AN OVER LOOK ON RAINWATER HARVESTING

Mehnaza Akhter

M.Tech, Department of Civil Engineering, National institute of Technology, Srinagar, J&K (India)

ABSTRACT

Rainwater harvesting is an important environment friendly approach – dubbed as a Green Practice which has double benefit in both keeping the groundwater table undisturbed and charging the aquifer. Such a green practice encouraged in the form of Community Development Program can find its popularity when it shows the manifold benefits of, in one hand, bringing people together to collective thinking on 'green' approaches, innovating approaches to save earth by harping on their creative notes, achieving nobler feelings saving water for future; on the other hand, rainwater as well as run-off storm water stored in a planned way save the earth from soil erosion, flood; recharge the aquifers to give a shot in the arm to the decreasing groundwater table.

Keywords: Rainwater harvesting, Groundwater table, Roof top, Recharging of aquifers, Surface runoff.

I INTRODUCTION

Rapid population growth, combined with industrialisation, urbanisation, agricultural intensification and water intensive lifestyles is resulting in a global water crisis. In 2000, at least 1.1 billion of the world's people - about one in five - did not have access to safe water. Asia contains 65 per cent of the population without safe water and Africa 28 per cent. During the 1990s, there were some positive developments: about 438 million people in developing countries gained access to safe water but due to rapid population growth, the number of urban dwellers lacking access to safe water increased by nearly 62 million. Falling water tables are widespread and cause serious problems, both because they lead to water shortages and, in coastal areas, to salt intrusion. Both contamination of drinking water and nitrate and heavy metal pollution of rivers, lakes and reservoirs are common problems throughout the world. The world supply of freshwater cannot be increased. More and more people are becoming dependent on limited supplies of fresh water that is becoming more polluted. Water security, like food security, is becoming a major national and regional priority in many areas of the world. Rainwater harvesting provides the long-term answers to the problem of water scarcity. Rainwater harvesting offers an ideal solution in areas where there is sufficient rain but inadequate ground water supply and surface water resources are either lacking or are insufficient. In hilly areas, rainwater can be used by humans, vegetation and animals. Rainwater harvesting system is particularly useful in remote and difficult terrain as it has the ability to operate independently. The whole process is environment friendly. There are a number of ways in which water harvesting can benefit a community - water harvesting enables efficient collection and storage of rainwater, makes it accessible and substitutes for poor quality water .Water harvesting helps smooth out variation in water availability by collecting the rain and storing it more efficiently in closed stores or in sandy riverbeds. In doing so, water harvesting assures a continuous and reliable access to water. A water harvesting

system collects and stores water within accessible distance of its place of use. While traditional sources are located away from the community particularly in peri-urban areas, collecting and storing water close to households, villages or pastures greatly enhances the accessibility and convenience of water supplies. The rainwater collected can be stored for direct use or can be recharged into the ground water to improve the quality of ground water and rise in the water levels in wells and bore wells that are drying up as well as reduce the soil erosion as the surface runoff is reduced. Rainwater harvesting is an ideal solution to water problems in areas having inadequate water resources and helpful in mitigation of the effects of drought and attainment of drought proofing. Water harvesting provides an alternative source for good quality water (rainwater is the cheapest form of raw water) seasonally or even the year round. This is relevant for areas where ground water or surface water is contaminated by harmful chemicals or pathogenic bacteria or pesticides and/or in areas with saline surface water. The rainwater harvesting systems can be both individual and community/utility operated and managed. Rainwater collected using various methods has less negative environmental impacts compared to other technologies for water resources development. The physical and chemical properties of rainwater are usually superior to sources of ground water that may have been subjected to contamination. Rainwater is relatively clean and the quality is usually acceptable for many purposes with little or even no treatment. Rainwater harvesting technologies are flexible and can be built to meet almost any requirements. Construction, operation, and maintenance are not labour intensive. Predictions regarding global warming could have a major effect in significantly increasing water demand in many cities. At the same time increased evaporation from reservoirs and reduced river flows in some areas may decrease the available surface water supplies. A greater uncertainty regarding yields from major reservoirs and well fields is likely to make investments in the diversification of water sources, better water management and water conservation even more prudent in future. The role of rainwater harvesting systems as sources of supplementary, back-up, or emergency water supply will become more important especially in view of increased climate variability and the possibility of greater frequencies of droughts and floods in many areas. This will particularly be the case in areas where increasing pressure is put on existing water resources. In urban areas, scarcity and accelerating demand of water is a major problem and it can be reduced by rainwater harvesting, using various existing structures like rooftops, parking lots, playgrounds, parks, ponds, flood plains, etc. to increase the ground water table, which saves the electric energy to lift the ground water because one metre rise in water level saves 0.40 kilowatt hour of electricity. Subsequently it can also reduce storm drainage load and flooding in city streets.

II ADVANTAGES OF RAINWATER HARVESTING

Rainwater is a free source of nearly pure water and rainwater harvesting refers to collection and storage of rainwater and other activities aimed at harvesting surface and ground water. It also includes prevention of losses through evaporation and seepage and all other hydrological and engineering interventions, aimed at conservation and efficient utilisation of the limited water endowment of physiographic unit such as a watershed. In general, water harvesting is the activity of direct collection of rainwater. The rainwater collected can be

stored for direct use or can be recharged into the ground water. Rain is the first form of water that we know in the hydrological cycle, hence is a primary source of water for us (see figure 2.1). Rivers, lakes and ground water are all secondary sources of water. In present times, we depend entirely on such secondary sources of water. In the process, generally, it is forgotten that rain is the ultimate source that feeds all these secondary sources. Water harvesting means making optimum use of rainwater at the place where it falls so as to attain self-sufficiency in water supply, without being dependent on remote water sources. Cities get lot of rain, yet cities have water shortage. Why? Because people living there have not reflected enough on the value of the raindrop. The annual rainfall over India is computed to be 1,170 mm (46 inches). This is higher compared to the global average of 800 mm (32 inches). However, this rainfall occurs during short spells of high intensity. Because of such intensities and short duration of heavy rain, most of the rain falling on the surface tends to flow away rapidly, leaving very little for the recharge of ground water. This makes most parts of India experience lack of water even for domestic uses. Ironically, Concept and Technology of Rainwater Harvesting Figure 2.1: Where does all our water come from? Rainwater Harvesting and Utilisation 10 even Cherrapunji, India, which receives about 11,000 mm of rainfall annually, suffers from acute shortage of drinking water. This is because the rainwater is not conserved and is allowed to drain away. Thus it does not matter as to how much rain falls at a place, if it is not captured or harvested there for use. This highlights the need to implement measures to ensure that the rain falling over a region is tapped as fully as possible through water harvesting, either by recharging it into the ground water aquifers or storing it for direct use. Many urban centres in Asia and other regions are facing an ironical situation today. On the one hand there is an acute water scarcity and on the other, streets are generally flooded during rains. This has led to serious problems with quality and quantity of ground water. One of the solutions to the urban water crisis is rainwater harvesting - capturing the runoff. The advantage of Rainwater Harvesting is more where surface water is inadequate to meet our demand and exploitation of ground water resource has resulted in decline in water levels in most part of the country.

III SOURCES OF RAINWATER HARVESTING

Rainwater can be harvested from the following surfaces:

Rooftops: If buildings with impervious roofs are already in place, the catchment area is effectively available free of charge and they provide a supply at the point of consumption.

Paved and unpaved areas: i.e., landscapes, open fields, parks, storm water drains, roads and pavements and other open areas can be effectively used to harvest the runoff. The main advantage in using ground as a collecting surface is that water can be collected from a larger area. This is particularly advantageous in areas of low rainfall.

Water bodies: The potential of water bodies such as lakes, tanks and ponds to store rainwater is immense. The harvested rainwater can be used not only to meet water requirements of the city; it also recharges ground water aquifers.

Storm water drains: Most of the residential colonies have proper network of storm water drains. If maintained neatly, these offer a simple and cost effective means for harvesting rainwater.

IV METHODS OF RAINWATER HARVESTING

Broadly there are two ways of harvesting rainwater:

- 1. Surface runoff harvesting
- 2. Roof top rainwater harvesting

Rainwater harvesting is the collection and storage of rainwater for reuse on-site, rather than allowing it to run off. These stored waters are used for various purposes such as gardening, irrigation etc. Various methods of rainwater harvesting are described in this section.

1. Surface runoff harvesting

In urban area rainwater flows away as surface runoff. This runoff could be caught and used for recharging aquifers by adopting appropriate methods.

2. Rooftop rainwater harvesting

It is a system of catching rainwater where it falls. In rooftop harvesting, the roof becomes the catchments, and the rainwater is collected from the roof of the house/building. It can either be stored in a tank or diverted to artificial recharge system. This method is less expensive and very effective and if implemented properly helps in augmenting the groundwater level of the area.

4.1 Methods of Rooftop Rainwater Harvesting

Various methods of using roof top rainwater harvesting are illustrated in this section.

a) Storage of Direct Use

In this method rainwater collected from the roof of the building is diverted to a storage tank. The storage tank has to be designed according to the water requirements, rainfall and catchment availability. Each drainpipe should have mesh filter at mouth and first flush device followed by filtration system before connecting to the storage tank. It is advisable that each tank should have excess water over flow system. Excess water could be diverted to recharge system. Water from storage tank can be used for secondary purposes such as washing and gardening etc. This is the most cost effective way of rainwater harvesting.

b) Recharging groundwater aquifers

Groundwater aquifers can be recharged by various kinds of structures to ensure percolation of rainwater in the ground instead of draining away from the surface. Commonly used recharging methods are:-

- a) Recharging of bore wells
- b) Recharging of dug wells.
- c) Recharge pits
- d) Recharge Trenches

- e) Soakaways or Recharge Shafts
- f) Percolation Tanks

c) Recharging of bore wells

Rainwater collected from rooftop of the building is diverted through drainpipes to settlement or filtration tank. After settlement filtered water is diverted to bore wells to recharge deep aquifers. Abandoned bore wells can also be used for recharge. Optimum capacity of settlement tank/filtration tank can be designed on the basis of area of catchment, intensity of rainfall and recharge rate. While recharging, entry of floating matter and silt should be restricted because it may clog the recharge structure.

d) Recharge pits

Recharge pits are small pits of any shape rectangular, square or circular, contracted with brick or stone masonry wall with weep hole at regular intervals. Top of pit can be covered with perforated covers. Bottom of pit should be filled with filter media. The capacity of the pit can be designed on the basis of catchment area, rainfall intensity and recharge rate of soil. Usually the dimensions of the pit may be of 1 to 2 m width and 2 to 3 m deep depending on the depth of pervious strata. These pits are suitable for recharging of shallow aquifers, and small houses.

e) Soakway or Recharge shafts

Soak away or recharge shafts are provided where upper layer of soil is alluvial or less pervious. These are bored hole of 30 cm dia. up to 10 to 15 m deep, depending on depth of pervious layer. Bore should be lined with slotted/perforated PVC/MS pipe to prevent collapse of the vertical sides. At the top of soak away required size sump is constructed to retain runoff before the filters through soak away. Sump should be filled with filter media.

f) Recharging of dug wells

Dug well can be used as recharge structure. Rainwater from the rooftop is diverted to dug wells after passing it through filtration bed. Cleaning and desalting of dug well should be done regularly to enhance the recharge rate. The filtration method suggested for bore well recharging could be used.

g) Recharge trenches

Recharge trench in provided where upper impervious layer of soil is shallow. It is a trench excavated on the ground and refilled with porous media like pebbles, boulder or brickbats. it is usually made for harvesting the surface runoff. Bore wells can also be provided inside the trench as recharge shafts to enhance percolation. The length of the trench is decided as per the amount of runoff expected. This method is suitable for small houses, playgrounds, parks and roadside drains. The recharge trench can be of size 0.50 to 1.0 m wide and 1.0 to 1.5 m deep.

h) Percolation tank

Percolation tanks are artificially created surface water bodies, submerging a land area with adequate permeability to facilitate sufficient percolation to recharge the groundwater. These can be built in big campuses where land is available and topography is suitable. Surface runoff and roof top water can be diverted to this tank. Water accumulating in the tank percolates in the solid to augment the groundwater. The stored water can be used directly for gardening and raw use. Percolation tanks should be built in gardens, open spaces and roadside greenbelts of urban area.

V CONCLUSION

Rainwater harvesting can help solving the water crisis to a great extent. Rainwater harvesting provides water during droughts, can help mitigate flooding for low lying areas and reduce demand on wells which may enable ground water levels to be sustained. It provides portable water as rain is free from salinity and other undesirable impurities.

REFERENCES

- [1] A Water Harvesting Manual for Urban Areas: Case Studies from Delhi. 2003. New Delhi: Centre for Science and Environment.
- [2] Centre for Science and Environment. 2003. Site dedicated to Rainwater Harvesting. Accessed on various dates at
- [3] http://www.rainwaterharvesting.org/
- [4] Government of India. 2003. Ground Water in Delhi: Improving the sustainability through Rainwater Harvesting, Central Ground Water Board, Ministry of Water Resources.
- [5] Government of India. 2003. Rainwater Harvesting: A necessity in South and Southwest Districts of NCT, Delhi. State Unit Office, Delhi, Central ground Water Board, Ministry of Water Resources. Government of India. 2003. Details on Water Harvesting. Accessed on various dates at http://www.cgwaindia.com/
- [6] Key Issues. September 2000. Water harvesting: urgent need to reap rich rewards [Article] Indian Energy Sector, TERI 2000. Accessed on 15 May 2003 at http://www.teriin.org/energy/waterhar.htm
- [7] Kumar, M. Dinesh. 2003. Paper: Roof Water Harvesting for Domestic Water Security: Who gains and who loses? Under review.
- [8] A Water Harvesting Manual, Centre for Science and Environment http://www.cgwaindia.com/suo/home.htm
- [9] http://www.rainwaterharvesting.org/urban/Components.htm
- [10] A Water Harvesting Manual, Centre for Science and Environment
- [11] IS 1172: Indian Standard Code of Basic Requirements for Water Supply, Drainage and Sanitation.