubiquitous. In recent years, deep learning has achieved out-

standing results in 2D object recognition [13]. These results motivate researchers to apply deep learning me-

thods for 3D object recognition, and some of them provide better results in comparison to state-of-art (SoA) ap-

proaches. 

After the easy availability of a stereo camera and range-based sensors, the research in 3D object recognition is 

growing. The success of CNNs on object recognition using 2D images motivated researchers to uplift the CNN 

architecture for 3D objects. In the context of 3D data, CNN has been used on motion-based data taking time as 

the third dimension. However, research in 3D object recognition is restricted to certain applications. Many re-

searchers have extended CNNs to process 3D object using RGBD data [14], [15]. These approaches do not con-

tain the full geometric information of an object and make it difficult to combine information between different 

viewpoints. Volumetric and multi-view based CNNs are two methods for 3D data that gained popularity in re-

cent years. In contrast, this paper proposes a CNN-based 3D object recognition approach that can recognise 3D 

objects from their 3D volumetric representations, and compare their accuracy on different voxel size. In litera-

ture, existing approaches of 3D CNNs use 3D point cloud data as training data [16] or RGBD image to build 3D 
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CNNs, but CNNs can also be applied directly to recognise the voxel of 3D volumetric representation of objects. 

In this paper, we present object recognition on 3D CAD based model. 

The rest of paper is outlined as follows: Section II explains related work of voxel-based 3D object recognition. 

Dataset, method, and experiment results are presented respectively in Section III, IV, V. Finally, conclusions 

and future work are discussed in Section VI. 

 

II.  RELATED WORK 

3D Shape Descriptors: Modern 3D object recognition models have its origin in the 1960s. The earli-

est recognition frameworks were created on geometry-based models [7]. However, most of the recog-

nition works rely on other handcrafted feature descriptors, such as Point Feature Histograms, 3D 

Shape Context, or Spin Images. CNN for 3D recognition has first used for RGB-D images, where 

depth is treated as an additional input channel [17]. The depth based approaches are conceptually very 

similar to 2D based recognition methods. The depth is just used as the fourth channel in CNN, or 3D 

synthetic models are used as input to CNN. However, using depth channel along with colour channels 

produce 2.5D, and it does not provide full geometric information of objects. In recent years, the re-

searcher tried better shape descriptors based on multi-view [18], and volumetric information [19]. 

Convolutional Neural Networks: The CNNs have been designed for 2D data such as images and au-

dio signals. It is widely used in various computer vision tasks and data science. The reason behind the 

acceptance of CNN in 2D image based tasks is due to the availability of large benchmark datasets, 

and these large datasets help to generate better image descriptor in comparison to handcrafted fea-

tures, which provides better results. The similar approach for feature learning is used in this paper for 

3D data instead of 2D data. 

Convolutional Neural Networks on 3D data: In recent years, with the availability of range based 

and 3D CAD datasets, researchers have additional information of objects in the image in comparison 

to the 2D image. 3D data is represented by motion [20], multi-view [18] and volume based methods in 

deep networks. Motion based CNN architectures are used successfully in action recognition task. Wu 

(a) (b) (c) (d) 

Fig. 1. Voxel representation of a CAD model. (a) CAD model, (b) 323 voxel, (c) 643 voxel, (d) 1283 voxel. 



 
 

et al. [19] developed first CNN architecture for volume based data, namely 3DShapeNets. 

3DShapeNets used a Deep Belief Network to represent geometric 3D shapes as a probability distribu-

tion of binary variables on a 3D voxel grid. They use their method for shape completion from depth 

maps, too. The ModelNet dataset was introduced along with their work. However, our work is in-

spired by VoxNet, which is designed by Maturana & Sherer [21]. The VoxNet is composed of a sim-

ple but effective CNN, accepting as input voxel grids similar to Wu et al. 3D ShapeNets and Voxel-

Net provide state-of-art results. The other remarkable works are the panoramic-view proposed by Shi 

et al. [22], and the multi-view CNN proposed by Su et al. [18] that use multiple views of the same ob-

ject from different angles in CNN. 

 

III. DATBASE 

Several 3D datasets have become available in recent years. However, these datasets are not large as the 

ImageNet1 dataset that contains 2D images. There are many 3D datasets with reasonable size. Mostly 3D 

datasets are point-cloud based that obtained from range-scanners, such as the ModelNet
2
, Sydney Urban 

Objects
3
, SUN-3D

4
. The ModelNet dataset is used for training and testing of proposed CNN models. ModelNet 

dataset contains 127,915 CAD 3D images from 662 different object classes. ModelNet40, a subset of ModelNet, 

is a benchmark for 3D object recognition and used which further splits in 9,843 training and 2,468 test images. 

We also test our network on ModelNet10 in our experiments. ModelNet10 has ten object categories, and it is a 

subset of ModelNet40. 

 

IV. METHOD 

Object recognition in 3D CNN is done, by selecting most similar features from targeted classes. The object rec-

ognition process can be divided into two parts, namely data representation of 3D objects and training of CNN on 

represented data. We used 3D volumetric data representation in proposed architecture. Most researchers used 

voxel or point cloud methods for volumetric data representation. We used voxel based data representation in our 

CNNs. The voxels are generated with the help of binary occupancy grid. The number of models provided by da-

taset are less in comparison to the 2D dataset. To exploit network, we provide rotation of 30° along the gravity 

to the model. All the voxels are generated from provided mesh models in ModelNet dataset after rendering them 

to 12 different orientations. The proposed network is modified version of Voxnet. We used two different net-

works for training purpose. 

Network-1:  

Network-1 consists three convolutional layers and two fully connected layers. The network is shown in figure-2. 

Most researchers used voxel size equal or less than 32×32×32. However, we believe that 32×32×32 pixel per 

object is very less for accurate prediction of an object. In 2D image tasks, experiments show that less than 

                                                           

1 http://www.image-net.org/ 

2 http://modelnet.cs.princeton.edu/ 

3 http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml 

4 http://sun3d.cs.princeton.edu/ 
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227×227 reolution is not good for object recognition task in 2D images. So to exploit the network, we use 

three different sizes of voxels 32×32×32, 64×64×64, and 128×128×128 sizes. Many pixels in voxel 

represent empty cells that generate a lot of unnecessary matrix multiplication (zero valued matrix) 

cost. To reduce this cost, we use the kernel of 5×5×5 instead 3×3×3 that is frequently used in volume-

tric CNNs. The ReLU, and max-pooling (size of 2×2×2) layers are used after convolution (layer) op-

eration. The pooling layer is used to reduce the over-fitting of too many parameters. To avoid data 

over fitting, due to orientation and similar views, we use dropout layer before first fully connected 

layer with 0.5 probabilities. 

   Network-2:  

Network-2 inspired by the network architecture of AlexNet. It consists five convolutional layers and 

three fully connected layers. The network is shown in figure-3. Network-2 is also used multiple views 

of the voxel. We train network with 30-degree rotation. This network has all the settings as used in 

network-1 except pooling. To train network, we did not use pooling layers in the network-2. In our 

view, pooling can create ambiguity in shape of an object. Network-2 helps us to understand that how 

the depth of CNN affects the performance of recognition model. 

 

Fig. 2. The architecture of Network-1. 

Conv/ReLU/Max-pool Conv/ReLU Conv/Relu/Max-pool 

Fully Connected 

Fully Connected 

Conv Conv/ReLU Conv Conv/ReLU Conv/ReLU 
Fully Connected 

Fully Connected 

Fully Connected 

Fig. 3 The architecture of Network-2. 



 
 

 

Type Filter 

size/Dropout 

rate 

Stride Output size Number of 

parameters 

Convolution 5*5*5 1 32*28*28*28 4032 

Max Pooling 2*2*2 - 32*14*14*14 - 

Convolution 3*3*3 1 32*12*12*12 27,680 

ReLU - - 32*12*12*12 - 

Convolution 3*3*3 1 32*10*10*10 27,680 

ReLU - - 32*10*10*10 - 

Max Pooling 2*2*2 - 32*5*5*5 - 

Dropout 0.5 - 32*5*5*5 - 

Fully Con-

nected 

- - 128 5,12,128 

Fully Con-

nected 

- - 40 5,160 

Table 1: Details of Network-1 

 

Type Filter 

size/Dropout 

rate 

Stride Output size Number of 

parameters 

Convolution 5*5*5 1 32*28*28*28 4032 

Convolution 3*3*3 1 32*26*26*26 27,680 

ReLU - - 32*26*26*26 - 

Convolution 3*3*3 1 32*24*24*24 27,680 

Convolution 3*3*3 1 32*22*24*24 27,680 

ReLU - - 32*22*24*24 - 

Dropout 0.3 - 32*22*24*24 - 

Convolution 3*3*3 1 32*22*22*22 27,680 

ReLU - - 32*22*22*22 - 

Dropout 0.4 - 32*22*22*22 - 
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Voxel Size

VoxNet

Network-1

Network-2

Fully Con-

nected 

- - 256 27,26,144 

Fully Con-

nected 

- - 128 32,896 

Fully Con-

nected 

- - 40 5,160 

Table 2: Details of Network-2 

 

V. EXPERIMENTS 

The ModelNet dataset is used for training and testing purpose in this network. All the 3D CAD images are con-

verted in voxels using provided script by [19]. We test our networks for different size of voxels 32×32×32, 

64×64×64, and 128×128×128. We implement both networks separately and compare their results. However, re-

sults of both networks have very less difference. We compare results for the same size of voxels for Model-

Net10 and ModelNet40 datasets. Results show that higher resolution voxels improved the accuracy of recogni-

tion task. In comparison to VoxNet, our model gives better accuracy. However, VoxNet has less than 1 million 

parameters in its architecture while our network-2 has more than 2 million parameters. We train network-2 

without pooling to test the effect of pooling on volumetric CNN. But results show that there is no significant ef-

fect of pooling layer on results. One of the reasons for no effect of pooling layer on performance is that the all 

the voxels used in training and testing has solid shape. There is not a single object model in the ModelNet data-

set, which has the hollow object. The results are shown in figure 4, and figure 5 shows the loss and accuracy 

chart of network-1. All the experiments are done using NVidia Titan X Pascal GPU.  

Fig. 4 Performance comparison of tested CNN networks on ModelNet40  

dataset with different voxel resolution 



 
 

VI. CONCLUSION  

The paper describes the recognition task on 3D data using voxel based 3D data representation. The 

performance of CNN on different size of voxels has been analyzed. The analysis further motivated to 

design new networks and test different sizes of the voxel to find a suitable size for CNN operations. It 

can be concluded from the experimental results that size of a voxel has a direct impact on object rec-

ognition task. But on the other hand increasing the size of voxel creates a bottleneck in performance 

in volumetric CNN architecture. To overcome this problem an optimized data structure regarding 

time, as well as space, should be explored to handle the large size of voxels. 
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