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ABSTRACT 

In this paper, we introduce the concept of a shift-dependent generalized information measure of order   and 

type   and its dynamic (residual) version. These are “length-biased” shift-dependent information measures 

that assign the larger weight to the larger values of the observed random variable. We derive the expressions of 

these two measures under the consideration of some well-known lifetime distributions. It is shown that the 

weighted generalized residual entropy determines the survival function uniquely. Some important properties and 

inequalities of the proposed residual information measure have also been discussed.   
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1. INTRODUCTION 

A very important measure of uncertainty in the the literature of information theory was originally introduced by 

Shannon  [1]. For a non-negative absolutely continuous lifetime random variable X  having probability density 

function  xf , the measure  is defined as 

        xfEdxxfxfXH loglog

0

 


.                      (1) 

and for a discrete random variable  X  taking values nixi ,...,2,1,   with respective probabilities 

  




n

i

iii pppiXP

1

1,10, , it is defined as 

    .log,...,,

1

21 




n

x

xxn pppppHPH                       (2) 

Shannon’s measure of entropy considers the outcomes of the random variable X  equally important with respect 

to the goal set by the experimenter and hence they are given the same weight. But, in real life sometimes the 
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elementary events of a probabilistic experiment have different qualitative characteristic which are usually 

known as the weight. So, in order to measure the entropy in such type of cases, Shannon’s measure [1] is not 

useful. Belis and Guiasu [2] have proposed a new measure, known as weighted (useful) entropy which measures 

the uncertainty in such type of problems and is defined as 

         .loglog

0

xfXEdxxfxxfXH w  


                                (3) 

where the importance of the occurrence of the event xX  is represented by the coefficient x  in the integral of 

(3) and is known as weight (see Misagh and Yari [3] ). This is a length-biased shift-dependent information 

measure which ascribes the larger weight to the larger values of the observed random variable X . The notion of 

weighted residual entropy was given by Di Cescenzo and Longobardi [4] and is defined as 

   
 
 

 
 

.log; dx
tF

xf

tF

xf
xtXH

t

w




                       (4) 

Futher , weighted generalized information measure was studied by many researchers [5,6,7,8,9]. Sekeh, 

Borzadaran and Roknabadi [10] obtained some results based on weighted dynamic entropies. Nair, Sathar and 

Rajesh [11] studied dynamic weighted failure entropy. M. Nourbakhsh and G. Yari [12] introduced the concept 

of Weighted Renyi’s entropy for lifetime distributions. 

In the field of information theory, various authors have proposed different generalizations of Shannon’s entropy 

[1]. Consequently, in this paper we consider a new generalized information measure consisting on two 

parameters   and  . Let X  be an absolutely continuous non-negative random variable with probability 

density function (p.d.f)  xf , then the generalized entropy (GE) is defined as 

   
 

  1,0,log

0

1
, 


 


 



 
 dxxfXH ,                    (5) 

where, 

                ,loglim

0

,

1
1

dxxfxfXH 










 which is Shannon’s entropy given in  (1). 

Considering this new and important generalized information measure, we study its weighted dynamic (residual) 

version which is defined as weighted generalized residual entropy of order   and type  . The rest of the paper 

is organized as follows: In section 2, we define weighted generalized entropy along with the expressions for 

some lifetime distributions. Section 3 expresses the weighted generalized residual information measure with 

some important expressions. We also focus on a characterization result which shows that the proposed measure 

determines the survival function uniquely. In section 4, the monotonic behavior of the measure with respect to 

exponential distribution is studied. Some important properties and inequalities of weighted generalized residual 

entropy are obtained in section 5. Finally in section 6, some concluding remarks are given. 
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2. Weighted Generalized Entropy (WGE) 

Analogous to the definition of weighted entropy (3) , in this section, we study the weighted version of the 

generalized entropy (5). 

Definition 2.1 For an absolutely continuous non-negative random variable X  having density function  xf , 

the weighted generalized entropy of order   and type   denoted by   XH w
 ,  and is defined as 

    
 

   1,1,log

0

1
, 
















 








 
 dxxxfXH w

.                   (6) 

where the larger values of the random variable X  are given the higher weight. In the following example, it is 

shown that even if the two distributions have the same GE, but they can have different WGE. 

Example 2.1 Let the two non-negative random variables X  and Y  have the following density functions 

 











otherwise

x
xf X

,0

64,
2

1

              

and   

   











.,0

20,
2

1

otherwise

x
yfY           

For 5.0  and 4.1 ,       3887.0,,  YHXH  , but    6071.0, XH w
  and    3543.0, YH w

 . 

Therefore, we observe that even though the generalized entropy of the random variable  X  is same as that of Y , 

but their weighted generalized entropies are not identical. 

In table 1, we calculate the expressions of weighted generalized entropy corresponding to some well-known 

lifetime distributions are. Here, it is noted that    




y

nmzn dzzemmyn 1,  is an upper incomplete gamma 

function. 

 

3. Weighted Generalized Residual Entropy 

As the concept of residual entropy was introduced by Ebrahimi [13], but the concept of weighted residual 

entropy has been given by Di-Crescenzo and Longobardi [4] and is defined as 

 
 
 

 
 

dx
tF

xf

tF

xf
xtXH

t

w log; 


 .                                                                                            (7) 

On the basis of (7), the dynamic version of (6) is the weighted generalized entropy of the random variable 

 tXtXX t  |  and is defined as 

    
 

 
 

1,1,log;

1

, 
























 

 









t

w dx
tF

xf
xtXH .                                 (8) 
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when, ,0t (8) reduces to (6). 

 

Table 1. Expressions of  WGE   XH w
 ,  

for some lifetime distributions 

Distribution 

 

 xf      x  

 
  XH w

 ,  

     Uniform 

 

ab 

1
 

 

bxa   

 

   













 

r

rr

abr

ab
p

1
log

11

 

 
Exponential  xe  0,0  x  

 






 

1

1
log

rr

r
p


 

 

 
Gamma 

 
11 






xe x

 0,0  x   

   














1

1
log

rr
r

r
p




 

 

 Weibull 






 








x

e
1

 0,0,  x  





















































1

,1

log
rr

rr
r

p








 

Pareto 
1a

a

x

ab
 0,0,  abbx  













1
log

ra

ba
p

r

 

Lomax   1
1








x
 

0,0  x  
   

   



















1

11
log

r

rr
p

r

 

where,  
)( 




p  and 1 r . 

An alternative way of expressing (8) is obtained in the following theorem. 

Theorem 3.1 For all ,0t  we have the following equality 

  
 

 
  

 
 
 

 
  














 





















 










 dzzXH
tF

zF
z

tXHttXH

t

w

;exp1

;explog;

,

1

1

,
1

,

























 .     (9) 

Proof.  

 
 

 
 
 

dx
tF

xf
dzzdx

tF

xf
x

t

x

t

1

0

1

1

1







































 






  

  
 
 

dx
tF

xf
dzzdzz

t

t x

t

1

0

111






   

























  
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 
 

 
 

  dzdxxfz
tF

dx
tF

xf
t

tz zxt

 










 







































 11

1

1 1
1 



  . 

Since,  

 
 
 

 
  







 











 tXHdx
tF

xf

t

;exp ,

1








.                                 (10) 

Therefore, due to (8) and (10), (9) is obtained. 

In the following theorem, it is shown that   tXH w ;,  characterizes the survival function  tF  uniquely. 

Theorem 3.2 Let X  be a non-negative random variable having probability density function  xf and survival 

function  tF . Assume that    1,1,;,   tXH  and increasing in t , then   tXH w ;,  

determines the survival function uniquely. 

Proof. Rewriting (8) as 

 
 

  
 
 

 

















 

t

w dx
tF

xf
xtXH

1

, ;exp







 .                                                                              (11) 

Differentiating (11) w.r.t t, we have 

 
      

 
 

   .1;exp
1

1

,




















 






 



ttdx

tF

xf
xttXH

dx

d
F

t

F
w

                         (12) 

where  
 
 tF

tf
tF   denotes the failure rate of X . Using (11), we can rewrite (12) as 

      
 

  
 

   0;exp;exp1 ,,
1








 







 



tXH

dx

d
tXHttt ww

FF 











   

 

Hence for fixed 0t ,  tF  is a solution of    0x , where 

   
 

  
 

  






 







 
  tXH

dx

d
tXHxxtx ww ;exp;exp1 ,,

11











  

Differentiating both sides w.r.t x , we have 

     
 

  .exp11 ,
1








 
  w

aHxtx 




   

Now,   0 x  gives 

 
 

   .;exp

1

,
1



















 










tXHtx w

t  

Also,  

      111   xtx . 

For 1,1   ,   0 tx . Therefore,  x  attains maximum at tx . So,  tx F  is the unique 

solution to   0x . Thus,   tXH w ;,  determines  tF  uniquely, which in turns determines  tF  uniquely. 
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In table 2, we derive the expressions of weighted generalized residual entropy corresponding to some well-

known lifetime distributions. It is mentioned that   0,0,, 1  





 nmdyeymmzn my

z

nn  and 

  0,0,,

0

1  

 nmdyeymmzn my

z

nn  are the upper and lower incomplete gamma functions respectively. 

Table 2. Weighted generalized residual entropy   tXH w ;, of some lifetime distributions 

Distribution  xf  x  
  tXH w ;,  

 

 

 

 

Uniform ab 

1
 

bxa   
   













 

r

rr

tbr

tb
p

1
log

11

 

Exponential  xe  0,0  x  
 

























 


1

,1
log

rr

rtr
rtp




  

Gamma 
 

11 



bx xe
b

 0,0  bx  
 

     














 rbr tbbr

rtbr
p

,

,1
log

1 
 

Pareto 
1



x
 0,0,  x  













1
log

r

t
p

r




 

 

Weibull 







 


b

ax

e
b

1
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where,  
)( 




p  and 1 r . 

4. Monotonic behavior of   tXH
w

;,  

In this section, we study the monotonic behavior of the generalized residual entropy   tXH w ;,  with respect to 

exponential distribution. 

In table 2, assuming 5.0 , 5.2  and 3  in the expression of   tXH w ;,  corresponding to 

exponential distribution and then calculate the values of the expression for different values of t  as shown in the 

following table. 

    t  11 12 13 14 15 16 17 18 19 20 

 
  tXH w ;,  0.9034 0.9074 0.9112 0.9147 0.9180 0.9211 0.9240 0.9268 0.9295 0.9320 
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The graph of this table is shown in Fig.1 and it is obvious that   );(, tXH w
  is monotonic increasing 

in  20,11t . 
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Fig. 1.  Weighted Generalized Residual Entropy for Exponential Distribution
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5. Properties and inequalities of   tXH
w

;,  

In this section, we study some important properties and inequalities of weighted generalized residual 

entropy   tXH w ;, .
 

Definition 5.1 Let X  and Y  be two non-negative random variables, then X  is said to be smaller than Y  in 

weighted (useful) generalized residual entropy (denoted by YX
WGRE

 ) if      tYHtXH ww ;; ,,    , for all 

0t . 
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Definition 5.2 A survival function F  is said to have increasing (decreasing) weighted (useful) generalized 

residual entropy IWGRE (DWGRE) if    tXH w ;,  is increasing (decreasing) in t , 0t , i.e if 

    0;,.  tXH w
 . 

Example 5.1 Let X  be an exponentially distributed random variable having pdf    0,0,     xexf x
, 

then from table 2, we have 
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 
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
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rtr

rtr
rtXH w











,1

,1
;, , where, 1 r  

if,   , then we obtain F  as IWGRE. 

The following lemma will be very useful in proving the theorems of this section. 

Lemma 5.1 For an absolutely continuous random variable X , define aXZ  , where 0a is a constant, then 

        
     .;log; ,, tXHatZH ww


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



                                                                        (13)                                                                         
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Setting aXZ  , a strictly increasing  function of X , we have 
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, log;
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
 .  

Using (8), (13) is obtained. 

Theorem 5.1 Let F  be an IWGRE (DWGRE) and   , then 
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Proof . From (8), we have 
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Since, F  is IWGRE (DWGRE) and   , then we obtain 
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hence the desired result is obtained. 

Theorem 5.2 Let X  and Y  be two absolutely continuous non-negative random variables, define XaZ 11   and 

XaZ 22  , 0, 21 aa  are constants. Let YX
WGRE

  and 21 aa  . Then, 21 ZZ
WGRE

 , if   tXH w ;,  or 

  tYH w ;,  is decreasing in 0t . 

Proof. Suppose   tXH w ;,  is decreasing in t . 

Now, YX
WGRE

  implies 
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Also, 
21 a

t

a

t
  gives 
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From (14) and (15), we get 
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XH ww

  .                                                                                           (16) 

Using (35) and applying lemma 4.1, we get 21 ZZ
WGRE

 . 

Theorem 5.3 Let X  be an absolutely continuous non-negative random variable and 

 DWGREIWGREX  . Define aXZ  , where 0a  is a constant. Then  DWGREIWGREZ  . 

Proof. Since  DWGREIWGREX  , 

Therefore, 
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  

.0

0;,



 tXH w


 

By applying lemma 4.1, it is obvious that  DWGREIWGREZ   and hence the theorem is proved. 

Here, we study some inequalities on the basis of   tXH w ;, . 

Theorem 5.4 Let X  be the lifetime of a system with p.d.f  xf  and survival function   0, ttF , then for 

0 , the following inequality is obtained 
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Proof. we know that from log-sum inequality 
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where (17) is obtained from (8) . 

The L.H.S of (17) leads to  

        

                .log1log1log tFtFxdxxfdxxfxf
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

                                           (18) 

Substituting (18) in (17) and after simplification we get the desired result. 

Theorem 5.6 Let X  be a non-negative random variable with support  b,0  and having probability density 

function p.d.f  xf , survival function   0, ttF , then for   , the following inequality holds. 
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Proof. From log-sum inequality and (8), we have 
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After simplification, we get the desired result. 

Preposition 5.1 Let X  be a non-negative random variable with WGRE   tXH w ;, , then for   , the 

following inequality holds. 
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Proof. We know that 1log  xx , therefore, from (8), we obtain 
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6. Conclusion 

In this paper, we have introduced and studied the concept of weighted generalized entropy and its dynamic 

(residual) version. We derive the expressions of these measures corresponding to some well-known lifetime 

distributions. It is shown that the weighted generalized residual entropy characterizes the distribution function 

uniquely. Further, we study the monotonic behavior of the proposed dynamic measure on the basis of 

exponential distribution. Finally various properties and inequalities of the measure have also been studied.  
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