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Abstract: In this paper, we consider the system of generalized variational inclu-
sions in Hilbert spaces, which is an extension of variational inclusion studied by
Hassouni and Moudafi. Using proximal operator technique, we construct an itera-
tive algorithm for solving the system of generalized variational inclusions. Further,
we prove the existence of solution and discuss convergence criteria for the approx-
imate solution of the system of generalized variational inclusions. Our suggested
iterative algorithm and its convergence results are new and the theorems presented

in this paper improve and unify many known results in the literature as well.
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1. Introduction

One of the most significant and important problems in the variational inequality
theory is the development of efficient iterative algorithms to compute approximate
solutions. Although one of the most effective numerical technique for solving varia-
tional inequalities i1s the projection method and its variant forms. For further gener-
alizations of variational and quasi-variational inequalities/inclusions see for example

[4-9,11].

Motivated by recent research work going on variational inequalities, we consider the
system of generalized variational inclusions in Hilbert spaces and suggest an iterative
algorithm. Further, we prove the existence of solution of the system of generalized
nonlinear variational-like inclusions and discuss the convergence criteria for the it-
erative algorithm. The suggested iterative algorithm include as special cases the

algorithm developed by Kazmi and Bhat [4]. The results presented in this paper
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improve and extend some known results in the literature.
2. Preliminaries and Basic Results
Let H be a real Hilbert space with inner product (-, ) and norm || - ||, respectively.

The following concepts and results are needed in the sequel:

Definition 2.1. Let n: H x H — H be a single-valued mapping. Then a multival-
ued mapping M : H — 27 where 27 is the power set of H, is said to be

(1) n-monotone, if

(r —y,np(u,v)) >0, Yu,ve H, Yz € M(u),y € M(v);

(11) o-strongly n-monotone, if there exists a constant o > 0 such that

<I — Y 77(“?”)) > Ullu T ‘U”?‘s v u,v € H? Vze AI(U)*y € AI(l'),

(iv) mazimal n-monotone, if M is -monotone and (I + pM)(H) = H, for any

p > 0, where I stands for an identity operator.

Definition 2.2 ([11]). Let n: H x H — H be a single-valued mapping. A proper
convex function ¢ : H — R U {+oco} is said to be n-subdifferentiable at a point
u € H, if there exists a point f* € H such that

q')(v) - ¢(ll) > (f*-.ﬂ(ua 'L‘)) Vv € H, (21)

where f* is called an 7-subdifferentiable of ¢ at u. The set of all 7-subdifferentiable
of ¢ at u is denoted by 8¢(u). The mapping d¢ : H — 2H defined by

O¢(u) = {f* € H : ¢(v) — ¢(u) = (f*.n(u,v)), Vve H},
1s said to be 7-subdifferential of ¢ at wu.

Definition 2.3 ([11]). Let ¢ : H — IRU {+oo} be a proper convex function. For
any given u € H and p > 0, if there exists a mapping : H x H — H and a given
unique point w € H such that

(v, w), w —u) > pp(w) — po(v), Vo€ H, (2.2)
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then the mapping u +— w, denoted by J??(u) is said to be n-proximal mapping of ¢.
By (2.1) and the definition of J“?d’(u), it follows that

Jf¢(u) = (I + pd¢p) (u), Yue H, (2.3)

is called the prozimal (resolvent) mapping of ¢, where I stands for identity mapping
on H.

Let Ny,No, N3 : H x H —- H, g : H — H be single-valued mappings and let
M : H — 2% be a maximal n-monotone mapping. Then the system of generalized
nonlinear variational-like inclusions (in short, SGNVLI) is to find u, v, w € H such
that

0 € g(u) — g(v) + p1 [N1(u,v) + M(g(w)], pr >0, (24)
0 € g(v) — g(w) + pa[ Na(v,w) + M(g(v))], p2 >0, (2.5)
0 € g(w) — g(u) + pa[Na(w, u) + M(g(w))], pa > 0. (2.6)

We remark that if u = v = w and p; = ps = pa, SGNVLI (2.4)-(2.6) reduces to a

variational inclusion of finding v € H such that
0 Ni(u,u) + M(g(u)). (2.7)

Variational inclusion (2.7) is an important generalization of variational inclusion
considered by Hassouni and Moudafi [1]. For applications of such variational inclu-
sions, see [2,4.8.11].

Remark 2.4. For the suitable choices of the mappings Ny, N, N3, g and M, SGN-
VLI (2.4)-(2.6) reduces to similar types of variational inclusions and variational
inequalities considered by Yang et al. [3], Verma [9], Chang et al. [10], He and Gu
[12].

Next, we give the following results, which are used in the sequel.

Lemma 2.5 ([2]). Let n: H x H — H be a strictly monotone and let M : H —
2 be a mazimal p-monotone mapping. Then the following conclusions hold:

(a) {x —y,n(u,v)) >0, V(y,u) € Graph(M) implies (z,u) € Graph(M),

where Graph(M) = {(z,u) € H x H : z € Mu};

(b) the mapping (I + pM)~! is single-valued for any p > 0.
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Lemma 2.6 ([2]). Let n: H x H — H be d-strongly monotone and 7-Lipschitz
continuous mapping and let M : H — 2" be a mazimal -monotone mapping.

Then the n-prozimal mapping of M, J‘f" = (T4 pM)™! is %-

Lipeshitz continuous,

i.€.,

15 (u) = T3 @)l < 5llu—oll, Yu,v € . (2:8)
where p > 0 is a constant.
3. Iterative Algorithms

In this section, an iterative algorithm for solving SGNVLI (2.4)-(2.6) is suggested

and analyzed. First, we give the following lemma:

Lemma 3.1. u,v,w € H is the solution of SGNVLI (2.4)-(2.6) if and only if it

satisfies:
g(u) = Jj! [g(v) = pNi(w,0)]; p1 >0, (3.1)
where
g(v) = I [g(w) — paNo(v,w)]; 2 >0, (3:2)
and
glw) = Jgg [g(u) — palN3(w, u)]; pa > 0. (3.3)

Here J;,'t’ = (I +pM)7 ;i =1,2,3,... is the prozimal mapping, I stands for the
Identity mapping on H.

The proof of this result follows from the definition of J ",”” , and hence 1s omitted.

The above lemma allows us to suggest the following iterative algorithm:

Iterative Algorithm 3.2. For any arbitrary chosen ug € H, compute {u,}, {v,},

{wn} by the iterative schemes:
Uns1 = tun — g(un) + I [g(vn) — pr Ni(tn, va)|; 1 >0

where
g(vn) = J;}; [g(wn) — pgjv'g(l_'n,wn):l. P2 > 0
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and
g(‘wn) — J}g [g(un) = P3N3(‘wm un)]; 3 = 0
n=012,.. .

If p1 = p2 = p3 and u, = vy, = wy for all n > 0, then the above iterative algorithm

reduces to the following iterative algorithm.

Iterative Algorithm 3.3. For any arbitrary chosen ug € H, compute {u,} by the

iterative scheme

Uns1 = Up — Gun) + J;}l’ [g(un) — 1V (u"n-,un)]; p1 >0
n=012,...
We remark that Iterative Algorithm 3.3 gives the approximate solution to the vari-

ational inclusion (2.7).

4. Convergence Criteria

Now, we prove the following theorem, which ensures the existence of solution and
the convergence criteria of Iterative Algorithm 3.2 for SGNVLI (2.4)-(2.6).

Theorem 4.1. Let H be a real Hilbert space. Let n: H x H — H be §-strongly
monotone and 7-Lipschitz continuous mapping, M : H — 2 be a mazimal n-
monotone mapping, N1 : H x H — H be ay-strongly monotone with respect to
second argument and (31, Ba)-Lipschitz continuous with respect to first and second
argument, respectively, No : H x H — H be as-strongly monotone with respect to
second argument and ([33, B1)-Lipschitz continuous with respect to first and second
arqument, respectively, N3 : H x H — H be a3-strongly monotone with respect
to second argument and (fs, Bg)-Lipschitz continuous with respect to first and sec-
ond arqument, respectively, g : H — H be o-strongly monotone and (-Lipschitz

continuous. If there exist constants p; >0, po > 0, ps > 0 such that
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ey Bid \/7'12 [af — (1 — 63)83] + Bi72(B1 + 2a6))
l i 1 Lo d [ (4.1)

B3 — Bt (83 — Bi)m ’

0/1>L32V1—9:12, 01(1,

_amy — (062 — 61m2)Bs
&= (37 — B ™

V[o2m = (082 — 0im)3]” = (82 = B {08201 — 082) + 731 — B})}
(BT — B3 »
asTy — (003 — O172)33 > \/(.3-'42 — B3){002(20170 — 0ds) + 73(1 — 63)} ,
\ L Q373 — ,(,063 - 0173) 535
(86 — Bs)s
\/[Q:;Ts — (063 — 917‘3)35]2 — (88 — B2){003(20,73 — 0d3) + 73 (1 — 67)}
(33 — 133)7'3 *
sy — (083 — 0173)Bs > /(83 — B2){00a(20173 — 0d3) + 73(1 — 63)},

where 6y = /1 — 20 + (2, then the iterative sequences {u,}, {v,}, {w,} generated by
Tterative Algorithm 3.2 strongly converge to u,v,w, respectively, in H and u,v,w €
H is the solution of SGNVLI (2.4) — (2.6).

<

4.2)

< (4.3)

Proof. From lterative Algorithm 3.2, Lemma 3.1 and (3.1), we have

“un+2 — Un+1 ||

< unsr — v — (9(tns1) — g(un))|
| [g(vni1) — p1IN1 (tns1, vns1)]| — T [g(vn) — p1 N1 (un, vn)] ||

< |Iun+1 — Up — (g(u,H_]) = g(‘u"))”
+:S—_1l|g('lﬂn+l) == g(vn) — P1 [l\rl (‘ll-n+l~ Un+l) == Arl('u’"’ .Un)] ||
< |untr — tn — (gCunsa) — gum)) |

+%|lg('l’n+1) — g(vn) — P21 [A"rl (Un—i-l, Un-t—l) — A"l(un+l-, 'Un)

N 1) — N ]|

+:S__1”‘Un+l —Un — P1 I:-"V'l (2n41;Yn41) — "Vl(un—f-l-. 7—"n)] "
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T:S—,:I [Nl(unﬂ, tn) — Ni(tn, vn)] " (4.4)

Since g is o-strongly monotone and (-Lipschitz continuous, we have the following

estimate:

||g(vn+l)—g(vn)_(vn-f-l—vn)l '2

== |Ig(7~'n+l) = g(vn)HQ . 2<g(vn+l) - g('l-'n)a'l-'nﬁ-l » 'Un>
+“'Un+l - 'Un”2

Clon+1 — vnl|® = 20| |vns1 — vnl]> + ||vns1 — val?

[A

< (1-=20+C)||vns — vall”.

Hence,

Hg(vn+l) == g('vn) = ('vn+l = Un)” < vV 1—-20+ CQ ”Un+l = l’n”' (45)

Similarly, we have

llg(unt1) — g(un) — (un+l - un)“ <y1l1—-20+ ¢ lunsr — uall. (4.6)

Also, since N is ay-strongly monotone with respect to second argument and (31, 33 )-
Lipschitz continuous with respect to first and second arguments, respectively, we

have the following estimates:

”Nl(u'"'i'lavn) - Nl(u'ﬂ, Uﬂ)” < ﬂllluﬂ+1 = u‘ﬂ”a
and
2
”vn+1 —Un — M [Nl(uﬂﬂ,vnﬂ) s Nl(un+1,vn)] ||
2 T
< ||lnsr —wl|” = 2P1<-Nl(un+l-,'vn+l) — N1 (Un41:Vn), Ung1 — Un>
2
+03 || N1 (tns1, Un1) — Ni(tnsr, vn)|]

“'UrH—l - Un”‘z —2p1a1||vps1 — 'Un“2 + p%,3‘22||vn+1 - vnllg

[A

= (1 — 2[)10’1 =+ p%ﬂ§)||l¥n+1 - 7-"11”2-
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Hence.

[ems1—vn—p1 [N (1, 2 1) = Ni (i1, v) || < V1 — 2p101 + 0383 ||omss — wall. (4.7)
Now, we have

llg(vns1) — gl llenss —vall = (g(ens1) — g(vn),vn1 — vn)

o lomsr — vall?,

A%

which 1mplies
lones =vall < llglani) — g(ea)l
S %”Jﬁ'}; [g('wvn—l) - P2-N2(11n+1,'wn+1)] — ng [g(’wn) o P‘?.-'VQ('Un, fwn)] ||
< %llg(wnﬂ) — g(wn) — P2 [Na(vns1, Wni1) — Na(vn, wn)]|
< o_l;z“g(u’n-fl) . g(u"n) R ('wn-fl — 'wn)”

T N
+0§_ Wn41 — Wn — PQ[-\V‘.!(Un—H, wn+1) — Na(vnt1, ‘wn)] ”
™ -
£2 No(vpi1,wyn) — No(vn, 'wn)”. (4.8)
ado

Since N is ag-strongly monotone with respect to second argument and (33, 84)-
Lipschitz continuous with respect to first and second arguments, respectively, we

have the following estimates:
II‘NQ('Unﬁ-lswn) — Na(vy, wn)“ =< .33||'Un+l — vl 4
and

10— [Na (51, wn 1)~ Na(wns1,wa)] |

< V1 —2p2a0 + 3B} |[was1 — wal. (4.9)

Similarly, we have

lg(wn+1) — g(wn) — (wnt1 — wn)|| < /1 — 20+ ¢ |[wns1 — wall. (4.10)
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Now, we have
Iig(u’n+l) — g(wn)” lfwnsr —wg|| = <g(wn+l) —g(wn), wpe1 — u"n)

2
o|lwn1 — wnl|” ,

IV

which implies

1|
llwns1 — wnll < —|lg(wn+1) — g(ewn)l]

= éIIJ,l{ [g(un+l) — palNa(wn i1, Uniy )] —=af2d [g(un) = pgNg(w,,,u,,)] ”

IA

% |9(Un+1) — g(un) — pg[l\!’s(wn“, Uni1) — Na(wn, Un)] "

IA

UL;;HQ(U'WI) — glun) — (upyq — Un)”

+UL§3"Um+1 — Un — pP3 [Na(wn+1, Uns1) — Na(wnia, "")] "

7303

+
0’63

| V3(wns1, 1) — Na(ewn, u,,)||. (4.11)

Since N3 is as-strongly monotone with respect to second argument and (35, 35)-
Lipschitz continuous with respect to first and second arguments, respectively, we

have the following estimates:

[|Va(wn i1, un) — Na(wn, un)|| < Bs||wansrr —wal|,

and

|Iun+1—un—P3[N3(u’n+ls Un+1)— Na(wn+1, un)] ” < \/1 — 2p3aa + p353 ||un+1 — unl|-

Thus from (4.11), we have

73(60; + 6
||u’n+1 —wp]| < M ”un+] — ||, (4.12)
083 — T3pafs
where 0, =vVI—20+C ; 02 = \/1 — 2pacs + P332 .
Now from (4.8), we have
(60 + 6:
(v — vl = O O8) o ], (4.13)
06y — Tapafiy

where h=+v1—20+2 ;93:\/1—2pgag+p5ﬂ§ .
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Now from (4.4), we have

”'unw‘-Q = u'n-H“

71151 . Ti72(01 + 63) (61 +64) |
< (61 =5,7) lunes —unll + e ="2 2= g — wall
nipfr | (61 + 62)(61 + 03)(61 + 04)
= 1 0+ + — uyl|,
g 81(082 — TapaPBa) (083 — Tapsfs) }Hllunss el
where
61 =\/1—20+(2; B2 = /1 — 2psas + p3B2 ;
03 = \/1— 2psas + p357 ; 01 =1 —2p1on + 333
Hence, we have
Ilun+‘2 == u-n+1|| <4f ||uﬂ+] = uan (414)
where
_— nip1Pr | imama(fh + 62) (61 + 03)(0) + 64)
' o1 01(ods — Tpafa)(ads — Tapafis)
nip1B | (0 +64)
< 0 + 51 + 51 .
Since a6 + 92) A 7o(61 + 0s) < 1 by conditions (4.2) and (4.3).
(003 — T3p3fs) (009 — Tapaf3s)

T N T1(61 + 64) -

Also condition (4.1) ensures that 6, + 5 5
1 1

Thus 0 < # < 1. Now (4.14) implies that {u,} is a Cauchy sequence in H. Also,
(4.12) and (4.13) implies that {v,}, {w,} are cauchy sequences in H. Hence, there
exist u, v,w € H such that u, — u, v, — v and w, — w. Since N;,Ny,N3.g, Jg{,.]fg,
Jg’ are continuous, then 1t follows from Iterative Algorithm 3.2 that uw,v,w € H
satisfy (3.1),(3.2),(3.3), and thus, by Lemma 3.1, it follows that u,v,w € H is a

solution of SGNVLI (2.4)-(2.6). This completes the proof.
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If pp = po = p3 and u = v = w, Theorem 4.1 reduces to the following theorem
which ensures the existence of a solution and the convergence criteria of Iterative

Algorithm 3.3 for variational inclusion (2.7).

Theorem 4.2. Let n,M ,N, and g be same as in Theorem 4.1. If there exists a
constant py > 0 such that

’Pl _na = Bif(1—6) - 7191]‘
n1(83 — B)

\/{fnal —Bulsi(1—0) =i} — (8 — B){E - (51(1 — 01) —m6) }

< ,
(83 — Bi)m |

2
11 —;’31[51(1 —91)—7‘191 > \/(,33 = 43;‘2){7'12 — ((51(1 = 91) = T10]) }, (4.15)
where 61;= /1 —20 + (*, then the iterative sequence {un} generated by Iterative

Algorithm 3.3 strongly converges to uw € H is the solution of variational inclusion

(2.7).

References

[1]. A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions,
J. Math. Anal. Appl., 185 (3) (1994), 706-712.

[2]. C.E. Chidume, K.R. Kazmi and H. Zegeye, Iterative approzimation of a solu-
tion of a general variational-like inclusions in Banach spaces, Inter. J. Math.

& Math. Sei., 22 (2004), 1159-1168.

[3]. H. Yang, L. Zhou and Q. Li, A parallel projection method for a system of
nonlinear variational inequalities, Appl. Math. Comput., 217 (2010), 1971-
1975.

2630 | Page




International Journal of Advance Research in Science and Engineering

Volume No.07, Special Issue No.04, March 2018

IJARSE

www.ijarse.com ISSN: 2319-8354

[4].

61

[7].

8]

[10].

[11].

[12].

K.R. Kazmi and M.I. Bhat, lterative algorithm for a system of nonlinear
variational-like inclusions, Comput. Math. Appl., 48 (2004), 1929-1935.

. K.R. Kazmi and M.1. Bhat, Convergence and stability of a three step iterative

algorithm for a general quasi-variational inequality problem, J. Fixed Point

Theory and Appl., Vol. 2006 Article Id 96012, 1-16.

K.R. Kazmi, F.A. Khan and M. Shahzad, A system of generalized variational
inclusions involving generalized H(-,-)-accretive mapping in real q-uniformly

smooth Banach spaces, Appl. Math. Comput. 217 (2011), 9679-9688.

K.R. Kazmi, M.I. Bhat and N. Ahmad, An iterative algorithm based on M-
proximal mappings for a system of generalized implicit variational inclusions

in Banach spaces, J. Comput. App. Math., 233 (2009), 361-371.

L.C. Zeng, SM. Guu and J.C. Yao, Three-step iterative algorithms for solv-
ing the system of generalized mized quasi-variational-like inclusions, Comput.

Math. Appl., 53 (2007), 1572-1581.

. R.U. Verma., Projection Methods, Algorithms and a new system of nonlinear

variational inequalities, Comput. Math. Appl., 41(2001, 1025-1031.

S.S. Chang, H.W. Joseph Lee and C.K. Chan, Generalized system for relaxred
cocoercive variational inequalities in Hilbert spaces, Appl. Math. Lett., 20 (3)
(2007), 329-334.

X.P. Ding and C.L. Luo, Perturbed proximal point algorithm for generalized
quasi-variational-like inclusions, J. Comput. Appl. Math., 113 (2000), 153-
165.

Z.H. He and F. Gu, Generalized system for relaxed cocoercive mixed variational

inequalities in Hilbert spaces, Appl. Math. Comput., 214 (1) (2009), 26-30.

2631 |Page




