HOMEGARDENS: REFUGE TO VALUABLE FLORA OF CENTRAL KASHMIR, J&K, INDIA

Sabeena Nabi¹, Burhan Nabi², Shabir Ahmad Rather³

¹,³ Faculty of Forestry, Benhama, Watlar, Ganderbal, SKUAST-K-191 201 ²Division of Veterinary Medicine, SKUAST-J-180009

ABSTRACT

Vegetation composition of Homegarden in District Budgam revealed the presence of 14 genera, 17 species of 8 families of cultivated herbage, 20 genera having 21 species belonging to 17 families of wild herbage and 9 genera of 12 species representing 5 families of tree diversity. Seasonal variation in quantitative parameters explicated dominance of Brassica olearacea var. acephala and Brassica rapa during spring, summer and autumn respectively among cultivated herbage. However, Stellaria media amongst wild herbage was found to dominate the system during the three consecutive seasons. Malus domestica achieved highest Importance Value Index of 57.09 amongst other evaluated tree species.

Keywords: Homegarden, Flora, Quantitative attributes, Seasons, Kashmir

I.INTRODUCTION

The assessment of species diversity is crucial, since it represents a fundamental property of ecological communities and provides a tool to compare assemblages in time and space, independently from species identities (Guyassa and Raj, 2013). The floristic composition or plant diversity and community structure are important attributes correlated with prevailing environmental as well as anthropogenic variables (Gairola *et al.*, 2008). Species diversity incorporates two important components viz., evenness (distribution of individuals over species/or how equally abundant the species within the land use system) (Neelamegam *et al.*, 2015) and richness (number of species per unit area) (Sterling and Wilsey, 2001). These properties are related with micro-environmental conditions created by man, cultural and economic (commercial crops) factors, which interact to determine structure and composition of a land use system suggesting that this variation is basically idiosyncratic, although marginally dependent of environment (Asfaw *et al.* (2015); Pulido *et al.* (2008)). As rates of deforestation, land degradation, losses of biodiversity and ecosystem services continue to rise globally, the international community is faced with the challenge of finding land use interventions that can mitigate or reduce the impact of these environmental issues. In the past, the conservation of biodiversity has been mostly understood in terms of the management of protected areas and natural forests, ignoring the possible role of farm areas and the ways through which rural communities have promoted biodiversity in their subsistence agricultural production systems (Fifanou *et al.*, 2011). Considering the

fact, that ecosystems and species are disappearing at an alarming rate, the role of agroforestry as a conservation tool needs to be exploited (Jose, 2011). Multistrata agroforests which may include homegarden, boundary plantation, horti-silviculture system, horti-agricultural system etc. contribute to biodiversity conservation via: (i) the provision of supplementary habitat for species that tolerate a lower level of disturbance; (ii) conservation of remnant native species; (iii) buffering the pressure on natural habitats; (iv) provision of corridors for persistence and movement of species across landscapes (Negash *et al.*, 2012). In order to evaluate and summarize the flora in Homegarden agroforestry system, the present investigation was conducted in District Budgam, Kashmir Valley, India.

II.MATERIALS AND METHODS

The research study was conducted in Budgam District of Kashmir Valley, India during the year 2013 and 2014. The experimental site is located between 34°1′12″N latitude and 74°46′48″E longitude at an altitude of 1610 m above mean sea level (msl), roughly 15 km south east of Srinagar city. The topography of the district is mixed with both mountainous and plain areas. The climate is of the temperate type with the upper-reaches receiving heavy snowfall during winter. The average annual precipitation of the district is 585 mm. For present study, three tehsils namely: Budgam, Beerwah and Chadoora were selected to carry out the research problem. Multistage stratified random sampling was used to select the blocks; villages within tehsils and then farmers within villages. A total of 252 farmers were selected and interviewed through pre-tested questionnaire regarding different land use patterns (agriculture, agroforestry, horticulture) and their socio-economic status. The methodology of the experimental study is given in Table-1.

Table-1: Detailed methodology for the selection of sample areas

Selected Tehsils	Beerwah	Budgam	Chadoora			
Selected Blocks (06)	2	2	2			
Selected Villages (06 per Block)	6×2 = 12	6×2 = 12	6×2 = 12			
Selected Farmers (7 per Village)	6×2×7 = 84	6×2×7 = 84	6×2×7 = 84			
Grand Total	252					

2.1 Vegetation analysis

Random quadrats of $10m \times 10$ m size for trees and within each of these quadrats and two $1m \times 1m$ quadrats for herbs (cultivated & wild) were laid down and replicated three times for each life form respectively. Herbarium specimens (herbaceous plants) were collected for three consecutive seasons viz; spring, summer and autumn (Saikia

et al., 2012) and identified from the Division of Environmental Sciences, SKUAST-Kashmir and Centre for Biodiversity & Taxonomy Department of Botany, University of Kashmir. The data on vegetation were quantitatively analyzed for density, basal area, frequency, Importance Value Index (IVI) separately for three different life forms i.e. trees and herb species as per the methodology of Curtis and Mc Intosh (1950). Species diversity (H), Species evenness following Shannon Weiner's method (1963) and Simpson's diversity measured from Simpson's index (Simpson, 1949) were calculated separately for each life form (herbs and trees) from density data as:

a)Shannon- Weiner Index: $H = -\sum (Ni/N) \times ln (Ni/N)$

(H = Shannon - Weiner Index, Ni= Density of the species i, N = Total density of all the species)

b)Species Evenness: $E= H/\ln S$ (H = Shannon - Weiner Index, <math>S = Total no. of species)

c)Simpson's Diversity (Simpson, 1949): $D = \sum n (n - 1)/N (N - 1)$

(D = Diversity index; n = Number of individual of a species; N = Number of individual of all the species).

2.2Statistical Analysis

Data was analyzed using descriptive statistics (MS excel work sheet) and by standard procedures given by Gomez and Gomez (1984).

III.RESULTS & DISCUSSION

3.1 Floristic diversity, community structure and composition in Homegarden of District Budgam

Plant diversity and/or floristic composition revealed the presence of 14 genera, 18 species of 8 families of cultivated plants (herbage) and 20 genera having 21 species belonging to 17 families of wild plants (herbage). Tree diversity comprised of 9 genera, 12 species representing 5 families. Floristic composition and community structure are important attributes correlated with prevailing environmental as well as anthropogenic variables (Bisht and Bhat, 2011). Vegetation stratas *viz.*, herbage and trees recorded was quite lower than reported by Tynsong and Das (2010) in areca-nut based agroforestry of Meghalaya (88 woody species); 98 cultivated/edible species by Eichemberg *et al.* (2009) in old urban homegardens in Brazil; 75 wild plants by Shameem and Kangroo (2011) for forest ecosystem in Dachigam National Park, Kashmir; 59 plant species evaluated by Ahmad and Habib (2014) for Dawarian Village, Neelum Valley, Azad Jammu and Kashmir, Pakistan.

Less vegetation diversity may be due to selective approach of landholders to grow plants that are required for their primary needs only. The motives for retaining different woody species depend on the uses or benefits that they render to the household and for income generation to some farmers, management strategy. As far as wild herbaceous species are concerned, about 20 plants were recorded in the system representing much lower than reported by various workers. This less species richness may be due to the more human interferences/disturbances, micro-climate

and edaphic conditions as also reported by Amjad (2015) and Lyaruu (2010).

3.2 Seasonal variation in quantitative attribute (IVI) of cultivated herbage

Importance value index (IVI) of cultivated herbage showed a marked variation from spring, summer to autumn season in the study area. Numeric values of importance value index (Table-2) revealed that the dominant species during spring and summer seasons was *Brassica oleracea var. acephala* with highest value of (42.84) and (44.68) followed by its co-dominants *Allium sativum* (34.71) and *Phaseolus vulgaris* (32.20) during two consecutive seasons respectively. Whereas, in autumn, *Brassica rapa* showed dominance over other species attaining maximum value (103.81) and *Brassica oleracea var. acephala* (73.71) as co-dominant. IVI measures the overall importance of a species and gives an indication of the ecological success of a species in a particular area (Mishra, 1968). Also, high importance value index (IVI) exhibited by any individual species may be due to the available resource being utilized efficiently (better adaptability) of a particular species under prevailing environmental conditions, market value (socio-economic factors), preference of the farmer, management intensity and families (at species level) often retain /or cultivate a large number of individuals for certain species that are commonly utilized by the households (Kabir and Webb, (2009)).

3.3 Seasonal variation in quantitative attributes of wild herbage

Perusal of the data in Table-3,4,5 and 6 revealed that density (individuals/ m²) & basal area (cm²/m²) of wild herbage species increased gradually from spring to summer and declined in autumn season, while importance value index (IVI) showed an irregular increasing and decreasing pattern in subsequent seasons. With respect to species, Stellaria media exhibited highest value for density/m² as 9.17 (spring), 36.33 (summer) to 8.83 (autumn); basal area of 1.02 (spring), 1.16 (summer) and 0.77 (autumn) and IVI as 33.22 (spring), 27.60 (summer) and 60.46 (autumn). However, Galinsoga parviflora was observed to achieve lowest values for density, basal area and IVI. The marked variation among seasons may be attributed to the conducive growth and development conditions, availability of soil moisture for optimum nutrient flow in soil-plant system and other environmental factors i.e. humidity and solar radiation from spring onwards which later on decline with the commencement of autumn. During autumn season, the rate of sprouting of root/seed stock is diminished and species number declined owing to adverse climatic conditions (Abdullah et al., 2009). Dominance in terms of density, basal area and IVI of certain species in a particular season show better adaptation of that species to prevailing environmental conditions i.e. suitable edaphic and climatic conditions that favors growth and survival of species in a particular system (Nogues-Bravo et al., 2008). The pattern of distribution depends both on physico-chemical natures of the environment as well as on the biological peculiarities of the organisms themselves and vegetative reproduction by certain species in addition to their sexuality (Ilorkar and Khatri, 2003). Other factors affecting the vegetation distribution include biotic such as dispersal limitation, competition, and predation (Wright, 2002). A close observation of IVI in Table-5 of different species showed that there was irregular increase and decrease of this parameter in subsequent seasons with highest

IVI values during autumn. It may be due to the reason that most of the available resources are being utilized by that species (having high IVI) and left over are being trapped by another species as the competitors and the associates i.e. their inter-relationships with ambient environment and associate species, light availability etc. IVI values can also be used to prioritize species for conservation, and species with high IVI value need less conservation efforts, whereas those having low IVI value need high conservation efforts (Molla and Kewessa, 2015).

3.4 Quantitative attributes of Trees

Detailed analysis of the data revealed that *Malus domestica* in the system explicated maximum density (66.67 ha⁻¹), basal area (0.57m² ha⁻¹), frequency (83.33%) and IVI (57.09), while as, lowest values were demonstrated by *Juglans regia* 6.66 ha⁻¹, 0.03 m² ha⁻¹, 8.34%, 7.22 for density, basal area, frequency and IVI respectively. Higher values for quantitative or phytosociological attributes of few trees may be due to ecological/environmental adaptability, farmers' preference for their subsistence requirement fulfillment and variety of multipurpose uses such as fuelwood, easy propagation and management, as cash crop (Rawat *et al.*, 2010). As per the results summarized in Table-7, *Malus domestica* was found to explicate high IVI value because this fruit tree species have greater economic value i.e. it provides huge monetary benefits to farmers in addition to agricultural crops, good market value i.e. its great demand locally and country wide, long shelf life than other fruit tree species evaluated.

V.CONCLUSION

Homegarden in District Budgam currently serves as a repository of plant diversity and is comprised of comprehensive rich ecological niches as they preserve some of the valuable bioresources/medicinal plants like *Mentha arvensis*, *Rumex nepalensis*, *Taraxacum officinale*, which are in great demand in market for various therapeutic and commercial exploitation are listed as endangered/vulnerable in IUCN Red Data Book. Thus, this agroforestry system is gene pool of medicinal plants (lifesaving drugs) and also in real sense buffer for forests and protected areas. Creating awareness among farmers and local inhabitants about the importance of invaluable genetic diversity and sustainable use of resources can definitely lead to a secure future of these reservoirs.

ACKNOWLEDGEMENT: The financial support (INSPIRE- Fellowship) provided by the Department of Science and Technology, Government of India, New Delhi during the pursuit of this study is gratefully acknowledged by the first author.

REFERENCES

[1.] E. Guyassa, and J.A. Raj, Assessment of biodiversity in cropland agroforestry and its role in livelihood development in dryland areas: A case study from Tigray region, Ethiopia, *Journal of Agricultural Technology* **9**(4): 2013, 829-844.

Volume No.07, Special Issue No.04, March 2018 Www.ijarse.com IJARSE ISSN: 2319-8354

- [2.] S. Gairola, R.S. Rawal, and N.P. Todaria, Forest vegetation patterns along an altitudinal gradient in subalpine zone of west Himalaya, India, *African Journal of Plant Science*, **2**(6), 2008, 42-48.
- [3.] R. Neelamegam, S. Roselin, A.M.A. Priyanka, and V.M. Pillai, Diversity indices of home garden plants in rural and urban areas in Kanyakumari District, Tamil Nadu, India, Scholars Academic Journal of Biosciences, 3(9), 2015,752-761.
- [4.] G. Sterling, and B. Wilsey, Empirical relationships between species richness, evenness and proportional diversity, *American Naturalist*, **158**, 2001, 286-299.
- [5.] Z., Asfaw, E. Linger, and S. Zewudie, Plant species richness and structure of homegarden agroforestry in Jabithenan District, North-Western Ethiopia, *International Journal of Environmental Sciences*, **4**(2), 2015, 52-58.
- [6.] M.T. Pulido, E.M. Pagaza-Calderón, A. Martínez-Ballesté, B. Maldonado-Almanza, A. Saynes, and R.M. Pacheco, Home gardens as an alternative for sustainability: challenges and perspectives in Latin America, Current Topics in Ethnobotany. Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India, 2008. 1-4.
- [7.] V.G. Fifanou, C. Ousmane, B. Gauthier, and S. Brice, Traditional agroforestry systems and biodiversity conservation in Benin (West Africa), *Agroforestry Systems* **82**, 2011, 1-13.
- [8.] S. Jose, Managing native and non-native plants in agroforestry systems, *Agroforestry Systems* 83, 2011,101-105.
- [9.] M. Negash,, E. Yirdaw, and O. Luukkanen, Potential of indigenous multistrata agroforests for maintaining native floristic diversity in the south-eastern Rift Valley escarpment, Ethiopia, *Agroforestry Systems*, **85**, 2012, 9-28.
- [10.] P. Saikia, B.I. Choudhury, and M.L. Khan, Floristic composition and plant utilization pattern in homegardens of Upper Assam, India, *Tropical Ecology*, **53**(1), 2012, 105-118.
- [11.] J.T. Curtis, and R.P. McIntosh, The interrelationship of certain analytic and synthetic phytosociological characters, *Ecology*, **31**, 1950.4343-4445.
- [12.] C.E.Shannon, and W. Weiner, The Mathematical Theory of Communities, University of of Illinois Press, Urbana, Illinois. 1963.
- [13.] E.M. Simpson, Measurement of diversity, *Nature*, **163**, 1949. 688.
- [14.] K.A. Gomez, and A.A. Gomez, Statistical procedures for agriculture research. John Viley and Sons. New York, 1984, 304-308.
- [15.] S.A. Shameem, and I.N. Kangroo, Comparative assessment of edaphic features and phytodiversity in lower Dachigam national park, Kashmir Himalaya, India, *African Journal of Environmental Science and Technology*, **5**(11), 2011, 972-984.

- [16.] K.S. Ahmad, and S. Habib, Indigenous knowledge of some medicinal plants of Himalayan region, Dawarian Village, Neelum Valley, Azad Jammu and Kashmir, Pakistan, *Universal Journal of Plant Science*, **2**(2), 2014, 40-47.
- [17.] R. Mishra, Ecology work Book, Oxford and I.B.H. Publishing Co.New Delhi, 1968,244.
- [18.] M.E. Kabir, and E.L. Webb, Household and homegarden characteristics in South Western Bangladesh, *Agroforestry Systems*, **75**, 2009,129-145.
- [19.] M.B. Abdullah, S.S. Sanusi, S.D. Abdul, and F.B.J. Sawa, An assessment of the herbaceous species vegetation of Yankari Game Reserve, Bauchi, Nigeria, *American European Journal of Agricultural and Environmental Science*, **6**(1), 2009, 20-25.
- [20.] D. Nogues-Bravo, M.D. Araujo, T. Romdal, and C. Rahbek, Scale effects and human impact on the elevational species richness gradients, *Nature* **453**, 2008, 216-210.
- [21.] V.M. Ilorkar, and P.K. Khatri, Phytosociological study of Navegaon National Park, Maharashtra. *Indian Forester*, **129**(3), 2003, 377-387.
- [22.] S.J. Wright,. Plant diversity in tropical forests: A review of mechanisms of species coexistence, *Oecologia* **130**, 2002,1-14.
- Molla, and G. Kewessa, Woody species diversity in traditional agroforestry practices of Dellomenna District, Southeastern Ethiopia: implication for maintaining native woody species, *International Journal of Biodiversity*, 2015,1-13.
- [23.] Y.S. Rawat, S.C.R. Vishvakarma, S.S. Oinam, and J.C. Kuniyal, Diversity, distribution and vegetation assessment in the Jahlmanal watershed in cold desert of the Lahaul valley, north-western Himalaya, India, *Forest*, **3**, 2010, 65-71.
- [24.] A.N.M., Pappoe, F.A. Armah, E.C. Quaye, P.K. Kwakye, and G.N.T. Buxton, Composition and stand structure of a tropical moist semi-deciduous forest in Ghana, *International Research Journal of Plant Science*, **1**(4), 2010, 95-106.
- [25.] D.J. Sonwa, B.A. Nkongmeneck, S.F. Weise, M. Tchatat, and A. A. Adesina, Diversity of plants in the humid forest zone of Southern Cameroon, *Biodiversity Conservation*, **16**, 2007, 2385-2400.
- [26.] H. Tynsong, and A.K. Das, Diversity in arecanut agroforests of South Meghalaya, north-east India, *Journal of Forestry Research*, **21**, .2010, 281-286.
- [27.] R.K. Verma, K.S. Kapoor, R.S. Rawat, S.P. Subramani, and S. Kumar, Analysis of plant diversity in degraded and plantation forests in Kunihar Forest Division of Himachal Pradesh, *Indian Journal of Forestry*, **28**(1), 2005,11-16.

Table-2: Importance Value Index (IVI) of cultivated herbage in Homegarden of the study area (District Budgam)

		Importance Value Index							
S. No.	Plant species	Spr	ing	Sum	mer	Autumn			
		Mean	±S.E	Mean	±S.E	Mean	±S.E		
1.	Allium sativum L.	34.71	1.69	-	-	-	-		
2.	Brassica oleracea var. gonglyonoides L.	18.12	1.20	21.65	0.81	-	-		
3.	Brassica oleracea var. acephala L.	42.84	1.49	44.68	1.51	73.71	7.51		
4.	Brassica rapa L.	-	-	-	-	103.81	2.02		
5.	Capsicum annum L.	23.11	1.64	21.90	1.43	-	=		
6.	Cucumis sativus L.	19.85	2.75	20.25	0.20	-	-		
7.	Daucus carota subsp. sativus Hoffm.	-	-	-	-	67.81	8.05		
8.	Lagenaria vulgaris Standl.(Molina)	17.94	3.16	20.17	0.72	-	-		
9.	Phaseolus vulgaris L.	27.98	2.55	32.20	1.55	-	-		
10.	Phaseolus spp. (String/French beans) L.	-	-	27.31	1.23	-	-		
11.	Pisum sativum L.	33.35	0.92	-	-	-	-		
12.	Raphanus sativus L.	-	-	-	-	54.66	6.35		
13.	Solanum lycopersicon L.	-	-	18.31	0.90	-	-		
14.	Solanum melongena L.	-	-	13.60	0.30	-	-		
15.	Solanum tuberosum L.	22.72	1.06	23.61	1.48	-	-		
16.	Spinacia oleracea L.	-	-	7.28	0.22	-	=		
17.	Trigonella foenumgraecum L.	20.75	1.08	-	-	-	-		
18.	Vicia faba L.	24.64	0.37	31.16	1.91	-	-		
19.	Zea mays L.	14.00	1.22	17.81	1.41	-	-		
	Total	300.00	-	300.00	-	300.00	-		

Table-3: Density of wild herbage in Homegarden of the study area (District Budgam)

		Density/m ²								
S. No.	Plant species	Sp	oring	Sum	mer	Autumn				
		Mean	±S.E	Mean	±S.E	Mean	±S.E			
1.	Amaranthus caudatus L.	4.67	0.64	21.67	4.32	3.00	0.87			
2.	Avena fatua L.	3.00	0.50	14.83	2.19	2.33	0.04			
3.	Capsella bursa-pastoris L.	3.00	0.73	16.33	3.17	2.33	0.41			
4.	Chenopodium album L.	2.17	0.03	12.00	2.52	1.83	0.07			
5.	Conyza Canadensis L. Cronquist	1.83	0.73	10.50	3.00	0.83	0.03			
6.	Galinsoga parviflora Cav.	0.83	0.02	4.83	0.17	0.33	0.01			
7.	Galium aparine L.	2.67	0.04	15.00	2.25	2.33	0.20			
8.	Kochia scoparia L.	3.17	0.59	15.50	2.52	-	-			

9.	Malva neglecta Wallr.	3.67	0.86	17.33	5.17	1.67	0.83
10.	Mentha arvensis L.	3.67	0.55	17.33	5.46	0.50	0.003
11.	Oenothera rosea L'Her.ex. Aiton	3.33	1.67	16.83	4.23	2.50	0.32
12.	Plantago major L.	6.50	2.02	30.17	0.83	2.33	0.33
13.	Poa aungustifolia L.	8.67	2.40	32.00	4.16	6.33	0.60
14.	Poa bulbosa L.	1.67	0.72	9.83	0.44	1.50	0.01
15.	Portulaca oleracea L.	2.00	1.04	11.83	1.48	-	-
16.	Ranunculus muricatus L.	1.83	0.93	10.33	0.60	0.83	0.03
17.	Rumex nepalensis Mill.	4.50	2.47	10.67	2.73	-	-
18.	Stellaria media L.(Vill.)	9.17	1.88	36.33	1.92	8.83	0.42
19.	Taraxacum officinale Weber	4.83	1.13	14.33	1.69	2.00	0.01
20.	Veronica persica L.	1.50	0.76	6.00	1.00	-	-
21.	Viola oderata L.	6.67	1.96	24.00	6.64	-	-
	Total		-	347.64	-	39.47	-

Table-4: Basal area of wild herbage in Homegarden of the study area (District Budgam)

S.		Basal area(cm ² /m ²)								
S. No.	Plant species	Sp	ring	Sun	ımer	Autumn				
NO.		Mean	±S.E	Mean	±S.E	Mean	±S.E			
1.	Amaranthus caudatus L.	0.35	0.02	0.41	0.04	0.14	0.04			
2.	Avena fatua L.	0.34	0.07	0.39	0.01	0.13	0.010			
3.	Capsella bursa-pastoris L.	0.27	0.08	0.31	0.12	0.12	0.09			
4.	Chenopodium album L.	0.17	0.07	0.34	0.17	0.10	0.07			
5.	Conyza Canadensis L. Cronquist	0.19	0.01	0.23	0.14	0.02	0.001			
6.	Galinsoga parviflora Cav.	0.05	0.002	0.10	0.005	0.02	0.004			
7.	Galium aparine L.	0.22	0.07	0.32	0.33	0.06	0.003			
8.	Kochia scoparia L.	0.27	0.03	0.33	0.31	-	-			
9.	Malva neglecta Wallr.	0.33	0.63	0.40	0.07	0.03	0.004			
10.	Mentha arvensis L.	0.31	0.07	0.39	0.06	0.02	0.004			
11.	Oenothera rosea L'Her.ex. Aiton	0.69	0.62	0.81	0.05	0.23	0.12			
12.	Plantago major L.	0.73	0.04	0.89	0.09	0.20	0.04			
13.	Poa aungustifolia L.	1.01	0.27	1.12	0.07	0.72	0.06			
14.	Poa bulbosa L.	0.08	0.03	0.21	0.30	0.03	0.001			
15.	Portulaca oleracea L.	0.23	0.002	0.39	0.17	-	-			
16.	Ranunculus muricatus L.	0.18	0.02	0.21	0.006	0.03	0.002			
17.	Rumex nepalensis Mill.	0.73	0.04	0.90	0.19	-	-			
18.	Stellaria media L.(Vill.)	1.02	0.06	1.16	0.10	0.77	0.12			
19.	Taraxacum officinale Weber	0.41	0.20	0.43	0.003	0.04	0.001			

20.	Veronica persica L.	0.15	0.008	0.31	0.16	-	-
21.	Viola oderata L.	0.66	0.11	0.73	0.05	-	-
Total		8.12	-	10.38	-	2.66	-

Table-5: Importance Value Index (IVI) of wild herbage in Homegarden of the study area (District Budgam)

S.		Importance Value Index								
No.	Plant species	Spi	ring	Sum	Summer		ımn			
110.		Mean	±S.E	Mean	±S.E	Mean	±S.E			
1.	Amaranthus caudatus L.	15.68	2.54	15.08	1.73	19.01	3.01			
2.	Avena fatua L.	13.03	2.14	13.23	1.16	20.79	4.38			
3.	Capsella bursa-pastoris L.	9.52	3.95	11.82	0.94	13.58	6.37			
4.	Chenopodium album L.	9.24	4.31	12.20	1.38	15.57	3.76			
5.	Conyza Canadensis L. Cronquist	9.96	0.21	9.60	1.00	7.27	0.61			
6.	Galinsoga parviflora Cav.	3.15	0.33	4.02	0.13	2.34	2.03			
7.	Galium aparine L.	10.19	2.59	11.60	1.23	14.70	2.83			
8.	Kochia scoparia L.	9.74	1.08	12.93	1.16	-	-			
9.	Malva neglecta Wallr.	10.95	4.51	14.10	1.66	13.40	2.82			
10.	Mentha arvensis L.	14.49	2.31	13.15	3.56	6.46	0.32			
11.	Oenothera rosea L'Her.ex. Aiton	14.48	5.73	17.87	1.31	19.80	9.41			
12.	Plantago major L.	23.72	1.98	22.52	0.28	24.23	0.78			
13.	Poa aungustifolia L.	30.17	1.86	25.77	1.06	50.06	3.98			
14.	Poa bulbosa L.	4.62	0.74	10.09	1.04	9.14	0.28			
15.	Portulaca oleracea L.	9.79	1.62	12.36	0.45	-	-			
16.	Ranunculus muricatus L.	8.41	1.21	9.14	0.45	7.52	0.84			
17.	Rumex nepalensis Mill.	19.26	6.38	15.86	2.44	-	-			
18.	Stellaria media L.(Vill.)	33.22	1.23	27.60	0.44	60.46	11.64			
19.	Taraxacum officinale Weber	18.47	2.41	13.54	0.47	15.60	5.98			
20.	Veronica persica L.	7.87	1.13	9.94	0.93	-	-			
21.	Viola oderata L.	23.93	4.57	17.50	2.53	-	-			
	Total	300.00	-	300.00	-	300.00	-			

Table-6: Quantitative attributes of Trees in Homegarden of the study area (District Budgam)

Quantitative	Dens	Density Basal area Frequency Important		Basal area Frequency			nce value	
attributes →	(plants	ha ⁻¹)	(m ² h	a ⁻¹)	(%	b)	index (IVI)	
Tree species↓	Mean	±S.E	Mean	±S.E	Mean	±S.E	Mean	± S. E
Cydonia oblonga Mill.	13.34	2.33	0.09	0.001	13.34	1.71	18.08	0.25
Juglans regia L.	6.66	0.60	0.03	0.01	8.34	1.90	7.22	4.55
Malus domestica Borkh.	66.67	1.61	0.57	0.03	83.33	0.34	57.09	6.41
Populus deltoides L.	26.66	1.32	0.50	0.01	60.00	0.67	44.50	1.24
Populus nigra L.	36.66	0.98	0.52	0.21	66.70	11.02	47.81	3.33
Prunus dulcis L.	10.00	0.21	0.11	0.03	46.70	3.65	16.33	4.56
Prunus persica L.	13.33	1.11	0.11	0.03	33.40	7.00	18.14	2.34
Punica granatum L.	26.66	1.22	0.08	0.005	33.40	11.12	22.71	11.98
Pyrus communis L.	13.33	0.45	0.12	0.02	33.40	0.45	13.02	0.34
Salix alba L.	13.33	0.15	0.19	0.009	58.33	2.34	33.73	10.10
Salix fragilis L.	10.00	0.15	0.13	0.01	33.40	0.94	12.15	0.45
Ulmus wallichiana L.	7.34	0.27	0.05	0.08	10.00	1.21	9.15	0.11
Total	244.01		2.50		480.31		300	