STUDY OF PUSHOVER ANALYSIS OF VERTICAL IRREGULAR STRUCTURES

S.M.Patil¹, Y.M.Pudale², V.V.Nair³

¹ Assistant Professor, Department of Civil Engineering, P.V.P.I.T, Budhgaon (India)

ABSTRACT

The seismic performance of building frame changes with the variation or the discontinuity in stiffness, strength and mass of the building. This causes the irregularity of the building. The common type of irregularity is the vertical irregularity. So that pushover analysis is one of the method to study the seismic behavior of vertical irregular structure when the structure is subjected to earthquake forces. The vertical irregularity that is irregularity in elevation is considered for present study. Five G+7 RCC building frames having different percentage of irregularity are considered for the present study and it is designed and analyzed by using design and analysis software ETABS v9.5.0..All the building frames are designed as per the IS 456:2000 and IS1893:2002. The purpose of this concerned work is to compare the pushover result obtained in terms of parameter story drift, story displacement, story shear, Base shear, spectral displacement and spectral acceleration of different vertical irregular structure and to study the effect of increase in vertical irregularity.

Keywords: Pushover Analysis, Story Drift, story Shear, Story Displacement spectral acceleration, spectral displacement

IINTRODUCTION

Pushover analysis is an approximate analysis or non linear static analysis in which the building frame is subjected to invariant height wise distribution for lateral loads of certain shape. The present study is concerned with the seismic behavior of vertical irregular structure. Stiffness irregularity, mass irregularity, strength irregularity and setback irregularity these are the various types of irregularity, but here irregularity in elevation is considered. The irregularity in the building structures may be due to irregular distributions in their mass, strength and stiffness along the height of building. When such buildings are constructed in high seismic zones, the analysis and design becomes more complicated.

Vertical geometric irregularity exist, when the horizontal dimension of lateral force resisting system in any adjacent

²Assistant Professor, Department of Civil Engineering, P.V.P.I.T, Budhgaon (India)

³Assistant Professor, Department of Civil Engineering, P.V.P.I.T, Budhgaon (India)

storey is more than 150% of that in an adjacent storey. For this study vertical geometry is obtained by reducing the number of bays in vertical downward direction. Five building frames are considered with variation in percentage irregularity

The scope of the present work is to study the effect of vertical irregularity.

Description of building Frame:

Design data:

No. Bays along X axis	6		
No. Of bays along Y axis	6	Type of structure	: RC Moment Resisting
No. Of days along 1 axis	O	Frame	
Spacing along X axis	4.5m	Seismic zone	III
Spacing along Y axis	3m	Zone factor	:0.16
Storey height	3m	Number of storey	: G+7
No. Of floors	G+7	Floor height	: 3m
	$C_1 = 520X480mm$ for	Base Floor height	: 3m
	ground floor,1st,	base Proof neight	. 3111
Size of columns	2 nd and 3 rd floor	Slab Thickness	: 150 mm thick
	C ₂ =340x300mm for 4 th ,5 th ,6 th 7 th floor	Wall	: 230mm thick brick
	B ₁ =420X380mm for 1 st		masonry wall
Size of beams	,2 nd ,3 rd and 4 th	Live load	: 4.0 kN/m^2
	Floor	Elean Einiale	: 1.0 kN/m^2
	B ₂ =340X320mm for	Floor Finish	: 1.0 kN/m
	5 th ,6 th ,7 th and 8 th	Earthquake load	: As per IS-1893 (Part
	Floor	1)200 2	
		Type of soil	: Type II

M30,Fe415, Stress Strain Relationship as per IS456:2000

Modelling On ETABs:

Model-1 : Regular Structure

International Journal of Advance Research in Science and Engineering

Volume No.07, Special Issue No.07, April 2018

www.ijarse.com

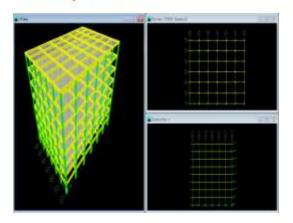


fig.1 Elevation and 3D view of model M-1

Model-2: Irregular Structure (300%)

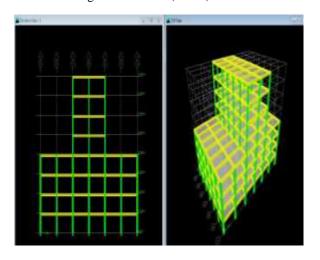
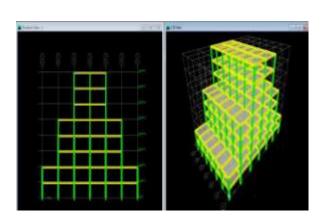



Fig.3 elevation and 3D view of model M-2

Model-3: Irregular Structure (200%)

IJARSE

ISSN: 2319-8354

fig.2 Pushover curve for model M-1

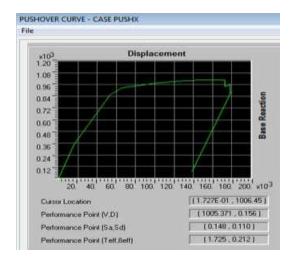
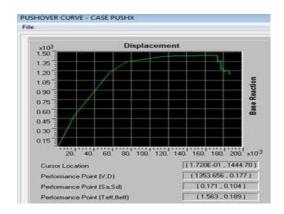
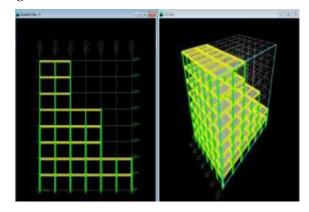



Fig.4 Pushover curve for model M-2



International Journal of Advance Research in Science and Engineering

Volume No.07, Special Issue No.07, April 2018

www.ijarse.com

Fig.5 elevation and 3D view of model M-3

Model-4: Irregular Structure (200%)

Fig.7 Elevation and 3D view of model M-4

Model-5: Irregular Structure (300%)

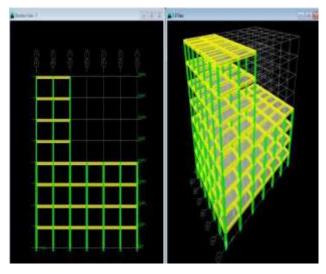


Fig.9 Elevation and 3D view of model M-5

Fig.6 Pushover curve for model M-3

ISSN: 2319-8354

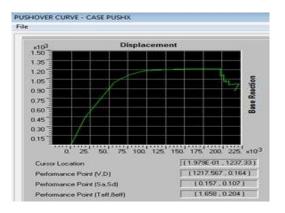


Fig.8 Pushover curve for model M-4

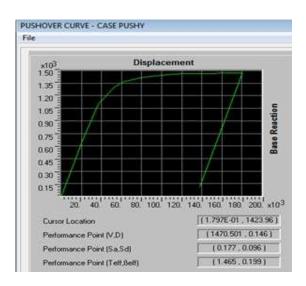
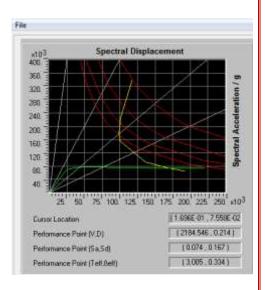



Fig.10 Pushover curve for model M-5

STOREY DISPLACEMENT, STOREY DRIFT AND STOREY SHEAR CALCULATION

STOREY	STOREY DISPLACEMEN T(m)		STOREY DRIFT(m)		STOREY SHEAR(kN)	
	X	Y	X	Y	X	Y
8	0.0214	0.0185	0.00055	0.00048	260.84	302.3
7	0.0198	0.0171	0.00095	0.00082	470.48	545.26
6	0.0169	0.0146	0.00124	0.00106	624.5	723.77
5	0.0132	0.0114	0.00124	0.00107	731.46	847.73
4	0.0095	0.0065	0.00060	0.00051	809.91	938.64
Table.1. Sto	0.0077 orey displ	0.0066 acement, St	0.00064 orey drifts a	0.00054 nd Storey	856.67 shear for	992.84 model M- 1
2	0.0058	0.005	0.00075	0.00063	877.46	1016.93
1	0.0035	0.0031	0.00117	0.00103	882.66	1022.96

From the above table it is seen that the maximum displacement of 0.0214 m is occurred in top Storey while the maximum drift of 0.00124 m is occurred in 6^{th} storey. Also shows that the storey shears get increases from top storey to bottom storey.

Table.2. Storey displacement, Storey drifts and Storey shear for model M-2

STOREY	STOREY DISPLACEMEN T(m)		STOREY DRIFT(m)		STOREY SHEAR(kN)	
	X	Y	X	Y	X	Y
8	0.029	0.025	0.001036	0.00066	166.82	177.82
7	0.0259	0.0231	0.001729	0.00113	302.42	322.36
6	0.0207	0.0197	0.002215	0.00147	402.05	428.55
5	0.014	0.0152	0.002016	0.00147	471.23	502.29
4	0.0081	0.0108	0.000699	0.00069	545.35	581.3
3	0.006	0.0088	0.000612	0.00072	602.98	642.73
2	0.0042	0.0066	0.000582	0.00083	640.38	682.59
1	0.0026	0.0041	0.000878	0.00136	649.99	692.84

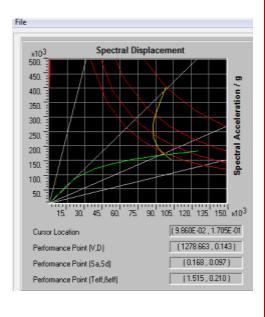
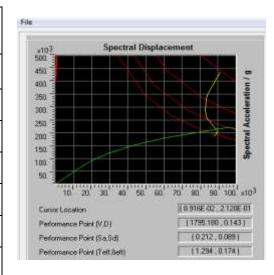
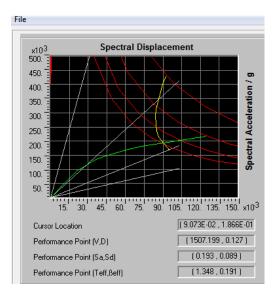
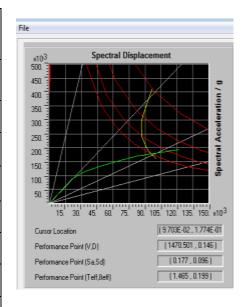


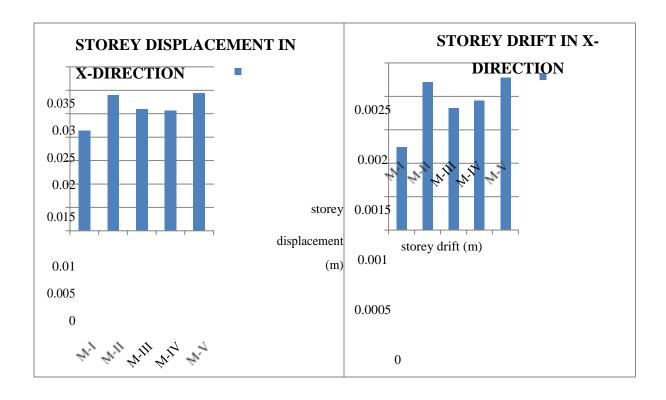
Table.3. Storey displacement, Storey drifts and Storey shear for model M-3

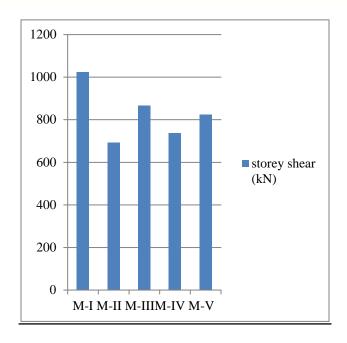
STORE Y	STOREY DISPLACEMEN T(m)		STOREY DRIFT(m)		STOREY SHEAR(kN)	
	X	Y	X	Y	X	Y
8	0.026	0.0213	0.000979	0.00072	166.65	195.91
7	0.023	0.0191	0.001639	0.00121	302.12	355.16
6	0.0181	0.0155	0.001825	0.00111	401.64	472.16
5	0.0126	0.0109	0.001287	0.00114	532.35	625.81
4	0.0088	0.0076	0.000673	0.00558	630.6	741.31
3	0.0068	0.0059	0.000654	0.00567	689.35	810.38
2	0.0048	0.0043	0.000637	000054	726.71	854.29
1	0.0029	0.0026	0.000982	0.00087	736.32	865.58


Table.4.Storey displacement, Storey drifts and Storey shear for model M-4

STOR EY	STOREY DISPLACEMEN T(m)		STOREY DRIFT(m)		STOREY SHEAR(kN)	
	X	Y	X	Y	X	Y
8	0.0257	0.0218	0.000954	0.00068	155.28	183.27
7	0.023	0.0198	0.001586	0.00116	281.49	332.24
6	0.0184	0.0163	0.001934	0.00159	374.22	441.69
5	0.0132	0.0118	0.001543	0.00148	467.31	551.56
4	0.0086	0.0074	0.000734	0.00064	537.1	633.93
3	0.0064	0.0059	0.000651	0.00055	590.75	697.25
2	0.0045	0.0042	0.000652	0.00060	615.08	725.96
1	0.0026	0.0024	0.000864	0.00081	623.78	736.23


 $Table. 5. Storey\ displacement,\ Storey\ drifts\ and\ Storey\ shear\ for\ model\ M-5$


STOREY	STOREY DISPLACEME NT(m)		STOREY DRIFT(m)		STOREY SHEAR(kN)	
	X	Y	X	Y	X	Y
8	0.0294	0.0257	0.00107	0.00068	172.85	183.57
7	0.0262	0.0236	0.00178	0.00116	313.36	332.79
6	0.0208	0.0201	0.00228	0.00151	416.59	442.42
5	0.014	0.0156	0.00199	0.00151	488.28	518.56
4	0.008	0.0111	0.00051	0.00068	635.07	674.45
3	0.0066	0.009	0.00055	0.00073	724.7	769.64
2	0.005	0.0068	0.00066	0.00085	764.54	811.95
1	0.0031	0.0042	0.00103	0.00141	774.5	822.53

Comparison of building performances

1.Story Displacement ,story drift and story shear

DISCUSSION AND CONCLUSION:

- 1.a) From the analysis result, it can be seen that the base shear at performance point for building frame without vertical irregularity is 2184.54kN and for building frames with vertical irregularity it is 1278.7kN, 1795.2kN, 1507.2kN and 1470.5kN for models M-2,M-3,M-4,M-5 respectively. Also, it is found that in case of building frames with vertical irregularity there is decrease in base shear at performance point of about 41%, 18%, 31%, and 33% for models M-2,M-3,M-4, and M-5 respectively.
- b) From the above result it is seen that the base shear at performance for vertical irregular structure is decreased due to the discontinuity in stiffness, strength and mass.
- 2.a) In case of building frame without vertical irregularity the displacement at performance point is 0.239 m and the building frames with vertical irregularity it is 0.156m, 0.177m, 0.164m and 0.165m for model M-2,M-3,M-4,M-5 respectively It can be seen that provision of vertical irregularity reduces the displacement at performance point about 34%, 25%, 30%, 31% for models M-2,M-3,M-4,M-5 respectively.
- b) From the above observation, it is seen that the displacement at performance point is reduces. This is because of discontinuity in stiffness, strength and mass.
- 3.a) Similarly the maximum storey drift for building frame without vertical irregularity is 0.00124m and in case of building frames with vertical irregularity it is 0.0022m, 0.0018m, 0.0019m and 0.0023m for models M- 2,M-3,M-4,M-5 respectively. After comparing the building performance it is found that there is increase in storey drift of about 44%, 31%, 34%, 46% for model M-2,M-3,M-4,M-5 respectively.
- b) Due to the discontinuity in stiffness, strength and mass, there is increase in storey drift for irregular structure.

Volume No.07, Special Issue No.07, April 2018 Www.ijarse.com IJARSE ISSN: 2319-8354

- 4.a) In case of building frame without vertical irregularity the maximum storey displacement is 0.0214m and in case of building frame with vertical irregularity the max story displacements are 0.029m, 0.026m, 0.026m, 0.029m for models M-2,M-3,M-4,M-5 respectively.So, it is observed that the provision of vertical irregularity increases storey displacement about 27%, 17%, 17%, 27% for models M-2,M-3,M-4,M-5 respectively.
- b) As a result of discontinuity in stiffness, strength and mass, the storey displacement is increases for irregular structure.
- 5. As compared to the building frame without vertical irregularity (M-1), the spectral acceleration of building frame with vertical irregularity increases of about 55%,65%,61% 58% for model M M-2,M-3,M-4,M-5 respectively. Similarly spectral displacement is reduces of about 39%, 43%, 42%, and 40% for model M- 2,M-3,M-4,M-5 respectively.
- b) In case of building frame with vertical irregularity, the spectral acceleration is increases and spectral displacement is decreases. This is due to the discontinuity in stiffness, strength and mass.

REFERENCES

- [1.] Evaluation of modal Pushover Analysis Using Vertically Irregular Frames" 13th world conference on earthquake engineering vancouver, B.C. Canada.
- [2.] Jonathan Chambers and Trevor Kelly(2004) "Nonlinear Dynamic Analysis The Only Option For Irregular Structures", 13th world conference on Earthquake Engineering. vancouver, B.C. Canada
- [3.] Alessandro Galasco, Sergio Lagomarsino And Andrea Penna (2006) "The Use of Pushover Analysis For Existing Masonry Buildings" First European Conference on Earthquake Engineering and Seismology ,Geneva, Switzerland. T.L. Karavasilisa, N. Bazeosa, D.E. Beskos(2007) "Seismic response of plane steel MRF with setbacks: Estimation of inelastic deformation demands".
- [4.] N. fallah, S. Pourze Ynali and M.I. Hafezi (2011) "Accuracy evaluation of the modal pushover analysis method in the prediction of seismic response of vertically irregular frames", IJST, Transactions of Civil Engineering.
- [5.] T. Mahdi V. Soltan Gharaie (2011) "Evaluation of the accuracy of quasi-static pushover analysis method" Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society.
- [6.] N. Jitendra Babu, K.V.G.D. Balaji & S.S.S.V Gopala Raju(2012) "Pushover analysis of unsymmetrical framed structures on sloping ground", international journal of civil, structural, environmental and infrastructure engineering research and development.
- [7.] Poonam, Anil Kumar and Ashok K. Gupta (2012) "Study Of Response of Structurally Irregular Building Frames to Seismic Excitations" International Journal of Civil, Structural, Environmental and Infrastructure

Engineering Research and Development.

- [8.] Nabiollah Alirahimi Kashkooli and Mahmoud-Reza Banan (2013) "Effect of Frame Irregularity on Accuracy of Modal Equivalent Nonlinear Static Seismic Analysis" KSCE Journal of Civil Engineering.
- [9.] Mohommed Anwaruddin Md. Akberuddin, Mohd. Zameeruddin Mohd. Saleemuddin(2013) "Pushover Analysis of Medium Rise Multi-Storey RCC Frame With and Without Vertical Irregularity" M A M Akberuddin et al. Int. Journal of Engineering Research and Applications www.ijera.com.
- [10.] Ramesh Konakalla, Ramesh Dutt Chilakapati, 3Dr. Harinadha Babu Raparla (2014) "Effect of Vertical Irregularity in Multi-Storied Buildings Under Dynamic Loads Using Linear Static Analysis" International Journal of Education and applied research.
- [11.] Mohammed Irfan, Dr. Sunandan Reddy, K.Mythili(2014) "Evaluation of Seismic Response of symmetric and Asymmetric Multistoried Buildings" International Journal of Science Engineering and Advance Technology.
- [12.] Alessandro Vittorio Bergam, Xu Liu, and Camillo Nuti (2014) "Proposal And Application Of The Incremental Modal Pushover Analysis (impa)"
- [13.] IS-456:2000, "Code of practice for plain and reinforced concrete", code practice fourth revision, Bureau of Indian Standards, New Delhi, July2000.
- [14.] IS 1893 (Part 1) 2002, "Criteria for Earthquake Resistant Design of Structure," BIS 2002.