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ABSTRACT 

A new Robust approach to estimate the finite population mean when the population under survey is skewed by 

using Gini’s mean difference, Downton’s method and Probability weighted moment as auxiliary variables for 

the improvement of estimators. Where as usual estimation method like least square method does not provide us 

valid information and precise estimates. Thus the technique of Huber M-Estimation has been employed to these 

robust estimators to obtain valid and precise estimates under such situations. Theoretical and numerical 

illustration is given to seek the efficiency of estimators using robust regression over the estimators without using 

robust regression. 
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I.INTRODUCTION 

From the last few decades, researcher’s interest takes place towards this, that to develop statistical procedures 

that are resistant to small deviations from the assumptions, i.e. robust with respect to outliers and stable with 

respect to small deviations from the assumed parametric model. In fact, it is well-known that classical optimum 

procedures behave quite poorly under slight violations of the strict model assumptions.  

So dealing with this type of situation when there is unusual data, it is first to screen the data. If outliers are 

present then either to remove and then apply classical inferential procedure is not simple and good way to 

proceed. In multivariate or highly structured data, it can be difficult to single out outliers or it can be even 

impossible to identify influential observations. If the influential observation is rejected or discarded from the 

data, can reduce the sample size, which can affect the distribution theory and variance could be underestimated 

from the cleaned data. Thus even one outlying observation can destroy least squares estimation and does not 

provide us useful information for the majority of data. Keeping the above mentioned problem in view we have 

utilized a new approach known as Robust regression which was first introduced by [6], [7], and it is well known 

as M-regression estimator. However, the outlier problem, which is the presence of extreme values in data, 

generally decreases the efficiency, since classical estimators are sensitive to these extreme values [9].  So 

utilization of robust regression provide us valid information and the primary purpose is to fit a model which 

represents the information in the majority of the data. So in the present study we have adapted robust regression 
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to the ratio estimators using the auxiliary information of non-conventional measures of dispersion such as Gini’s 

mean difference, Downton’s method and Probability weighted moment.  

 

II.EXISTING ESTIMATORS IN LITERATURE 

In this section we discuss the estimators which [3] Proposed for estimating the finite population mean in simple 

random sampling. The estimators introduced by [3] are given as under: 
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MSE of the first estimator can be found using Taylor series method defined as 
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As shown in [10], (1) can be applied to the proposed estimator in order to obtain MSE equation as follows:  
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Similarly the MSE of the another estimators can be obtained as  
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Where y and x are the sample means of the study variable and auxiliary variable, respectively and it is 

assumed that the population mean X of the auxiliary variable x  is known. Here 
2

x

xy

s

s
b  is obtained by the LS 

method, where 
2

xs and 
2

ys are the sample variances of the auxiliary and the study variable, respectively and 

xys is the sample covariance between the auxiliary and the study variable.

 

)(1 2

12

1

4
i

N

i
X

N

Ni

N
G  








 


  is Gini’s Mean Difference, 

)(1 2

1

)1(

2
i

N

i
X

N
i

NN
D  








 






is 

Downton’s Method and  


N

i ipw XNi
N

S
1 )(2

)12(


Probability Weighted moments. 
                             

III.IMPROVED ESTIMATORS USING ROBUST REGRESSION
     

 

In this section we keep the above cited problem of outliers in the data in view, so in this paper we have adapted 

the robust regression to the above mentioned estimators as the above mentioned estimators are obtained by 

linear least square estimation which can give inaccurate estimates in case of presence of influential observations. 

Thus the improved and robust estimators are given as under: 
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The mean square error of the above estimators are given as under 
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Where robb is obtained by Huber M- estimates in robust regression. 

The main advantage of Huber M-estimates over LS estimates is that they are not sensitive to outliers. Thus, 

when there are outliers in the data, M-estimation is more accurate than LS estimation. Huber M-estimates use a 

function )(e  that is a compromise between 
2e and | e |, where e is the error term of the regression model 

aebxay , being the constant of the model. The Huber )(e  function has the form: 
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Where k  is a tuning constant that controls the robustness of the estimators. [5] Suggested ̂5.1k , where ̂  

is an estimate of the standard deviation,  of the population random errors. Details about constant k  and M-

estimators can be found in [4], [8].  

The value of the regression coefficient, robb  is obtained by minimizing  
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With respect to a and b . The details for the minimization procedure can be found in [1]. 

We remark that the MSE equation of the proposed ratio estimators .3,2,1
ˆ

jYPj  is in the same form as the 

MSE equation given in section (2), but it is clear that B  in equations given in section (2),  should be replaced 

by robB , whose value as obtained by Huber M-estimation 

It is well known that since 0)]([ eE , where )()( ee   and e  has an identically independent 

distribution, we can easily assume that robrob BbE )(   in section (3), as for b  in section (2). We would like 

to remark that the value of robB is computed as robb , but the population data is used for robB . 
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IV.EFFICIENCY COMPARISON  

In this section we have derived theoretically the efficiency comparison of the proposed estimators with the 

existing estimators by [3]. We compare the MSE of the proposed estimators, with the MSE of the Existing ratio 

estimators. 
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When condition (2) or (3) is satisfied, the proposed estimators given in Section III are more efficient than the 

ratio estimator, given in section II, respectively. 

 

V.NUMERICAL ILLUSTRATION 

For numerical illustration we have taken the data from the book Theory and Analysis of Sample Survey Designs 

by [2] page 177, in which the data under wheat in 1971 and 1973 is given and in which area under wheat in the 

region was to be estimated during 1974 is denoted by Y (study variable) by using the data of cultivated area 

under wheat in 1971 is denoted by X (auxiliary variable). The Characteristics of the population is given in Table 

1 and statistical analysis is given in Table 2. 

Table 1. Characteristics of the population. 
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Parameter Population Parameter Population 

N  34 xS  150.5059 

n  20 xC  0.7205 

Y  856.4117 
2  0.0978 

X  208.8823 
1  0.9782 

  0.4491 G  155.446 

yS  733.1407 D  140.891 

yC  0.8561 pwS  199.961 

B  2.19 Brob  1.57 

Table 2: The statistical analysis of the estimators for the population 

Estimators Constant MSE Estimators Constant MSE 

1Y


 2.3507 11415.84 
1pY


 2.3507 10234.44 

2Y


 2.4485 11634.98 
2pY


 2.4485 10397.01 

3Y


 2.0947 10884.69 
3pY


 2.0947 9851.30 

 

VI.CONCLUSION 

Thus from the above tables we reveal that our suggested estimators using robust regression perform better than 

the estimators without using Robust regression whenever there are influential observations in the data. Hence 

we strongly recommend that our estimators preferred over existing estimators for use in practical applications 

under such situations. 
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