International Journal of Advance Research in Science and Engineering Q
Volume No.07, Special Issue No.07, April 2018 IJARSE
www_iiarse_com ISSN: 2319-8354

IMPLEMENTATION OF DIGITAL FILTER USING

FPGA
Rakhi Thakur!, Swati Thakur?

Lecturer in Department of Electronics, KNPC, Jabalur Madhya Pradesh, India*
M.Tech Student, Department of Electronics, SRIST, Jabalur Madhya Pradesh, India’

ABSTRACT

Digital filters are used extensively in all areas of electronic industry. This is because Digital filters have the
potential to attain much better signal to noise ratio than analog filters and at each intermediate stage of the
analog filter adds more noise to the signal. The digital filter performs noiseless mathematical operations at each
intermediate step in the transform so these filters have become popular because their precise reproducibility
allows design engineers to achieve performance levels that are difficult to obtain with analog filters.

Keywords: Finite Impulse Response, Infinite Impulse Response, Field Programmable Gate Array.

I INTRODUCTION

FIR and IIR filters are the two common filter forms. A drawback of IIR filters is that the closed-form IIR
designs are preliminary limited to low pass, band pass, and high pass filters, etc. Furthermore, these designs
generally disregard the phase response of the filter. Compare to IIR filers, FIR filters can have precise linear
phase. Also, in the case of FIR filters, closed-form design equations do not exist and the design problem for FIR
filters is much more under control than the IR design problem because there is an optimality theorem for FIR
filters that is meaningful in a wide range of practical situations [1]. The creation and analysis of representative
data can be a complex task. Most of the filter algorithms require Multiplication and addition in real-time. The
unit carrying out this function is called MAC (multiply accumulate). Depends on how good the MAC is, the
better MAC the better performance can be obtained. Once a correct filter response has been determined and a

coefficient table has been generated, the second step is to design the hardware architecture [3].

11 DESIGN AND IMPLEMENTATION OF DIGITAL FIR FILTER

MATLAB combines the high-level, mathematical language with an extensive set of pre-defined functions to
assist in the creation and analysis of filter data. Toolbox are available for designing filter response and
generating coefficient tables, each with varying levels of sophistication. Graphical filter design tools provide
selections for specifying pass band, filter order, and design methods, as well as provide plots of the response of
the filter to various standard forms of inputs. Three choices of technology exist for the implementation of filter
algorithms. These are:

1. Programmable DSP chips

1078 |Page




International Journal of Advance Research in Science and Engineering Q
Volume No.07, Special Issue No.07, April 2018

IJARSE
www.ijarse.com ISSN: 2319-8354
2. ASICs and
3. FPGAs.

At the heart of the filter algorithm is the multiply-accumulate operation Programmable DSP chips typically have
only one MAC unit that can perform one MAC in less than a clock cycle. DSP processors or programmable
DSP chips are flexible, but they might not be fast enough. ASICs can have multiple dedicated MACs that
perform DSP functions in parallel. But, they have high cost for low volume production. FPGAs have been
praised for their ability to implement filters since the introduction of DSP architectures, which can be
efficiently, realized using dedicated DSP resources on these devices. More than 500 dedicated multiply-
accumulate blocks are now available, making them exceptionally well suited for high-performance, high-order
filtering applications that benefit from a parallel, non-resource shared hardware architecture. In this particular
paper, FPGA has been chosen as the implementation tool [7].

To program FPGA, hardware description language is needed. VHDL or verilog synthesis offers an easy way to
target a model towards different implementation. High-performance, high-order filtering applications, that are
able to exploit dedicated multiplier or DSP blocks, often turns to FPGAs for a solution. When targeting an
FPGA device with dedicated DSP blocks capable of supporting cascaded “multiply-add” operations such as the

Xilinx Virtex 4, highest performance is achieved using a transposed” architecture.

111 IP GENERATORS

When implementing the actual filter on an FPGA, the designer is presented with a fundamental choice of
whether to use an IP core or design a custom implementation. Both options have merits and limitations. FIR
filter IP cores are readily available from multiple sources with the most common forms being technology-
specific enlists, synthesizable RTL, and synthesizable MATLAB. All these generators can construct a filter
using a pre-defined coefficient table. IP is typically the most cost effective and offers the best results but
provides the fewest options.

IP generators provide an excellent choice when time-to-market or ease-of-use demands prevail. The general
purpose nature of these programmable IP generators, however, seldom yields the optimal hardware for a specific
application. Implementing hardware design in Field Programmable Gate Arrays (FPGAS) is a formidable task.
There is more than one way to implement the digital FIR filter. Based on the design specification, careful choice
of implementation method and tools can save a lot of time and work [6]. MatLab is an excellent tool to design
filters. There are toolboxes available to generate VHDL descriptions of the filters which reduce dramatically the
time required to generate a solution. Time can be spent evaluating different implementation alternatives. Proper
choice of computation algorithms can improve the FPGA architecture to make it efficient in terms of speed

and/or area [8].

IV DESIGN SPECIFICATIONS
The objective of system is to provide a hardware platform to test FIR filters that have been generated using

MATLab and verilog. The system performs the following functions:

1079 |Page




International Journal of Advance Research in Science and Engineering
Volume No.07, Special Issue No.07, April 2018 IJARSE
www.ijarse.com ISSN: 2319-8354

1. Communicate with a PC using a standard RS-232 serial interface.

2. Receive a data file from the PC. Data will be received in binary form so they can be applied to the FIR
filter without further transformation. For this exercise consider that the FIR filter receives 8-bit
samples.

3. The outputs of the FIR filter must be returned to the PC where they will be stored in a file. Again assume
data from the FIR filter have to be sent the outputs in binary form (without transformation).

4. To send and receive the files from/to the PC a program like “HyperTerminal” can be used. Configure the
port as follows:

Bits per second: 9600

Data bits: 8

Parity: None

Stop bits: 2

Flow control: None
The HyperTerminal programs are set up now and ready to communicate with the Spartan board. We can type a
few keys on one hyper terminal and observe the observe characters appearing on other hyper terminal. Note that
the received words are stored in the FIFO buffer and data are read only when the FIFO buffer fills with 256
words [2]. The overview of the system is shown in figure 1.RST is an Input and it is asynchronous signal that

initializes all internal pointers and output registers.

DRdy

UART

| 2
\' ]
WxrD

A

Clock for | ciock
. divider

'FPGA development board

Figure 1: Overview of the system

In above figure, there are two blocks that do not have to be designed: the RS-232 interface, it is provided as part
of the development board, and the FIR filter, it is implemented using MATLab SYSGEN. The blocks that have
to be developed are the Universal Asynchronous Receiver-Transmitter (UART), is a circuit that sends parallel
data through a serial line. UARTS are frequently used in conjunction with the RS-232 standard, which specifies
the electrical, mechanical, functional, and procedural characteristics of two data communication equipment.

A UART includes a transmitter and a receiver. The transmitter is essentially a special shift register that loads
data in parallel and then shifts it out bit by bit at a specific rate. The receiver, on the other hand, shifts in data bit

by bit and then reassembles the data. The serial line is 1 when it is idle. The transmission starts with a start bit,

1080 |Page




International Journal of Advance Research in Science and Engineering Q
Volume No.07, Special Issue No.07, April 2018 IJARSE
www_iiarse_com ISSN: 2319-8354

which is 0, followed by data bits the number of data are 8. The number of stop bits that are used are 2. Here the
LSB of the data is transmitted first [4].

FIFO:

The Xilinx LogiCORE IP FIFO Generator is a fully verified first-in first-out (FIFO) memory queue for
applications requiring in-order storage and retrieval. The core provides an optimized solution for all FIFO
configurations and delivers maximum performance (up to 500 MHz) while utilizing minimum resources.
Delivered through the Xilinx CORE Generator™ software, the structure can be customized by the user
including the width, depth, status flags, memory type, and the write/read port aspect ratios.

INTERFACE CIRCUIT

The design uses a FIFO buffer. The FIFO buffer provides more buffering space and further reduces the chance
of data over run. We can adjust the desired number of words in FIFO to accommodate the processing need of
the main system. The main system obtains the data from FIFO's read port. After retrieving 256 words, it asserts
a signal of the FIFO one clock cycle to remove the corresponding item. The prog_empty signal of the FIFO can
be used to indicate whether any received data word is available. A data-overrun error occurs when a new data
word arrives and the FIFO is full [5].

The design of a UART transmitting system is similar to that of the receiver. It consists of a UART transmitter,
baud rate generator, and a wrapper. The UART transmitter is essentially a shift register that shifts out data bits at
a specific rate. The rate can be controlled by one-clock-cycle enable ticks generated by the baud rate generator.
Because no oversampling is involved, the frequency of the ticks is slower than that of the UART receiver.
FPGA designing is a synchronous design the reset from the push button on FPGA is synchronized first and to
reduce the noise debouncing circuit is added and the active reset(if held high continously for 1000ns a pulse of
300ns is generated ) is given as an input to receiver, FIFO and transmitter. Here synchronizer is for receiver
hence it is having the clock frequency as 50 MHz. If it is for a transmitter than the clock frequency is being
doubled and it will be 100 MHz. As reciever uses 50MHz and transmitter uses 100 MHz frequencies, in order to

generate and synchronize both the clock domains, DCM is used.

DESIGN SPECIFICATION OF FIR FILTERS
Low-pass FIR filter has been implemented with

» Response type: Low pass;

* Design method: Equi ripple;

* Density factor: 20;

« Filter order: order 5;

» Hardware architecture: Direct form;

» Sampling frequency: 48000Hz;

* Pass band frequency: 9600Hz;

* Stop band frequency: 12000Hz;

* Input data length: 8 bits;

1081 |Page




International Journal of Advance Research in Science and Engineering Q
Volume No.07, Special Issue No.07, April 2018 IJARSE
www_iiarse_com ISSN: 2319-8354

* Output data length: 8 bits;
HARDWARE UTILIZATION

Total memory usage in Proposed Algorithm is around 240 MB. Design summary of circuit is shown in Table 1
and Table 2.
Table 1: Design Summary of the system

Logic utilization Used Available Utilization
Number of slices 2782 42176 6%
Number of DSP48s 52 160 32%
Number of LUTs 5113 84352 6%
Number of Bonded 10Bs 48 576 8%
Number of GCLKSs 1 32 3%
Number of Slice Flip Flops: 4701 84352 6%
Table 2:Design Summary of the FIR Filter
S.No. | Specification Value
1 Minimum period: 2.832ns (Maximum Frequency:

353.107MH?z)

2 Minimum input arrival time before clock: | 1.306ns

3 Maximum output time after clock: 3.793ns

4 Maximum combinational path delay: Maximum combinational path delay:
5 Clock period: 2.832ns (frequency: 353.107MHz)

6 Total number of paths / destination ports 40654 / 18972

7 Number of failed paths / ports 0 (0.00%) / 0 (0.00%)\

TIMING WAVEFORM
Minimum period required for FIR filter is 2.832ns and Maximum Frequency is 353MHz. Figure 2 shows the

simulation waveform of FIR Filter.

Currend Simulation

@
allf
@
QllF
[
alif
o
o
o
o
@

Figure 4: Simulation behavior of the Filter

1082 |Page




International Journal of Advance Research in Science and Engineering Q
Volume No.07, Special Issue No.07, April 2018 IJARSE
www_iiarse,com ISSN: 2319-8354

CONCLUSION

The traditional methodology for designing a filter consists of two phases: system specification and hardware
implementation. Both phases require multiple iterations and can involve a four-to-six-week process just to
ensure that a single functional block operates to specification within the system. Creating this filter from the
ground up, using either VERILOG or other design entry methods, would have required too much development
time. MatLab is an excellent tool to design filters. There are toolboxes available to generate VERILOG

descriptions of the filters which reduce dramatically the time required to generate a solution.

REFERENCES

[1.] J.G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, algorithms and Applications.
Upper Sad dle river, NJ: Prentice-Hall, 1996.

[2.] http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/ug440.pdf3.

[3.] Sheenu Thapar, “A Low Pass FIR Filter Design Using Genetic Algorithm Based Artificia Neural
Network “International Journal of Computer Technology and Electronics Engineering (IJCTEE)
Volume 2, Issue 4, August 2012, pp. 99-103

[4.] A.Shaw and M.Ahmed, “Pipelined recursive digital filters: a general look ahead scheme and optimal
approximation,” IEEE Trans. On Circuits and Systems II: Analog & Digital Signal Processing, Vol.46,
no.11, Nov. 1999, pp. 1415-1420.

[5.] Chao-Huang Wei, Hsiang-Chieh Hsiao, Su-Wei Tsai “FPGA Implementation of FIR Filter with
smallest Processor” IEEE NEWCAS conference, 19-22 June 2005, pp.337-340.

[6.]R. A. Hawley, B. C. Wong, T.J. Lin, J. Laskowski, and H. Samueli, “Design techniques for silicon
compiler implementations of high-speed FIR digital filters," IEEE Journal of Solid-State Circuits, vol.
31, May 1996, pp. 656-667.

[7.] A.G.Dempster and M.D.Macleod, “Use of minimum adder multiplier blocks in FIR digital filters,”
IEEE Trans. Circuits Syst. I, Analog Digit. Signal Process., vol.42, no.9, Sep.. 1995, pp. 569-577.

[8.] Hourani, Y. Kim, S. Ocloo, and W. Alexander, “Automated hardware IP generation for digital signal
processing applications,” in Signals, Systems and Computers, 2006. ACSSC ' 06. Fortieth Asilomar
Conference on, (Paci_c Grove, CA, USA), Nov. 2006 pp. 1156-1160.

1083 |Page




