Diversity of herbaceous plant species in Yusmarg Kashmir-a tourist destination

Asma Absar Bhatti, Shamsul Haq*, Shafat Ahmad Mir

Division of Environmental Sciences, SKUAST-Kashmir-190025

ABSTRACT

The present research was conducted at Yusmarg area- a tourist destination of Kashmir region, aimedto study the diversity of herbaceous plant and to study human impact to the herb community. The study was based on three study sites with markeddifferences in their physical and biotic features. During the study period, 41 herb speciesbelonging to 20 different families were observed. Shanon-Weaver diversity index showed small variation in all the three study sites. The results showed that there is lowgrazing pressure and moderate human impact on normal distribution of herb species whichmay cause reduction in herbaceous community in next few decades in the forest ecosystem.

Keywords: Cynadon dactylon; Trifolium pretense; Polygonaceae; Herb; Shanon-Weaver index Yusmarg

I INTRODUCTION

Biodiversity encompasses the whole of the floristic, faunal and microbial diversity present on the earth (Dar and Farooq, 1997), which provides basis for the existence of life (Pandey, 1995). Unfortunately, this precious biological wealth has had been eroded to an alarming level by ruthless anthropogenic activities (Kushwah and Kumar, 2001). Vegetation is a key factor in determining the structure of an ecosystem. It determines many ecological parameters within a plant community such as microclimate, energy budget, photosynthesis, water regimes, surface runoff and soil temperature. The number of species reflectsthe gene pool and adaptation potential of the community (Odum, 1963). Quantitative analysis of vegetation helps in understanding the structure, composition and tropic organization of any community. Species composition and diversity vary from habitat to habitat within the communities exposing identical physiognomic characteristics (Nautiyal et al., 1999). Likewise, the life forms of species represent the adjustment of perennating organs and plant life history to environmental conditions (Nautiyal et al., 2000). It is an important characteristic in describing vegetation that offers a preliminary picture of the ecological character of the vegetation (Kershaw, 1973). Plant species diversity in the under storey strata is an important component in ecosystem functioning (Host and Register, 1991; Brakenhielm and Lui, 1998). In general, plant species diversity in the under storey is sensitive to ecosystem conditions (Pregitzer and Barnes, 1982; Mitchell et al., 1998) as well as to disturbance such as canopy removal (Duffy and Meier, 1992) and grazing (Hadar et al., 1999). The characterization of community response to any given disturbance, in terms of functional response types, appears to be a promising tool for analyzing the effects of disturbances on plant species diversity and community structure (Lavorel et al., 1999).

The forest floor vegetation plays an important role in nutrient cycling, habitat conservation and regeneration of tree shrubs. The herbaceous floor vegetation has been reported to show high nutrient content and rapid turnover rates as influenced by climatic conditions (Spain, 1984) and vegetation characteristics (Vogt and Vogt, 1986). The forest herbs, which play important role for rural communities for example, the livestock totally dependent on them for fodder and as traditional medicines, have been hardly studied from diversity standpoint (Singh andSingh, 1987). Plants enact as producers in the ecosystem functioning; therefore, the study of floristic diversity assumes much pre-eminence (Bilgrami, 1995). Kashmir Valley in our country harbours a rich repository of diverse flora due to its varied topography and spatial heterogeneity (Dar *et al.*, 2001).

II MATERIAL AND METHODS

Three different sites*viz.* site 1, site 2 and site 3 were selected for the study. Site 1 is 2,436 m above mean sea level and situated at 33°50′00.6″N 74°40′08.6″E. The site is dominated with coniferous tree species like *Picea simthiana*, *Abies pindrow and Pinus waluchiana*, while the dominant shrubs were *Vibernum grangiflorum* and *Sumbucus wightiana*. Site 2 is located 150m away from site 1 and situated at 33° 50′ 08.3″N 74° 40′ 57.2″E and 2,445 mabove mean sea level. The site is more slopy and rough in topography than Site 1. The coniferous tree species were not dense as compared to Site I. Herbaceous flora was more in diverse than Site I.Site 3is located 175m away from Site 2 along same side of forest and situated at 33° 50′16.2″N 74° 39′43.9″E and 2,400 m above mean sea level. The site is dominated by dense coniferous forests while herbaceous plant diversity was rich. The understorey herbaceous flora is dominated with species like *Cynodon dactylon, Fragaria nubicola* and *VIOLA ODORATA*.

III SAMPLING AND COLLECTION

During the first phase of the study periodic surveys were conducted and the Phytosociological analysis of herbaceous vegetation was carried out on the monthly basis. The plants were collected along with undeground portion with the help of trowel. In the Second Phase 0.5m X 0.2m (1m²) Daubenmireframes or quadrats were laid randomly at 3 different sites. The third phase of methodology comprised the identification of the collected plant species from the study sites. The identification of plants was done in the Center of Plant Taxonomy, University Of Kashmir. Further diversity indices like Shannon-Weaver Index (Ĥ), Evenness Index (e) and Simpson's Index (c) were calculated by the following formulae:

Shannon-Weaver Index (
$$\hat{\bf H}$$
)= - $\Sigma[(n_i/N)ln(n_i/N)]$
= - Σ P_i log P_i
Simpson's Index= $\Sigma(n_{i/N}$) 2
where

 n_i = important value for each species

Volume No.07, Special Issue No.04, March 2018 Www.ijarse.com IJARSE ISSN: 2319-8354

N = total of importance value **Evenness Index** =
$$\frac{\dot{H}}{\ln S}$$

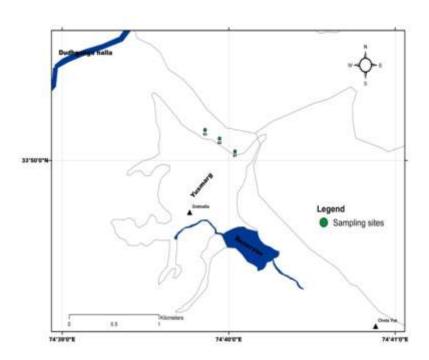


Fig.: GPS sampling points of the study area

IV RESULT AND DISCUSSION

A maximum of 41 herb species were recorded from the study sites during present investigation belonging to 20 families (Table 1). Polygonaceaewas represented by 5 species ,followed by Asteraceae and Lamiaceae 4 species each, 3 species were each from the families Poaceae, Fabaceae and Rosaceae and 2 species were each from the families Plantiganaceae, Caryophyllaceae, Oxiladaceae Boraginaceae and Primulaceaeand remaining 9 families were represented by one species each (Table 2).

Asteraceae was the dominant family with 4 genera, followed by Poaceae, Fabaceae, Rosaceae and Lamiaceae with 3 genera each , Boraginaceae , Caryophyllaceae and Polygonaceae with 2 genera each and remaining 12 families were represented by single genus only(Table 2). The dicots outnumbered the monocots at all the sites. 38 species were dicots belonging to 19 families and 3 species were monocots belonging to 1 family (Table 4). Out of total identified species 13 species were reported as perennials belonging to 8 genera and 7 families whileas, 28 species were reported as annuals which belong to 26 genera and 16 families (Table 5).

Table 1: List of herbaceous plants with families recorded at three different sites

S.No.	Species	Family
01	Anagallis arvensis	Myrsinaceae
02	Astragalus sp	Fabaceae
03	Cerastium cerastoides	Caryophyllaceae
04	Chenopodium album	Amaranthaceae
05	Cirsium falcornei	Asteraceae
06	Convolvulus sp	Convolvulaceae
07	Conyza Canadensis	Asteraceae
08	Cynodon dactylon	Poaceae
09	Cynoglossum sp	Boraginaceae
10	Epilobium laxum	Onagraceae
11	Fragaria nubicola	Rosaceae
12	Geum sp	Rosaceae
13	Lespedeza sp	Fabaceae
14	Leucantemum vulgare	Asteraceae
15	Lolium perenne	Poaceae
16	Mentha sp	Lamiaceae
17	Myosotis arvensis	Boraginaceae
18	Nepeta Cataria	Lamiaceae
19	Nepeta sp	Lamiaceae
20	Oxalis acetosa	Oxiladaceae
21	Oxalis corniculata	Oxiladaceae
22	Plantago lanceolata	Plantaginaceae
23	Plantago major	Plantaginaceae
24	Polygonum hydropiper	Polygonaceae
25	Poa sp	Poaceae
26	Podophyllum hexandrum	Berberidaceae
27	Potentilla sp	Rosaceae
28	Primula denticulate	Primulaceae

29	Primula sp	Primulaceae
30	Ranunculus laetus	Ranunculaceae
31	Rumex acetosa	Polygonaceae
32	Rumex hastatus	Polygonaceae
33	Rumex nepalensis	Polygonaceae
34	Rumex patientia	Polygonaceae
35	Salvia moorcroftiana	Lamiaceae
36	Sambucus wightiana	Adoxaceae
37	Stellaria media	Caryophyllaceae
38	Taraxacum officinale	Asteraceae
39	Trifolium pratense	Fabaceae
40	Veronica beccabunga	Scrophulariaceae
41	Viola Odorata	Violaceae

Table 2: List of herbaceous families with Species number and Genera recorded at three study sites

S.No.	Family	No. of Genera	No. of Species
01	Asteraceae	4	4
02	Lamiaceae	3	4
03	Rosaceae	3	3
04	Poaceae	3	3
05	Fabaceae	3	3
06	Polygonaceae	2	5
07	Caryophyllaceae	2	2
08	Plantaginaceae	1	2
09	Boraginaceae	2	2
10	Primulaceae	1	2
11	Oxiladaceae	1	2
12	Ranunculaceae	1	1
13	Amaranthaceae	1	1

14	Violaceae	1	1
15	Myrsinaceae	1	1
16	Onagraceae	1	1
17	Convolvulaceae	1	1
18	Adoxaceae	1	1
19	Scrophulariaceae	1	1
20	Berberidaceae	1	1

Table 3- List of Genera with Species number and family recorded from study area

S.No.	Genera	No. of Species	Family
01	Anagallis	1	Myrsinaceae
02	Astragalus	1	Fabaceae
03	Cerastium	1	Caryophyllaceae
04	Chenopodium	1	Amaranthaceae
05	Cirsium	1	Asteraceae
06	Convolvulus	1	Convolvulaceae
07	Conyza	1	Asteraceae
08	Cynodon	1	Poaceae
09	Cynoglossum	1	Boraginaceae
10	Epilobium	1	Onagraceae
11	Fragaria	1	Rosaceae
12	Geum	1	Rosaceae
13	Lespedeza	1	Fabaceae
14	Leucantemum	1	Asteraceae
15	Lolium	1	Poaceae
16	Mentha	1	Lamiaceae
17	Myosotis	1	Boraginaceae
18	Nepeta	2	Lamiaceae
19	Oxalis	2	Oxiladaceae

20	Plantago	2	Plantagaceae
21	Polygonum	1	Polygonaceae
22	Poa	1	Poaceae
23	Podophyllum	1	Berberidaceae
24	Potentilla	1	Rosaceae
25	Primula	2	Primulaceae
26	Ranunculus	1	Ranunculaceae
27	Rumex	4	Polygonaceae
28	Salvia	1	Lamiaceae
29	Sambucus	1	Adoxaceae
30	Stellaria	1	Caryophyllaceae
31	Taraxacum	1	Asteraceae
32	Trifolium	1	Fabaceae
33	Veronica	1	Scrophulariaceae
34	Viola	1	Violaceae

Table 4 - Number of dicots and monocots recorded at different sites

Plant Group	Species	Genera	Families
Dicotyledons	38	31	19
Monocotyledons	3	3	1
Total	41	34	20

Table 5 - Number of annuals and perennials recorded at 3 different sites

Life Form	Species	Genera	Families
Perennials	13	8	7
Annuals	28	26	16

Table 6 - Diversity indices of the study area

Sites	Shanon-Weaver Index(Ĥ)	EvennessIndex (E)	Simpson Index (C)
Site 1	2.51	0.78	0.14
Site 2	2.70	0.80	0.11
Site 3	2.749	0.81	0.10

The research analysis of data revealed that a maximum of 41 herb species were recorded from the study sites belonging to 20 families. Polygonaceaewas represented by maximum species, followed by Asteraceae and Lamiaceae. All the three sites were dominated by *Cynodon dactylon*. Each species of a community plays specific role and there is a definite quantitative relationship between abundant and rare species (Bhandari *et al.*, 1997).

The changes in topography, altitude, precipitation, temperature and soil conditions contribute to the diverse bioclimate that results in a mosaic of biotic communities at various spatial and organizational levels. Diversity represents the number of species, their relative abundance, composition, interaction among species and temporal and spatial variation in their properties. Where richness and evenness coincide, i.e., a high proportion of plant species in the vegetation are restricted, community of that area is supposed to have evolved through a long period of environmental stability. The observation in the present study showed that the site 3was more diverse in comparison to the site 1 and site 2.

Asteraceae was the dominant family in terms of number of Genera. This may be because most of the species of the family are primary successionals and have different types of growth forms. This family showed basal as well as erect forms in which basal forms emerged near the ground-level with welldeveloped petioles and formed a short-umbrella (Mehrotra, 1998). They can tolerate cool temperatures to high irradiances with low density of herb cover. Moreover, basal forms of Violaceae showed affinity to mesic and cold conditions under the three Sites. Few species are able to tolerate the entire spectrum of environment and range throughout the gradient (Brown, 2001).

The present study showed that perennials gained dominance over annuals at the three sites. Perennial have ability to conserve soil and with their extensive root systems of perennial grasses they also add more organic matter to the soil than annuals which can be more favourable for plant growth. Singh and Singh (1987) observed that annuals colonize and dominate the early stages of succession. Annuals to perennials species ratio are higher at primary successional site than climax stage. Species richness generally increases during secondary succession when environmental and edaphic conditions are favourable with low fluctuations.

The dicots outnumbered the monocots at all the sites. It may be on account of fact that most of the monocots, especially grasses are surface feeders (Sharma and Upadhyaya, 2002).

Structure of communities is the outcome of the habitat, environmental conditions and existing vegetation types (Malik *et al.*, 2007). Human interaction moulds the shape and course of succession of a community. Amongst major factors that influence vegetation structure are human disturbance, extensive grazing, trampling and soil erosion (Grubb, 1987).

V CONCLUSION

The study concluded that Yusmarg has a rich herbaceous diversity bestowed with many diverse plant species. The herbaceous diversity of the study area represented by 41 plant species belonging to 34 Genera under 20 families. The area is predominately covered by herbaceous flora and being less represented in terms of number of species. Among dicotyledons, the Polygonaceae was the largest family comprising 5 species and for monocotyledons the Poaceae was found to be the only family with 3 plant species. Polygonaceae was the largest family registered with 5 plant species followed by Asteraceae and Lamiaceae with 4 plant species each. Out of 20 families 9 families were represented by single species, that is, they are monotypic. Furthermore, *Cynodon dactylon*emerged as dominant species of the ecosystem.

VI ACKNOWLEDGEMENT

The author is highly thankful to his beloved guardian Mr. Abdur Rashid Hazari (IFS), Conservator of Forests, J & K who supported and encouraged me during the study. I convey my sincere gratitude to him and dedicate all my success to him.

REFERENCES

- 1. Bhandari, B. S., Mehta, J. P., Nautiyal, B. P. and Tiwari, S. C.1997. Structure of a Chir Pine (Pinus roxburghii Sarg) community along an altitudinal gradient in Garhwal Himalayas. *Int. J. Ecol. Environ. Sci*23: 67-74.
- 2. Bilgrami, K. S. 1995. Concept and Conservation of Biodiversity. Pp. 18. in Pandey, A.K (ed). Taxanomy and Biodiversity, CBS Publishers and Distributors, New Delhi.
- 3. Brakenhielm, S. and Lui, Q. 1998. Long term effects of clear felling on vegetation dynamics and species diversity in boreal pine forest. *Biol. Conserv***7**: 207-220.
- 4. Brown J. 2001. Mammals on mountainsides: elevational patterns of diversity. *Global Ecology and Biogeography* **10**(1):101-9.
- 5. Dar, G. H., Bhagat, R. C. and Khan, M. A. 2001. Biodiversity of Kashmir Himalaya. Valley Book House, Srinagar, India.

- 6. Dar, G.H. and Farooq, S. 1997. How diverse is Biodiversity! Do we know? *Oriental Science* 2 (1): 51-69.
- 7. Duffy, D. C. and Meier, A. J. 1992. Do Appalachian herbaceous understory's ever recover from clearcutting? *Conserv. Biol***6**: 196-201.
- 8. Grubb, P. J. 1987. Plant population and vegetation in relation to habitat, disturbance and competition: problems of generalization. In: White,J., (ed.), The population structure of vegetation, (Handbook of Vegetation, part III), W. Junk, Dordrecht.
- Hadar, L., Noy, M. I. and Perevolotsky, A. 1999. The effect of shrub clearing and grazing on the composition of a Mediterranean plant community: Functional groups versus species. J. Veg. Sci10: 673-682.
- 10. Host, G. E. and Register, K. S. 1991. Ecological species groups for upland forest ecosystems of Northern Lower Michigan. *For. Ecol. Manage* 43: 87-102.
- 11. Kershaw, K.A. 1973. Quantitative and Dynamic Plant-Ecology. 3rd Edn., ELBS and Edward Arnold Ltd, London.
- 12. Kushwah, R. B. S. and Kumar, V. 2001. *Economics of Protected areas and itsEffects on Biodiversity*. A.P.H Publishing Corporation, New Delhi.
- 13. Lavorel, S., McIntyre, S. and Grigulis, K. 1999. Plant response to disturbance in a Mediterranean grassland: How many functional groups?. *J. Veg. Sci*10: 661-672.
- 14. Malik, N. Z., Arshad, M. and Sarwat, N. M. 2009. Phytosociological Attributes of Different Plant Communities of Pir Chinasi Hills of Azad J and K. *International journal of Agriculture and Biology* **9**(4):569–574.
- 15. Mehrotra P. 1988. Adaptive significance of leaf in relation to other parts in oak forest herbs of Kumaun Himalaya, Ph.D. Thesis, Kumaun University, Nainital, India, 1988.
- 16. Mitchell, R. J. Marrs, R. H. and Auld, M. H. D. 1998. A comparison study of the seedbanks of heathland and succession habitats in dorset Southern England. *J. Ecol*86: 588-596.
- 17. Nautiyal, B. P., Pandey, N. and Bhatt, A. B. 2000. Floristic Diversity and Conservation Strategies in Western (U.P.) Himalaya: A Review. In: Shikhar: Salulations to the Himalaya, Agarwal, C.M. (Ed.). Indus. Publication and Distributors, New Delhi, pp: 229-244.
- 18. Nautiyal, B.P., Prakash, V. and Nautiyal, M. C. 1999. Structure and diversity pattern along an altitudinal gradient in an alpine meadow of Madhyamaheshwar, Garhwal Himalaya. *Int. J. En. Sci.*, **4**: 39-45.

- 19. Odum, E.P., 1963. Ecology. Holt, Rinehart and Winston, New York.
- 20. Pandey, A. K. 1995. Conservation of Biodiversity: Present Status and Future Strategy. Pp. 44-51. **In**: Pandey, A.K. (ed). *Taxonomy and Biodiversity*, CBS Publishers and Distributors, New Delhi.
- 21. Pregitzer, K. S. and Barnes, B.V. 1982. The use of ground flora to indicate edaphic factors in upland ecosystems of the McCormick experimental forest, Upper Michigan. *Can. J. For. Res*12: 661-672.
- 22. Shannon, C. E. and Weaver, W. 1963. The Mathematical Theory of communication. University of Illinois press, *Urbana* 117 pp.
- 23. Sharma, K.P. and Upadhyaya, B. P.2002. Phytosociology, primary production and nutrient retention in herbaceous vegetation of the forestry arboretum on the Aravalli hills at Jaipur. *Tropical Ecology***43**(2): 325-335, 2002.
- 24. Simpson, E. H. 1949. The Measurement of Diversity. Nature 163-688.
- 25. Singh, J. S. and Singh, S. P.1987. Forest vegetation of the Himalaya. Bot. Rev52(2):80-192.
- 26. Vogt, K. A. and Vogt, D. J. 1986. Production, turnover and nutrient dynamics of above and belowground detritus of world forest. *Advances in Ecological Research* **15**: 303-377.