Volume No.07, Issue No.04, April 2018

www.ijarse.com

ISSN: 2319-8354

VECTOR SPACES

P.Malathi¹, M.Praveena², P.Naveen³

Department of Mathematics, IIIT SRIKAKULAM, India

ABSTRACT

A vector space is a set $\,$ with two operations defined upon it. They are generally called as vector addition and scalar multiplication. Here the different conditions for the set to be a vector space are defined and verified. The importance of a vector space lies in the fact that many mathematical questions can be re phrased as a question about vector spaces. The geometric interpretation for elements of \mathbb{R}^2 and \mathbb{R}^3 as points in the Euclidean plane and Euclidean space. For every given vector space there exists two subspaces which are called trivial subspaces . Here the properties of vector spaces are studied. The conditions for the existence of sums and direct sums are also verified . The finite and infinite dimensional vector spaces are studies using span . The linear dependence and independence of a set of vectors is verified. The terms Basis and Dimension of a vector space are discussed.

Key words: vector space, Euclidean space, Euclidean plane, subspace, span, Basis, dimension.

A vector space is a set V with two operations defined upon it; addition of Vectors and Multiplication by Scalars. These operations must satisfy certain properties. These scalars are obtained from a field F, where F is either is either equals to $\mathbb R$ for the real numbers, equals to $\mathbb C$ for complex numbers. Obviously $\mathbb R$, $\mathbb C$ are examples of Filed.

A vector space—over F is a set V together with the two operations $V \times V \to V$ and scalar multiplication $F \times V \to V$ satisfying the following conditions.

- 1. Commutative Property: $u+v=v+u; u, v \in V$
- 2. Associative Property: u + (v + w) = (u + v) + w; $u, v, w \in V$ and (ab)v = a(bv); $a, b \in F$
- 3. Additive Identity: There exists an element $0 \in V$ such that 0 + v = 0, $\forall v \in V$
- 4. Additive Inverse: for every $v \in V$, there exists and element $w \in V$ such that v + w = 0
- 5. Multiplicative Identity: 1(v) = v; $\forall v \in V$
- 6. Distributive Property: a(u+v) = au + av and (a+b)u = au + bu; $\forall a,b \in F, u,v \in V$

A vector space over $\mathbb R$ is called as a Real vector space. The elements $v \in V$ are called vectors.

Example: consider F'', the set of all n-tuples . This is a vector space with addition and scalar multiplication.

Volume No.07, Issue No.04, April 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

$$u = (u_1, u_2, u_3, \dots, u_n) \& v = (v_1, v_2, v_3, \dots, v_n) \in F^n \& a \in F.$$

we define $u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3, \dots, u_n + v_n), au = (au_1, au_2, au_3, \dots, au_n)$

The geometric interpretation for elements of \mathbb{R}^2 and \mathbb{R}^3 as points in the Euclidean plane and Euclidean space.

The following are the basic properties of vector spaces.

- 1. In every vector space additive identity is unique
- 2. For every $u \in V$ has a unique additive inverse
- $ov = 0, \forall v \in V$
- $ov = 0, \forall v \in V$
- $(-1)v = -v \text{ for every } v \in V$

Subspace: Let V is a vector space over F, and let $U \subset V$ be a subset of V. Then we say that U is a subspace of V if U is a vector space over F under the same operations that make V into a vector space over F.

Let $U \subset V$ be a subset of a vector space V over F. Then U is a sub space of V if and only if the following conditions are hold good

- 1. Additive Identity: $0 \in U$
- 2. Closure under addition : $u, v \in U \Rightarrow u + v \in U$
- 3. Closed under the Scalar multiplication: $a \in F, u \in U \implies au \in U$

In every vector space V, the subsets $\{0\}$, V are obviously forms a subspace. These are called as the trivial subspaces. Any other apart from these two are called as non trivial subspaces.

Sum of Subspaces: Let U_1, U_2 are the two sub spaces of V. Then the sum of the subspaces is denoted and defined as $U_1 + U_2 = \left\{ u_1 + u_2 \ / \ u_1 \in U_1, u_2 \in U_2 \right\}$.

Direct Sum of Subspaces: Suppose that every $u \in U$ can be written as $u = u_1 + u_2$ for $u_1 \in U_1$ and $u_2 \in U_2$, then we write $U = U_1 \oplus U_2$ and we call it as the direct sum of $U_1 \& U_2$

Let $U_1 \& U_2$ are the two sub spaces of V . Then $V = U_1 \oplus U_2$ if and only if the following two conditions are holds good.

$$V = U_1 + U_2$$

if
$$0 = u_1 + u_2$$
; $u_1 \in U_1 \& u_2 \in U_2$, then $u_1 = u_2 = 0$

Volume No.07, Issue No.04, April 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

Similarly the following conditions are also sufficient enough to define the direct sum of sub spaces

Let $U_1 \& U_2$ are the two sub spaces of V . Then $V = U_1 \oplus U_2$ if and only if the following two conditions are holds good.

$$V = U_1 + U_2$$

$$\{0\} = U_1 \cap U_2$$

The linear span of $(v_1, v_2, v_3, ..., v_m)$ is defined as the $span(v_1, v_2, v_3, ..., v_m) = \{a_1v_1 + a_2v_2 + ..., a_m v_m / a_1, a_2, ..., a_m \in F\}$

With the help of the above definition we can state the following lemma

Let V is a vector space and $v_1, v_2, v_3, \dots, v_m \in V$, then the following holds good

$$v_j \in span(v_1, v_2, v_3,, v_m)$$

span
$$(v_1, v_2, v_3, ..., v_m)$$
 is a subspace of V .

3. If
$$U \subset V$$
 is a sub space such that $v_1, v_2, v_3, ..., v_m \in U$, then $span(v_1, v_2, v_3, ..., v_m) \subset U$

Using the definitions of a span we can say that a vector space is a finite dimensional or infinite dimensional using the following criteria

If $span(v_1, v_2, v_3, ..., v_m) = V$, then we can say that $(v_1, v_2, v_3, ..., v_m)$ spans V and we call V as **finite dimensional**. otherwise it is called **infinite dimensional**.

For example 1. the vectors $e_1 = (1,0,0,0,.....0), e_2 = (0,1,0,0,.....0),......, e_n = (0,0,0,0,.....1)$ spans F^n . Hence F^n is finite dimensional.

2. The vectors $v_1 = (1, 1, 0)$ and $v_2 = (1, -1, 0)$ span a subspace of R^3 .

A list of vectors $(v_1, v_2, v_3, ..., v_m)$ is called **linearly independent** if the only solution for $a_1, ..., a_m \in F$ to the equation $a_1v_1 + a_2v_2 + ... + a_mv_m = 0$ $a_1 = a_2 = ... = a_m = 0$

In other words, the zero vector can only trivially be written as a linear combination of $(v_1,v_2,v_3,...,v_m)$

A list of vectors $(v_1, v_2, v_3,, v_m)$ is called **linearly dependent** if it is not linearly independent. That is, $(v_1, v_2, v_3,, v_m)$ is linear dependent if there exist $a1, am \in F$, not all

Volume No.07, Issue No.04, April 2018

www.ijarse.com

IJARSE ISSN: 2319-8354

zero, such that $a_1v_1 + a_2v_2 + \dots + a_mv_m = 0$

Basis: A list of vectors $(v_1, v_2, v_3,, v_m)$ is a **basis** for the finite-dimensional vector space V if $(v_1, v_2, v_3,, v_m)$ is linearly independent and $V = \operatorname{span}(v_1, v_2, v_3,, v_m)$

(Basis Reduction Theorem). If $V = \text{span}^{(v_1, v_2, v_3, ..., v_m)}$, then either $(v_1, v_2, v_3, ..., v_m)$ is a basis of V or some v_i can be removed to obtain a basis of V

And here we can observe that every finite dimensional vector space has a basis.

And we can prove some additional content related to the basis. One of the main concept is Basis extension theorem.

It states that Every linearly independent list of vectors in a finite-dimensional vector space V can be extended to a basis of V.

Dimension:

The length of any basis of a vector is said to be the dimension of that vector space. It is generally denoted by dim(V)

An important observation regarding the dimension of a vector space is that any two bases of a given vector space are having same dimension.

REFERENCES

- [1]. Linear Algebra, An Introduction to Abstract Mathematics : by Isaiah Lankham, Bruno Nachtergaele, Anne Schilling
- [2]. Linear Algebra and its Applications by Gilbert Strang fourth edition
- [3]. Linear Algebra and its Applications by DavidClay, fourth edition
- [4]. Linear Algebra by Jim Hefferon, Third edition