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ABSTRACT
In this paper, we introduce the concept of a shift-dependent generalized information measure of order « and

type B and its dynamic (residual) version. These are “length-biased” shift-dependent information measures

that assign the larger weight to the larger values of the observed random variable. We derive the expressions of
these two measures under the consideration of some well-known lifetime distributions. It is shown that the
weighted generalized residual entropy determines the survival function uniquely. Some important properties and

inequalities of the proposed residual information measure have also been discussed.
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1. INTRODUCTION
A very important measure of uncertainty in the the literature of information theory was originally introduced by
Shannon [1]. For a non-negative absolutely continuous lifetime random variable X having probability density

function f (X) the measure is defined as

H(X)= [ f(x)log f (x)dx = —E[log f (x))]. 1)

o—38

and for a discrete random variable X taking values X;, i=12,..,n with respective probabilities

n
P(X =i)=p;,0< p; <1 > p; =1, itis defined as
i=1

H(P)=H(py, po.--.Pn) == Py log py. @)
=1

Shannon’s measure of entropy considers the outcomes of the random variable X equally important with respect

to the goal set by the experimenter and hence they are given the same weight. But, in real life sometimes the
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elementary events of a probabilistic experiment have different qualitative characteristic which are usually
known as the weight. So, in order to measure the entropy in such type of cases, Shannon’s measure [1] is not
useful. Belis and Guiasu [2] have proposed a new measure, known as weighted (useful) entropy which measures

the uncertainty in such type of problems and is defined as

0

HW(x)z—jxf(x)log f(x)dx = —E[X log f (x)] . 3)

0
where the importance of the occurrence of the event X = x is represented by the coefficient X in the integral of
(3) and is known as weight (see Misagh and Yari [3] ). This is a length-biased shift-dependent information
measure which ascribes the larger weight to the larger values of the observed random variable X . The notion of

weighted residual entropy was given by Di Cescenzo and Longobardi [4] and is defined as

T f(x
IXF—Iog dx 4)

t
Futher , weighted generalized information measure was studied by many researchers [5,6,7,8,9]. Sekeh,
Borzadaran and Roknabadi [10] obtained some results based on weighted dynamic entropies. Nair, Sathar and
Rajesh [11] studied dynamic weighted failure entropy. M. Nourbakhsh and G. Yari [12] introduced the concept
of Weighted Renyi’s entropy for lifetime distributions.
In the field of information theory, various authors have proposed different generalizations of Shannon’s entropy
[1]. Consequently, in this paper we consider a new generalized information measure consisting on two

parameters « and S . Let X be an absolutely continuous non-negative random variable with probability

density function (p.d.f) f(x), then the generalized entropy (GE) is defined as

Haﬁ(x)leong“-ﬂ+1(x)dx,0<a<ﬂ,p’21, (5)

BB -a)

where,

limH p(X)= j f(x)log f(x)dx, which is Shannon’s entropy given in (1).
p 0
Considering this new and important generalized information measure, we study its weighted dynamic (residual)

version which is defined as weighted generalized residual entropy of order « and type £ . The rest of the paper

is organized as follows: In section 2, we define weighted generalized entropy along with the expressions for
some lifetime distributions. Section 3 expresses the weighted generalized residual information measure with
some important expressions. We also focus on a characterization result which shows that the proposed measure
determines the survival function uniquely. In section 4, the monotonic behavior of the measure with respect to
exponential distribution is studied. Some important properties and inequalities of weighted generalized residual

entropy are obtained in section 5. Finally in section 6, some concluding remarks are given.
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2. Weighted Generalized Entropy (WGE)

Analogous to the definition of weighted entropy (3) , in this section, we study the weighted version of the

generalized entropy (5).

Definition 2.1 For an absolutely continuous non-negative random variable X having density function f(X),

the weighted generalized entropy of order « and type § denoted by H(VCV,, ﬁ)(X) and is defined as

(24

B(p-a)

where the larger values of the random variable X are given the higher weight. In the following example, it is

H{e.5(X)=
0

'OQU(Xf (x)y” ”dX} p-l<a<p, p=1. (6)

shown that even if the two distributions have the same GE, but they can have different WGE.

Example 2.1 Let the two non-negative random variables X and Y have the following density functions

1

—, 4<Xx<6
fy (x)=12

0, otherwise

and

1

—, 0<x<2
fy (Y): 2

0, otherwise.

For =05 and =14, H(, »(X)=Hy, ;(Y)=0.3887, but H ;(X)=0.6071 and H " , (Y )=0.3543.

Therefore, we observe that even though the generalized entropy of the random variable X is same as that of Y,
but their weighted generalized entropies are not identical.

In table 1, we calculate the expressions of weighted generalized entropy corresponding to some well-known

lifetime distributions are. Here, it is noted that F(n,my):m”je‘mzz”‘ldz is an upper incomplete gamma
y

function.

3. Weighted Generalized Residual Entropy
As the concept of residual entropy was introduced by Ebrahimi [13], but the concept of weighted residual

entropy has been given by Di-Crescenzo and Longobardi [4] and is defined as
[PRICIRILY)
HY(X:t)=—| x=~log—=-2dXx . 7
(x:) ! 70" U
On the basis of (7), the dynamic version of (6) is the weighted generalized entropy of the random variable

X, =[X —t| X >t] and is defined as

0 a—p+1
Hayﬂ)(x;t)zmlog(‘[(x%] dx} B-l<a<p, B>1. 8)
t
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when, t =0, (8) reduces to (6).
Table 1. Expressions of WGE H(V,‘)’!ﬁ)(x) for some lifetime distributions
Distribution f (X) X H(W ,;)(X)
Uniform S b —a
h-a a<x<b PlrDb-ay
. r(r+1)
Exponential 26 x>0,1>0 plog g
r
Gamma 1 ey 0<x<®0,A>0 plog r(ar+1)
F(ﬂ) (F(/I))r p AL
A
. _(x—ﬂ] ar Hl"(r +1,0rj
Weibull 1.0 x>1,A>06>0 p| = +logd ————~
P2l I'Hl
ab? ba"
Pareto e x=hb,b>0,a>0 pIOg{ar—l}
H T(r+1)r(er -1
Lomax (L4 )t X>0,u>0 plog{” 1(“(r(11 53) )}
where, p= and r=a-p+1.
B-a)
An alternative way of expressing (8) is obtained in the following theorem.
Theorem 3.1 For all t >0, we have the following equality
HEY o (Xit)=—-2 Iog{t“ﬂ*lexp(MH . X;tj
( lﬂ)( ) ﬂ(ﬁ—a) o ( ,ﬂ)( )
0 = a-p+1
—paf F(2) pB-a)
a—p+1 .
+(a—ﬂ+1)-!'z + [?t)] exp[T H(aﬁ)(X,Z)dZ ] 9)

T (XL__()SJ = IU (a-p +1)Z“—ﬁ+1dzJ( ((1())] o

=(a+ ﬁ—l)T[j Ja-FHgy +IZ“‘ﬂ*1dz]( ((’t‘))ja i1 .

t[L o0 t
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- t“—ﬁ+1f[%]a_ﬁ+ldx +(a-p +1)jt [%t) 2%/ +1[jzf @ (x)dxﬂdz :

i

Since,

a—-f+1

T (%] ™= eXp[@ Han X ;I)J ' (10)

Therefore, due to (8) and (10), (9) is obtained.

In the following theorem, it is shown that H(Vg,ﬁ)(x;t) characterizes the survival function If(t) uniquely.
Theorem 3.2 Let X be a non-negative random variable having probability density function f(x) and survival
function F(t). Assume that H(, p)(Xit) <o, B—1<a<p, B=1 and increasing in t, then H{ 5(X;t)

determines the survival function uniquely.
Proof. Rewriting (8) as

ﬂ(ﬂ—a) " . ]_oo M a—f+1
exp(—a Hb5(X:t) __!.(x 0] dx . (11)
Differentiating (11) w.r.t t, we have
d o P6~2) TG
&EXp(MT_a HY (X ;t)} —(a—p+1)0e (t)-!(x?)t()j dx— (b2 ()71, 12)

where ¢ (t):ﬂ denotes the failure rate of X . Using (11), we can rewrite (12) as

F(t)
(t2e )P —(a— B+ (t)exp(@ HY 5)(X ;t)j + %exp(@ H{% 5)(X ;t)) =0
Hence for fixed t>0, A (t) is a solution of w(x)=0, where
w(x)=te Pxe P _ (g - ﬁ+1)xexp(@ HE (X ;t)) +%exp(@ H{% 5)(X ;t))
Differentiating both sides w.r.t X, we have
(0= (=g (=gt L )

Now, y'(x)=0 gives

a-f+1
X, =[tﬁ‘“‘1exp(ﬁ(’g_a)H(";ﬁ)(x;t)ﬂ :

Also,
v (x)=(a—p+1fa—ppe " x P
For f-l<a<p, f>1, y"(x)<0. Therefore, y(x) attains maximum at x,. So, x=Ag(t) is the unique

solution to y(x)=0. Thus, H{% 4)(X;t) determines Ag (t) uniquely, which in turns determines F(t) uniquely.

2471 | Page




International Journal of Advance Research in Science and Engineering Q
Volume No.07, Special Issue No.04, March 2018
www.ijarse.com

IJARSE
ISSN: 2319-8354

In table 2, we derive the expressions of weighted generalized residual entropy corresponding to some well-

known lifetime distributions. It is mentioned that F(n,mz):m”jy“fle’mydy,m>O,n>0 and
Z

n n-1

y(n,mz)=m

O ey N

y"e™™dy,m>0,n>0 are the upper and lower incomplete gamma functions respectively.

Table 2. Weighted generalized residual entropy H(V(‘)’[ﬁ)(x;t)of some lifetime distributions

Distributi X .
istribution f(x) H(“;ﬁ)(X,t)
1 br+1 _tr+1
Uniform _ a<x<b plogs ————
b-a (r+1)b—t)

. r(r+16rt)
Exponential gex0 x>0,6>0 p| rtd +log Ry
Gamma L goxgpd 0 b>0 plog Cbr+111)

= <X<oo, b>
r(b) ror(r(b) - (b 1))’
02’ log) 10"
Pareto N Xx>1,4>0,6>0 p og{g{_l
L ’(gj r bl“(r +1,t;t]
Weibull Be b x>a,a>0b>0 p E+Iog T
where p—L and r=a-p4+1
' B(f-a)

4. Monotonic behavior of H(V,V,’ﬂ)(x;t)

In this section, we study the monotonic behavior of the generalized residual entropy H(V;ﬁ)(x ;t) with respect to

exponential distribution.

In table 2, assuming =05, f=25 and €=3 in the expression of H{ ;(X;t) corresponding to

exponential distribution and then calculate the values of the expression for different values of t as shown in the

following table.

t 11 12 13 14 15 16 17 18 19 20
H("(‘)'[ﬂ)(x;t) 0.9034 0.9074 0.9112 0.9147 0.9180 0.9211 0.9240 0.9268 0.9295 0.9320
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The graph of this table is shown in Fig.1 and it is obvious that H("!Vlﬁ)(x;t) is monotonic increasing

int e[12,20].

Fig. 1. Weighted Generalized Residual Entropy for Exponential Distribution

w
(ou.B)

H. ..(Xt)
0.905 0.910 0.915 0.920 0.925 0.930

11 12 13 14 15 16 17 18 19 20

5. Properties and inequalities of H(”;',,)(X ;t)

In this section, we study some important properties and inequalities of weighted generalized residual

entropy H("Zlﬁ)(X;t).

Definition 5.1 Let X and Y be two non-negative random variables, then X is said to be smaller than Y in

WGRE
weighted (useful) generalized residual entropy (denoted by X < Y) if H{ 5(X;t)<H{ 5(Y;t) , for all

t>0.
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Definition 5.2 A survival function F is said to have increasing (decreasing) weighted (useful) generalized

residual entropy IWGRE (DWGRE) if H({, 5)(X;t) is increasing (decreasing) in t, t>0, ie if
H(X_ﬂ)(x;t)>(<)0.

Example 5.1 Let X be an exponentially distributed random variable having pdf f(x)=6& %, x>0,6>0,

then from table 2, we have

W () @ I'(r+16rt) o
H(a,ﬂ)(x,t)—ﬂ(ﬂ )[rt9+ F(r+1,9rt)]’Where' r=a-p+1

if, #>a , then we obtain F as IWGRE.

The following lemma will be very useful in proving the theorems of this section.
Lemma 5.1 For an absolutely continuous random variable X , define Z =aX , where a > Qs a constant, then

HE p)(2it)= ﬂ(ﬂa_a)loga+ HE g(X:t). (13)

a-p+1
2)
a d

_a T z \a)
Bp-a) gt a Pr(z>t)

proof. H{\ 4)(Z;t)= z.

Setting Z = aX , a strictly increasing function of X , we have

—h

" a-p4l
H p(Xit)= ﬂ(ﬂa_a)log a}[(x%) dx

o |

Using (8), (13) is obtained.
Theorem 5.1 Let F be an IWGRE (DWGRE) and > « , then

1

a— f+1)ex PB=a) : «t
o (a—p+1) p[ta_gl H{.p)(X t)j |

Proof . From (8), we have

pp-a) HEY 5 (Xit)= 4 (t{(a -B +1)—t(t/1,: (e )exp(—@ H (X ;t)ﬂ :

a

Since, F is IWGRE (DWGRE) and S >« , then we obtain
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i (t)[(a _ peD)—tlae ()= )exp(— @ HEL (X ;t)ﬂ > (<.

which gives

(a_ﬂﬂ)eXp[ﬂ(ﬂa_a)H(Vi,m(X;t)j ~

ta—ﬂ+l

()< (>

hence the desired result is obtained.

Theorem 5.2 Let X and Y be two absolutely continuous non-negative random variables, define Z; =a; X and

WGRE WGRE _
Z,=a,X, a,a, >0 are constants. Let X < Y and a<a,. Then, Z; < Z,, if H{} 5(X;t) or

H{ »)(Y;t) is decreasing in t>0.
Proof. Suppose H(Y, ;)(X;t) is decreasing in t .

WGRE
Now, X < Y implies

w Lt w t
H(“‘ﬂ)[x’a_J < H(aﬁ)[Y,a—Z]. (14)
Also, LZL gives
a
w t w Lt
H(a]ﬁ)[x,a—ljﬁ H(a]ﬁ)(x,g) . (15)
From (14) and (15), we get
w A w Lt
H(aﬁ){x,a—lJS H(aﬁ)(Y,gJ . (16)

WGRE
Using (35) and applying lemma 4.1, we get Z;, < Z,.

Theorem 53 Let X be an absolutely continuous non-negative random variable and

X e IWGRE(DWGRE). Define z < ax , where a > 0 is a constant. Then Z < IWGRE(DWGRE).
Proof. Since X e IWGRE (DWGRE),

Therefore,
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H(Y ) (X:t)=0

By applying lemma 4.1, it is obvious that Z IWGRE(DWGRE) and hence the theorem is proved.
Here, we study some inequalities on the basis of H{; ;)(X;t).

Theorem 5.4 Let X be the lifetime of a system with p.d.f f(x) and survival function F(t),t>0, then for

B> 0, the following inequality is obtained

HE g (Xit)2 Gt

a-p+1)% f(x)logx .« _
e | R b

Proof. we know that from log-sum inequality

T f(x)dx
T f f (X) i t
(x)log———=4—dx> [ f(x)kixlog - )
t xm ! T xM dx
F(t) U F)
where (17) is obtained from (8) .
The L.H.S of (17) leads to
(8- )] 1 (x)log f(x)ix— (e — 5+ 1)] £ (x)logxex + (a5 + DF(V)IogF ). (18)
t t

Substituting (18) in (17) and after simplification we get the desired result.
Theorem 5.6 Let X be a non-negative random variable with support (O,b] and having probability density
function p.d.f f (X) survival function If(t), t> 0, then for 5>« the following inequality holds.
b a—p+1 a—p+1
J[xf_(x) Iog(xf_(x)J dx
Blp-a) " s

I(xf_(X)J dx

U F()

H g (Xit)< +logb-t)| .

Proof. From log-sum inequality and (8), we have
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_ ?(X%T—ﬁ#dx[@ H{ 5 (X:t)—log(b —t)} :

L

After simplification, we get the desired result.

Preposition 5.1 Let X be a non-negative random variable with WGRE H(",‘)’[’ﬁ)(x;t), then for >« , the

following inequality holds.

6. Conclusion

In this paper, we have introduced and studied the concept of weighted generalized entropy and its dynamic
(residual) version. We derive the expressions of these measures corresponding to some well-known lifetime
distributions. It is shown that the weighted generalized residual entropy characterizes the distribution function
uniquely. Further, we study the monotonic behavior of the proposed dynamic measure on the basis of

exponential distribution. Finally various properties and inequalities of the measure have also been studied.
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