Synergistic Effect of Pentaerythritol with Zinc Laurate and Calcium Stearate Alternative to toxic Lead stabilization to Rigid Poly (vinyl chloride) Applications

Mahesh B. Waykole*1, Rama S. Lokhande1, Anand P. Gokhale2

¹ School of Basic Sciences, Department of Chemistry, Jaipur National University, Jaipur (Rajasthan)

² Work place: Galata Chemicals India Pvt Ltd, Mumbai

ABSTRACT

The stabilization effect of zinc laurate (ZnL) with calcium stearate (CaSt₂) combined with β -diketone and pentaerythritol (PE) was studied at different level in rigid poly (vinyl chloride) PVC application. The performance was characterized during thermal processing of PVC. The long-term heat stabilization efficiency of pentaerythritol was investigated, when added to calcium/zinc stabilizers and compare with conventional lead stabilizer. Investigation of prepared one pack thermal stabilizers was measured by Congo red test in air at 200° C, thermal aging test and torque Rheometry study. Visual color evolution and thermal stability time was examined at 190° C in air. The results revealed that combination of pentaerythritol and B-diketone with CaSt2/ZnL stabilizers enhance stabilization efficiency to poly (vinyl chloride) (PVC) and extended degradation time. Pentaerythritol and β -diketone with zinc laurate and calcium stearate exhibit better stability than the stabilizers containing zinc stearate stabilizers in all respect processing test.

Keywords: Calcium/Zinc stabilizer, Degradation Polyvinyl chloride(PVC), Pentaerythritol, β -diketone

1. INTRODUCTION:

Poly (vinyl chloride) PVC, one of the most cost effective thermoplastic polymer on accounts of its versatility. Poly (vinyl chloride) are widely used in many fields due their advantages of non-flammable nature and good performance and widely utilized in durable applications. PVC production is third largest after Polyethylene and polypropylene. It is very cost effective, highly versatile and is used in many construction applications as water, sewage and drainage pipes, and variety of extruded window profiles [1-4]. Poly (vinyl chloride) (PVC), which has superior mechanical and physical properties, high chemical and abrasion resistance [5]. Recently, calcium stearate and zinc stearate (CaSt2/ZnSt2) widely used to prevent dehydrochlorination of poly (vinyl chloride) (PVC) at processing temperature. Calcium stearate and zinc stearate, alkaline metal soaps combination when used shows good synergistic effect [6]. However, PVC has one major drawback is that it decomposes at lower temperature than its processing temperature. The degradation of PVC usually proceeds through dehydrochlorination process, the results of this formation of long chain of conjugate double bonds or polyene sequences, — (CH = CH) n —, which cause color change [7, 8]. PVC, under the influence of temperature

undergoes auto catalytic dehydrochlorination reaction and initial reaction of dehydrochlorination auto accelerates the evolution of HCl. The thermal degradation of PVC is results zipper dehydrochlorination [9, 10]. Because of this drawback in its structure, resulting in the degradation of polymer backbone and deterioration of polymer properties [9]. The zipper dehydrochlorination generates polyene sequences in polymer chain then produces undesirable color in the materials. Depending on number of conjugate double bonds, it becomes yellow, orange, red, brown and finally black. It was due to labile sites for dehydrochlorination were mainly the allylic chlorines and tertiary chlorines. This results in unacceptable discoloration of polymer during processing and drastic changes in polymers properties [11]. Therefore, it is necessary to add thermal stabilizers for improving thermal stability of PVC. Stabilizers can inhibit degradation of removal of HCl due to their capacity for HCl adsorption [12]. Metal soaps are most used heat stabilizers for PVC. The tertiary and allylic chlorine group substituted by carboxylate group of metal salts and stops initiation of dehydrochlorination according to Frye and Horst mechanism [13]. However, lead stabilizers are most efficient stabilizers, but they no longer used, as they are toxic and more restriction have been imposed [14]. Therefore, highly efficient environment friendly but cheap stabilizers have been given significant attention. Metal soaps are mostly used as stabilizers for PVC, one pack stabilizers containing calcium stearate and zinc stearate play significantly important roles because of non -toxic attributes. However, during process of PVC some unwanted zinc dichloride (ZnCl₂) produced during thermal stabilization of PVC. It accelerates dehydrochlorination of PVC through autocatalytic effect [15, 16]. Zinc chloride produced in the reaction as results of esterification which cause rapid degradation. The selection of thermal stabilizers for polymer processing is key important factor which determines the quality and final the finished product [17]. Most of stabilizers are expensive and less efficient than other stabilizers. Industries except for exploring new kind of high efficiency stabilizers such as polyols [18, 19]. Ca/Zn stabilizers already proposed as new alternative to lead based stabilizers for rigid applications. However, performance and price not being much attractive. New development makes more interest for researchers [20]. The synergistic mechanism of CaSt₂ and ZnSt₂ was widely investigated by many researcher [21, 22]. Pentaerythritol with Calcium stearate and Zinc laurate one pack system improved long term thermal stability with initial color than market control lead one pack stabilizer.

2. EXPERIMENTAL WORK:

2.1. Materials

The investigation was done with suspension grade Poly (vinyl chloride) K value 67kindly supplied by Reliance Industries Ltd. (INDIA), Calcium carbonate used in this work purchased from MRB Vietnam. Zinc laurate (zinc content14.3%) kindly supplied by FACI PTE Singapore. Stearoyl benzoyl methane (β-diketone) purchased from BASF. Pentaerythritol purchased from BASF. Zinc stearate and calcium stearate purchased from FACI group PTE Singapore both are commercial grade. Zeolite purchased from Advera. Lead one pack commercial stabilizer supplied by Monachem Additives Baroda, India. Titanium dioxide provided by Dupont India Ltd. Lubricants kindly supplied by Honeywell corporation AC617A (Polyethylene wax) PE wax and AC316A (oxidized polyethylene wax) OPE wax. Impact modifier (Imp.mod.) B-22 purchased from Kaneka corporation.

2.2. Sample preparation:

Master batch of PVC dry blend was prepared. Specific components of PVC master batch without stabilizer before milling as below.

Table No:1

Component	t PV	VCCaCO	3TiO2	PE wax(OPE waxImp	. Mod.	CaSt ₂	
Mass (g)	100	8	1	1.2	0.3	4.3	0.7	

The PVC master batch was prepared by blending of all above shown in table No.1 components in high speed mixer for 3 min. Then, 70 g of above prepared PVC master batch (Table No.1) mixed with together 2.5phr Ca/Zn stabilizer with different content of Pentaerythritoland 2 Phr Lead stabilizer. Lead is strong stabilizer and recommended to used only 2 phr i.e. 1.2g for 70g of master batch. while Ca/Zn at 2.5 phr i.e. 1.52 for 70g of master batch. 70 gms with stabilizer compound placed on Twin Roll Mill (Neoplast Ahmedabad, India) for 3 min at 195° c. The thickness was drawn out of sheets was 1mm \pm 0.1mm. The prepared sheet was used for further investigation of like static heat stability and Congo red testing.

2.3. Measurements:

2.3.1. Congo Red Test:

Congo Red measurement test done according to standard method of IS-5831. PVC film prepared from above table no.1 with 2.5 phr Ca/Zn and 2phr market control lead stabilizer. The thermal stability static time(tss) of stabilizer obtained by heating 0.0500g of PVC sample (by fragmentation of PVC sheet into 0.2mm squares) in the test tube. Congo Red paper place at the top of the test tube. The test tube placed in Congo Red stability apparatus [Made Veekay Apparatus] which having electrical heating at temp 200^{0} c ± 1 . Congo red paper changes color from red to blue by degradation of PVC sample, the time required to color change is static thermal stability of that sample.

One pack Stabilizer chart with different contents of Pentaerythritol (PE):

 $A = (0.37/0.33 \text{ g ZnL/CaSt}_2) + 0.08 \text{ g}$ -diketone +0.18 g zeolite + 0.55 g PE wax

Table No.2.

Lead One Pack	Blank PVC	Expt No.1.	Expt.No. 2.	Expt. No. 3.	Expt. No. 4.
-	-	A/PE	A/PE	A/PE	A/PE
-	-	A/0.0g	A/0.03g	A/0.06g	A/0.12g

2.3.2. Thermal aging Test:

To conduct the thermal aging tests by observing color change of samples. The thermal aging test was carried out in Hot Air Circulating temperature controlled oven [Made by ELE Ahmedabad, India]. The PVC samples were cut in to 30mm*20mm rectangular shapes strips and put it in oven at $190\,^{0}\text{C} \pm 1.0^{0}\text{c}$. Sample were removed after every 5-min interval and subjected to visual examination. Color scanning done using color scan 5100H [made by Premier colour scan 5100H]. The effect of stabilizers was evaluated by color differences of PVC samples. Whiteness and Yellowing index clearly indicate differences of stability of stabilizers.

2.3.3. Torque Rheometry study:

Above prepared master batch in table no.1 used for rheology study for evaluation of prepared stabilizers. Rheological test performed on Brabender plasticodore PL 2000 GmBH. Torque rheometer study at 60 rpm and 200°C. Master batch of 65gms was mixed with 2.5 phr (per hundred resin) Ca/Zn stabilizers for evaluation of stabilizing efficiency and compare with 2phr market control one pack lead stabilizer.

3. RESULTS AND DISCUSSION:

3.1. Congo Red testing:

In order to get proper thermal heat stability of PVC, it need strong heat stabilizers. The evaluation of calcium zinc stability, different amount of pentaerythritol added to PVC formulation with other additives. The result shows influence of different ration of pentaerythritol with CaSt2/ZnL (0.33/0.37) g +0.06 g Rh-55P+0.45g lubricant shows equal static stability time (tss) of PVC when compare with market control lead one pack stabilizer. It is seen that static stability time (tss) of PVC incorporation of A is 34 min, while PVC containing with increased amount of pentaerythritol shows increased in tss. Ca/Zn one pack stabilizer with 0.12g with A shows equal static stability time 41 min, when compare with Market control lead one pack stabilizer having lead 35% which is strongest in performance which have Congo red stability.

Stabilizers composition: A = $(0.37/0.33 \text{ g ZnL/CaSt}_2) + 0.08 \text{ g}$ β -diketone +0.18g zeolite+ 0.55g PE wax

Table No.3.

composition	Stabilizers in phr
Lead one pack	2
Blank PVC	No Stabilizer
A / PE (0.00g)	2.5
A / PE (0.03g)	2.5
A / PE (0.06g)	2.5
A / PE (0.12g)	2.5

Table NO.4. Thermal stability time(min)of stabilizers.

Stabilizers	CongoRed Time(min)
Lead stabilizer	39
Blank PVC	08
A / PE (0.00g)	28
A / PE (0.03g)	30
A / PE (0.06g)	37
A / PE (0.12g)	42

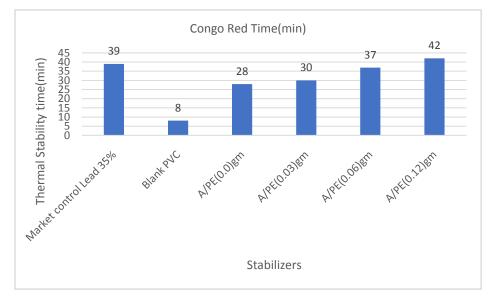


Fig.1. Congo Red stability chart of stabilizers

3.3. Thermal stability of PVC samples:

The PVC sheet prepared subjected to oven stability test at 190°C degree celcius. The gradual color change was observed and listed in figure 3. Market control lead one pack stabiliser with 2phr and other stabilisers used 2.5 phr used. The time needed for color changes measured as stabilizing efficiency of stabilizers. Lead one pack sample started faint brown from 5 min onward become gradually brown and dark brown at 25,30 min, it degrades completely, while stabilizer containing ZnL initial whiteness is more than lead one pack stabilizer, but 5min to 20 min its shows yellowness saturated and degraded at 25, 30 min i.e. toward black. PVC formulation containing pentaerythritol e shows good thermal stability up to 10 min later on yellow and become brown but better than stabilizer containing ZnL. Stabilizer formulation containing A/0.12g of PE has exhibit better thermal stability than other. Significant improvement was observed that 0.12g of PE could delay degradation time, compared with 0.03g of PE, its color holding properties very good till 20 min. Color strip-maintained whiteness till 10 min. Then color become pale yellow at 25 and 30 min. Figure 2 shows that PE of 0.12g with A formulation has goodthermal stability against lead one pack stabilizer.

One pack formulation: A= $ZnL/CaSt_2/\beta$ -diketone/zeolite/PE-wax and different content of PE (Refer table no.2)

Qty in g 0.37/0.33/0.08/018/0.55

Time(min)	0'	5'	10'	15'	20'	25'	30'
Lead one pack					1		
Blank PVC		9			1	1	1
A/PE(0.0)g			1	1			
A/PE(0.03)g]]	1]	1	1	
A/PE(0.06)g]]]]		
A/PE(0.12)g])	1)]		1

Fig. 2.Oven Stability test for stabilizers. Color changes of PVC strips at 190°C.

Stabilizer containing pentaerythritol having value of 0.12g with formulation A shows good long-term stability.

Colorimeter Data for above PVC strips, whiteness and yellowness index as shown in table no.5 and 6 respectively.

Table No.5. Whiteness Index at 0 min sample at oven stability test

Time (min)	0
Market controlLead	64.048
Blank PVC	15.284
A / PE (0.00g)	54.052
A / PE (0.03g)	63.333
A / PE (0.06g)	64.388
A / PE (0.12g)	66.031

Whiteness index of above samples shows that pentaerythritol having quantity 0.12g has more whiteness than other, when compared with market control lead sample having lead.

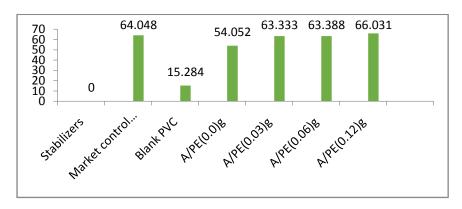


Fig. 3. Whiteness Index chart of stabilizers.

Yellowness index of stabilizers:

Table No.6.

Time (min)	0	5	10	15	20	25	30
Market control Lead	7.131	18.736	25.15	29.298	33.254	37.353	45.347
Blank PVC	34.876	63.724	64.981	66.071	64.294	59.408	59.381
A/PE (0.0) g	15.011	40.402	45.893	47.904	55.604	48.782	46.108
A/PE (0.03) g	7.425	14.233	22.156	26.633	38.887	40.916	46.374
A/PE (0.06) g	7.32	13.089	21.579	26.266	36.526	39.969	44.194
A/PE (0.12) g	7.074	12.7	20.825	24.659	30.311	33.261	37.49

The color changes for polyvinyl chloride (PVC) with different contents of pentaerythritol. The graph clearly indicates that stabilizer which has pentaerythritol 0.12g shows less yellowing index as compare to market control lead sample. The plotted time against Yellowness index as shown in fig. 4.

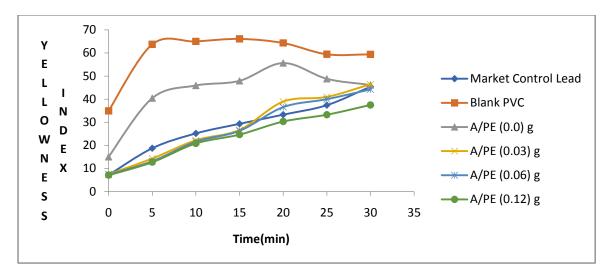


Fig.4. Thermal stability of experimental stabilizers compared to commercial lead stabilizer.

Color changes for PVC samples in Oven Stability Test @190°C till 30 min [Yellowness Index].

3.4. Torque Rheometry Study

Market control lead one pack stabilizer, compare with Ca/Zn one pack stabilizers containing different content of PE was studied on Brabender plasticodore. Mechanical properties of stabilizers study were done like fusion characteristic and degradation time. Lead one pack stabilizer shows fusion torque at 14 Nm with gelation time 4.22min with thermal stability time in Brabender 4.39min. Stabilizer containing PE 0.12g shows torque 11.5 Nm and fusion time required 2.39min. Stability time in Brabender plasticodore is 8.0 min which is greater than market control lead one pack stabilizer.

Brabender plastogram

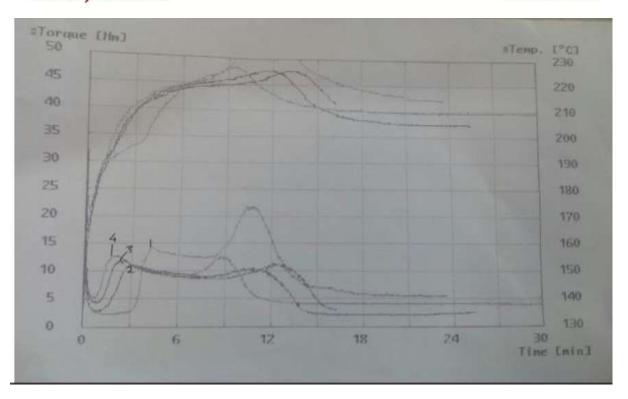


Fig.5. Content on fusion time, torque and stability time.

Table No.7.

Sr. No.	Stabilizer	Torque Nm	Fusion time(min)	Stability time(min)
1	Lead One pack	14	4.22	8.4
2	A/0.03g PE	10.5	3	10
3	A/0.06g PE	10	2.39	12.4
4	A/0.12gPE	11.5	2.39	14.7

From the figure 5, Brabender plastogram of time vs torque clearly indicates that stability time of stabilizer with PE content of 0.12g shows good long term thermal stability and gelation torque is also lower than market control lead stabilizer.

3.5. Conclusions:

Pentaerythritol with Calcium stearate and zinc laurate with other additives shows good initial whiteness and long-term thermal stability than other stabilizers and conventional market control lead stabilizer. It demonstrates that initial color stability was markedly improved and thermal stability time was extended. Colorimeter data shows yellowness index has lower value than lead stabilizers mean strong thermal stability. Brabender plastogram indicate that stabilizer with PE with 0.12g shows fusion torque lower and stability time extended than lead one pack stabilizer.

3.6 Acknowledgement:

The authors gratefully acknowledge the support from Galata Chemicals India Ltd Mumbai.

REFERENCES:

- 1. J. Luis Gonzalez-Ortiz, Martin Arellano, M. Judith Sanchez-Pena, Eduardo Mendizabal, F. Carlos, Jasso- Gastinel. *Effect of stearate preheating on the thermal stability of plasticized PVC compounds. Polym Degrad stab.* 91, (2006); 2715-2722.
- 2. N. A. Mohamed, A. A. Yassin, Kh. D. Khalil and M. W. Sabaa, Polym Degrad stab. 2000; 70, 5.
- 3. O. M. Folarin, E. R. Sadiku, Thermal stabilizers for poly (vinyl chloride). A review, International journal of materials science. 2011; 6, 4323-4330.
- 4. Y. Saeki and T. Emura, Technical progress for PVC production. Prog. Polym sci 2002; 27: 2055-2131.
- M. Wang, Xu. Jiayou, Wu. Hong, Shaoyun Guo, Effect of pentaerythritol and organic tin with calcium/zinc stearates on the stabilization of poly (vinyl chloride). Polym Degrad stab. 2006, 2101-2109.
- 6. W. Runjuan, YANG Zhanhon, CHEN Hongyan, HU Youwang, DUAN Jian. Zn-Al-La hydrotalcite-like compounds as heating stabilizers in PVC resin. Journal of rare earths, Vol.30, No.9, Sep. 2012, P.895.
- 7. SY Tawfik, JN. Asaad, Sabaa MW, Thermal and mechanical behaviour of flexible poly (vinyl chloride) mixed with saturated polyester. Polym Degrad stab, 2006;91(2):385-92.
- 8. N. Sombatsompop,& K. Sungsanit, Structural changes of PVC in PVC/LDPE melt blends: Effect of LDPE content and number of extrusions. Polym. Eng. Sci. 44, 487-495 (2004).
- 9. M. Wang, Li. Hiaxia, Xing Tang and Xingliang Huang. Effect of calcium stearates and zing stearates on polyene formation of poly (vinyl chloride) under degradation. Journal of Elastomer and Plastics. 2012, 1-14.
- 10. WEN Runjuan, YANG Zhanhon, CHEN Hongyan, HU Youwang, DUAN Jian. *Zn-Al-La hydrotalcite-like compounds as heating stabilizers in PVC resin. Journal of rare earths, Vol.30, No.9, Sep. 2012, P.895.*
- 11. Yan Bin, Liu Wei-Qu, Meng-Hug Hou. Metal dicarboxylates as thermal stabilizers for PVC. Polym Degrad Stab 2007; 92: 1565-1571.
- 12. Steenwijk., Es. van, D. S.; van Haveren, J.; W. Geus, J; W. Jenneskens, L. Effect of polyols on the initial color of heavy metal and zinc free PVC. Polym Degrad Stab. 2006, 91, 2233.
- 13. J.Luis, Gonzalez-Ortiz, Martin Arellano, M. Judith Sanchez-Pena, Eduardo Mendizabal, Carlos F. Jasso- Gastinel. *Effect of stearate preheating on the thermal stability of plasticized PVC compounds. Polym Degrad stab.* 91, (2006); 2715-2722.
- 14. M.Tong, H. Chen, Z. Yang and R. Wen, Int, J. Mol. Sci, 2011, 12, 1756.
- 15. AH. Frye, RW. Horst, J Polym Sci 1959; XL:413. 1960; XLV:1.

- 16. Xu. Xiaopeng Si Chen Bozhen Wu Meng Ma Yanqin Shi Xu Wang. Effect of allantoin on the stabilization efficiency of Ca-Zn thermal stabilizers for poly (vinyl chloride). J Therm Anal Calorim (2015) 119:597–603.
- 17. Fu. Ming, Li. Degang, Hao Liu, Jun Zhang. Insights into use of zinc -mannitol alkoxide as a novel thermal stabilizer for rigid poly (vinyl chloride). Journal of Applied polymer science. 2015, DOI: 10.1002/APP.42038.
- 18. Li. Guoxing, Ming Wang, Xingliang Huang, Li. Haixia, He. Hong, Effect of Zinc Maleate/Zinc oxide complex on Thermal Stability of Poly (vinyl chloride). Journal of Applied Polymer Science. 2015, DOI: 10.1002/APP.41464.
- 19. Li. Degang, Min Zhou, Xie. Linghua, Yu. Xianjin, Yu. Yuanzhang, Ai. Hongqi and Shouyu Tang, Synergism of pentaerythritol-zinc b-diketone and calcium stearate in poly (vinyl chloride) thermal stability. Polymer Journal (2013) 45, 775–782.
- 20. Z.H. Yang, W.Y. Shu, Long, Li, X, H.Influence of rare earth heating stabilizer on heating stabilizing property of PVC. Chin, Rare Earths 1999, 20, 60-62.
- 21. J. Steenwijk, R. Langerock, DS. Vanes, JV. Haveren, JW. Geus, Long-term heat stabilization by natural polyols in heavy metal- and -zinc- free poly (vinyl chloride). Polym Degrad Stab 2006; 91:52- M.
- 22. M. Hebrard, E. G. Lunquist and J. Y. Cho. New alternative to lead stabilization for PVC pipes. Plastics, Rubber and composites, 2008, vol 37, No 9/10.
- 22 KB. Abbas, E. Sorvik, Heat stabilizer for poly (vinyl chloride). I. Synergistic systems based on calcium/zinc stearate. J. Vinyl Additives Technol 1980;2:87–94.
- 23 Xu. Xiaopeng, Si Chen. Wu. Bozhen.Ma. Meng, Shi. Yangin, Xu Wang, Effect of allantoin on the thermal stabilization of Ca-Zn thermal stabilizers for poly (vinyl chloride). J Therm Anal Calorin (2015) 119:597-603.