## ANALYSIS AND DESIGN OF L-SHAPED BUILDING IN DIFFERENT SEISMIC ZONES

ShrivallabhSarjerao Chavan<sup>1</sup>, Amit C. Thoke<sup>2</sup>, Yogesh R. Vanshe<sup>3</sup>

<sup>1, 2</sup> Assistant Professor, Department of Civil Engineering,
 Sanjeevan Engineering & Technology Institute, Panhala, Maharshtra, (India)
 <sup>3</sup>Assistant Professor, Department of Civil Engineering,
 Dr. BapujiSalunkheInstitute of Technology, Kolhapur Maharshtra, (India)

#### **ABSTRACT**

It is very essential to consider the effects of lateral loads induced from earthquakes in the design of reinforced concrete structures, especially for high-rise and unsymmetrical buildings. The IS Code of Practice for Calculating Loads and Forces in Structural and Building Works, IS 456-2000 and IS 1893:2002 gives simplified methods for calculating such loads in different seismic zones. This depends on some seismic parameters defined by codes. In this research the effects will be studied and compared according to the IS 1893: 2002. The codes are reviewed for earthquake analysis and discussed to show some factors affecting the design like mode shape and displacement of structure. Emphasis is given on various stresses available for compare and the output like displacement, axial force etc. Authors are presenting the outcomes of their project at undergraduate level.

Keywords: Unsymmetrical design, zone comparison,

#### I. INTRODUCTION

With the application of new materials and advanced analysis technologies, modern tall buildings are becoming lighter and more slender than their predecessors, thus they are more sensitive to wind forces and earthquake forces.[1] In addition, along with the development of modern cities, a large number of tall buildings may be constructed in a small zone. The interference effects of wind loads and earthquake load responses on tall buildings depend largely on their relative location, building geometry, upstream terrain, building orientation, wind velocity & Earthquake zone etc.

The correct estimation of the earthquake forces acting on tall buildings is very essential for the safe design of structural elements. Such RCC buildings are analyzed and designed for earthquake under software environment. Structural design of buildings for seismic loading is s primarily concerned with structural safety during major earthquakes, but serviceability and the potential for economic loss are also of concern.[3] Seismic loading requires an understanding of the structural behaviour under large inelastic deformations. Behaviour under this loading is fundamentally different from wind or gravity loading, requiring much more detailed analysis to assure acceptable seismic performance beyond the elastic range.[2] Some structural damage can be expected when the building experiences design ground motions because almost all building codes allow inelastic energy dissipation in structural systems.

#### II. BUILDING INFORMATION

Sometime the plot area is having irregular shape. In that situation there is need of construct building according to shape of plot area. Our plot area is in L-shape, so to make complete use of plot area we have constructed L-shape building. Now a day there is craze of built buildings with initial letter of names Like I, L, W,V, T, O, E. This shape is challenging for earthquake study.

The building plan under study is in L-shape. It is G+10 story building. The building consists of alternate plans. The even no floors having same plan and odd no floors also have same plans but they are different than that of the even no floor plan. Each floor consists of total 7 no of flats. In which 5 flats are 1 BHK and 2 flats are 2 BHK. The area of 1 BHK 34.202 flat is sq m. and the area of 2 BHK flat is 55.441 sq m. The parking is provided at ground floor.

#### III. DESIGN PARAMETERS

The four buildings can be compared as the building parameters are constant through. The sums of common parameters are as follow

Storey Height 3mNumber of storey G + 10

Material Fe 415, M25 & M30

Size of Column 0.60 m x 0.30 mSize of Beam 0.38 m x 0.15 m0.50 m x 0.15 m

0.46m x0.15m

Slab Thickness 0.150m

No of columns 77

Building length in X
Building length in Z

Seismic Analysis Response Spectrum parameters [4]

Zone Factor (Z) II, III, IV, V Zone Z value Zone II 0.10 Zone III 0.16 Zone IV 0.24 Zone V 0.36 Important Factor (I) 1.0 Response Reduction Factor(R) 5 **Damping Factor** 0.05

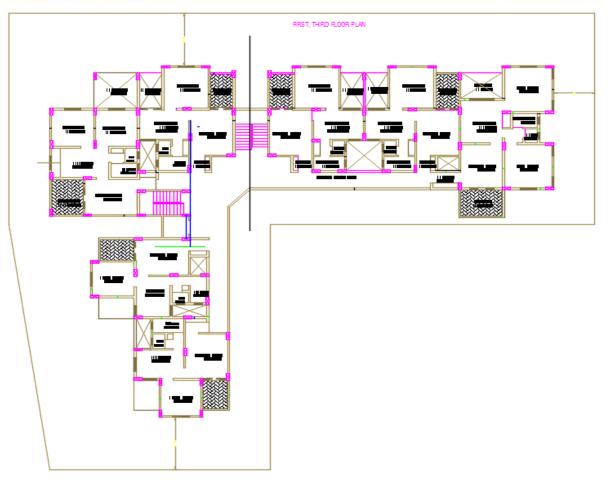



Fig 1. Plan of Building with plot boundary (Odd floor)

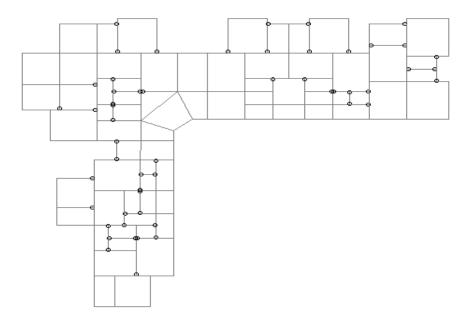



Fig. 2 Modelling line plan (even floor)

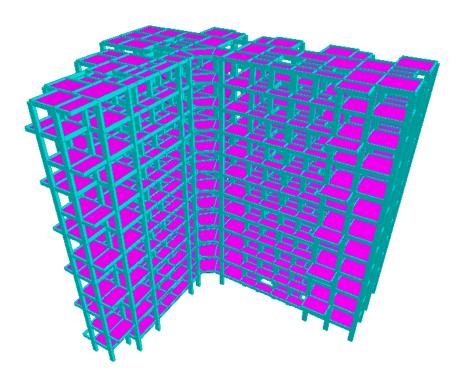



Fig 3.Full 3D view

#### III. RESULTS

**TABLE 1 Frequencies Calculated by Software** 

| CALCULATE | D FREQUENCIES FOR LOAD CASE |             |  |
|-----------|-----------------------------|-------------|--|
| MODE      | FREQUENCY(CYCLES/SEC)       | PERIOD(SEC) |  |
| 1         | 0.408                       | 2.45317     |  |
| 2         | 0.455                       | 2.19849     |  |
| 3         | 0.525                       | 1.90329     |  |
| 4         | 1.248                       | 0.80110     |  |
| 5         | 1.411                       | 0.70874     |  |
| 6         | 1.644                       | 0.60845     |  |
| 7         | 1.671                       | 0.59840     |  |
| 8         | 2.152                       | 0.46476     |  |
| 9         | 2.224                       | 0.44963     |  |
| 10        | 2.500                       | 0.40005     |  |
| 11        | 2.985                       | 0.33505     |  |
| 12        | 3.037                       | 0.32929     |  |

**TABLE 2. Peak Shear in X- Direction** 

| STORY | LEVEL IN<br>METER | PEAK STORY SHEAR IN KN PER ZONE |         |         |         |
|-------|-------------------|---------------------------------|---------|---------|---------|
|       | Zone              | II                              | III     | IV      | V       |
| 12    | 33                | 149.68                          | 239.48  | 359.23  | 484.21  |
| 11    | 30                | 286.52                          | 458.43  | 687.64  | 944.15  |
| 10    | 27                | 392.72                          | 628.36  | 942.53  | 1325.43 |
| 9     | 24                | 470.34                          | 752.55  | 1128.83 | 1634.83 |
| 8     | 21                | 524.25                          | 838.80  | 1258.20 | 1879.57 |
| 7     | 18                | 568.22                          | 909.15  | 1363.72 | 2090.10 |
| 6     | 15                | 613.51                          | 981.61  | 1472.42 | 2285.30 |
| 5     | 12                | 666.70                          | 1066.72 | 1600.08 | 2478.35 |
| 4     | 9                 | 722.31                          | 1155.70 | 1733.55 | 2656.16 |
| 3     | 6                 | 770.70                          | 1233.13 | 1849.69 | 2800.03 |
| 2     | 3                 | 800.28                          | 1280.45 | 1920.68 | 2885.36 |
| 1     | 0                 | 807.60                          | 1292.15 | 1938.23 | 2906.38 |
| BASE  | -2                | 807.60                          | 1292.15 | 1938.23 | 2906.38 |

**TABLE 3. Peak Shear in Z- Direction** 

| STORY | LEVEL IN<br>METER | PEAK STORY SHEAR IN KN PER ZONE |        |        |         |
|-------|-------------------|---------------------------------|--------|--------|---------|
|       | Zone              | II                              | III    | IV     | V       |
| 12    | 33                | 80.68                           | 129.1  | 193.64 | 339.82  |
| 11    | 30                | 155.02                          | 248.03 | 372.04 | 655.89  |
| 10    | 27                | 212.56                          | 340.10 | 510.15 | 900.70  |
| 9     | 24                | 253.46                          | 405.53 | 608.30 | 1075.81 |
| 8     | 21                | 280.35                          | 448.56 | 672.84 | 1190.64 |
| 7     | 18                | 300.42                          | 480.68 | 721.02 | 1276.89 |
| 6     | 15                | 321.09                          | 513.74 | 770.61 | 1365.31 |
| 5     | 12                | 347.20                          | 555.51 | 833.27 | 1477.17 |
| 4     | 9                 | 377.18                          | 603.48 | 905.23 | 1604.02 |
| 3     | 6                 | 405.82                          | 649.31 | 973.96 | 1723.79 |

### International Journal of Advance Research in Science and Engineering

### Volume No.07, Special Issue No.01, March 2018

www.ijarse.com

| 2    | 3  | 425.83 | 681.33 | 1022.00 | 1804.58 |
|------|----|--------|--------|---------|---------|
| 1    | 0  | 432.24 | 691.58 | 1037.38 | 1828.08 |
| BASE | -2 | 432.24 | 691.58 | 1037.38 | 1828.08 |

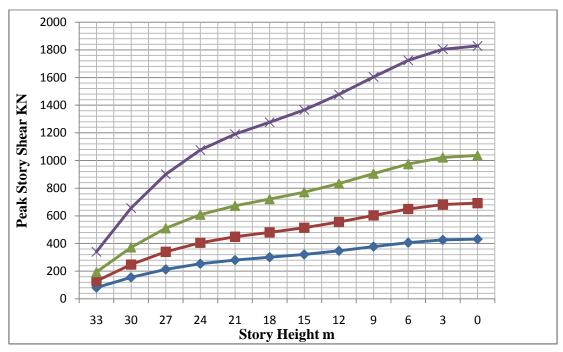



Fig 4. X Direction Peak Story Shear in kN

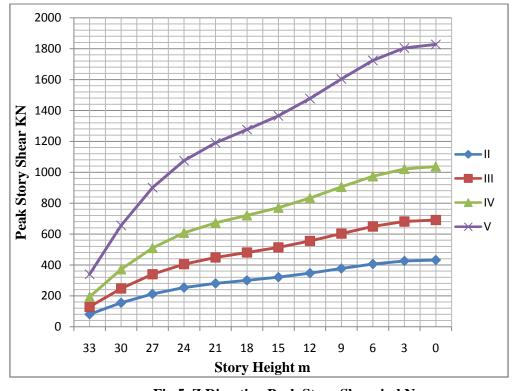
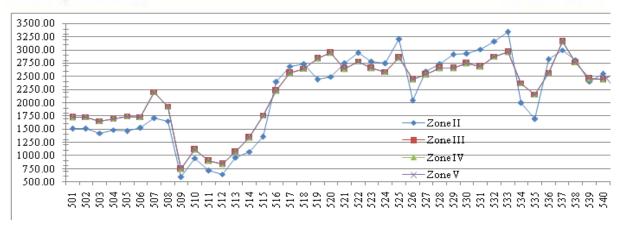



Fig 5. Z Direction Peak Story Shear in kN

IJARSE


ISSN: 2319-8354

### International Journal of Advance Research in Science and Engineering

Volume No.07, Special Issue No.01, March 2018

### www.ijarse.com

IJARSE ISSN: 2319-8354



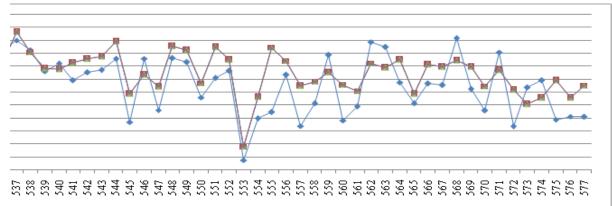
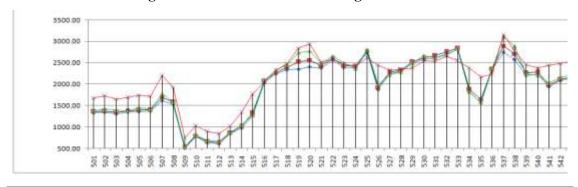




Fig 6.Axial Forcein KN Considering Dead and Live Load



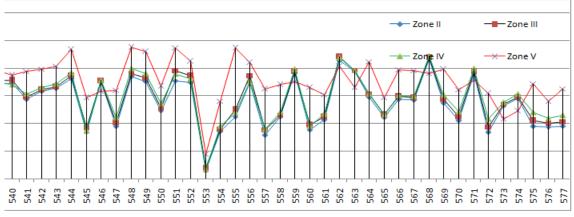



Fig 7.Axial Forcein KN Excluding Dead and Live Load

**TABLE 4. Peak Shearand Displacement** 

| zones                                | II     | III     | IV      | V       |
|--------------------------------------|--------|---------|---------|---------|
| Peak story shear in x direction (KN) | 807.6  | 1292.15 | 1938.23 | 2906.38 |
| Peak story shear in z dirction (KN)  | 437.24 | 691.58  | 1026.38 | 1828.08 |
| Resultant Displacement (MM)          | 29.002 | 39.088  | 53.013  | 60.880  |

**TABLE 5.Steel Used and Relative percentage** 

| zones    | Total concrete | Total steel | Percentage of steel |
|----------|----------------|-------------|---------------------|
|          | $(M^3)$        | (Tone)      |                     |
| Zone I   | 694.9          | 74.767      | 10.76%              |
| Zone II  | 694.9          | 77.280      | 11.12%              |
| Zone III | 694.9          | 78.995      | 11.37%              |
| Zone IV  | 694.9          | 83.955      | 12.08%              |

#### IV. CONCLUSION

As the building is same it has been seen that zones have incremental values from zone II to zone V.

- 1. Peak Shear in X and Z direction increases as we move from Zone II to Zone V.
- 2. Displacement in X and Z direction increases as we move from Zone II to Zone V.
- 3. Percentage of Steel is increasing from zone II to Zone II is 2.51 tons, zone III to Zone IV is 1.72 tons & zone IV to Zone V is 4.96 tons. And the percentile increment is 0.25% to 0.71%.
- 4. Dead Load plays a very significant role to counter balance the uplifting earthquake forces. Hence the force in fig. 6 and Fig. 7 shows the axial forces with dead load and without dead load respectively.

#### **REFERENCES**

[1.] Achal Kr Mittal, Nikhil Agrawal, Some Wind Engineering Studies in India, *India Country report at APEC 2012 at Vietnam*.

- [2.] KasliwalSagar K., Prof. M.R.Wakchaure, AnantwadShirish, Effects Of Numbers And Positions Of Shear Walls OnSeismic Behaviour Of Multistorey Structure, *International Journal of Advanced And Innovative Research* 2012.
- [3.] Bungale S. Taranath, wind and earthquake resistant buildings: structural analysis and designJohn A. Martin & Associates, Inc.Los Angeles, California.
- [4.] IS 1893:2002 CRITERIA FOR EARTHQUAKE RESISTANT DESIGN OF STRUCTURES.