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ABSTRACT 

Precision agriculture or site-specific management has been defined as a knowledge-based technical 

management system that can help optimize farm profits and minimize agriculture's impact on the environment. 

Fungal pathogens cause serious losses to yields and quality of agricultural crops globally. Early and accurate 

detection and diagnosis of plant diseases are key factors in plant production and the reduction of both 

qualitative and quantitative losses in crop yield. Early detection of plant disease in the field can allow 

producers to rapidly treat affected areas and to more accurately predict yield losses. Conventional methods of 

detection rely on scouting and visual examination and often result in detection after the optimum time for 

control has passed. In addition to preventing individual producer losses, early detection will allow for the 

prevention of spread to neighboring fields or crops. Using diagnostic symptoms of pathogens such as changes 

in leaf pigments, leaf structure and moisture content, hyperspectral and multispectral imaging can aid in 

mapping fields for plant disease management. Optical techniques, such as RGB imaging, multi- and 

hyperspectral sensors, thermography, or chlorophyll fluorescence, have proven their potential in automated, 

objective, and reproducible detection systems for the identification and quantification of plant diseases at early 

time points in epidemics. Recently, 3D scanning has also been added as an optical analysis that supplies 

additional information on crop plant vitality. Different platforms from proximal to remote sensing are available 

for multiscale monitoring of single crop organs or entire fields.  The most relevant areas of application of 

sensor-based analyses are precision agriculture and plant phenotyping. 
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I.INTRODUCTION 

Agriculture is a broad and promising area demanding technological solutions with the aim of increasing 

production or accurate inventories for sustainability while the environmental impact is minimized by reducing 

the application of agro-chemicals and increasing the use of environmental friendly agronomical practices. In 

addition to this there are different technologies that are used for increasing the production (Wilson, 2013). There 

are Sensors-based technologies that provide appropriate tools to achieve the above mentioned goals. The 

advances in explosive technological and development in recent years enormously facilitates the attainment of 
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these objectives removing many barriers for their implementation, including the reservations expressed by the 

farmers themselves (Aroca et al., 2013). Precision Agriculture is an emerging area where sensor-based 

technologies play an important role. Sensors are designed according to the problems to be solved or needs 

identified by farmers. Another important contribution to precision agriculture is the development of 

mathematical tools that allow monitoring and classification of plants and fruits by the severity of the disease 

(Hahn, 2009), based on advanced statistical methods, as reviewed by Mulla (2013) and Behmann et al.,(2015). 

These mathematical tools could be used as classifiers, identifying stressed plants, or monitoring the evolution of 

pathogens. This strategy can also be applied on plant phenotyping programs (Fiorani and Schurr, 2013). 

Classifiers are used as models and these models are able to identify what category new data belong to, thus 

classifying them accurately. Machine learning includes a wide range of classifiers, such as ANN and LRA. 

ANN is a network inspired by biological neural networks that learn from input and output data (Hill et al., 

1994). On the other hand, LRA is a statistical method that estimates the probability of a dichotomous outcome 

(“healthy” vs. “infected”) based on one or more independent variables. For this reason, LRA is of particular 

interest and widely used in biomedicine (Hosmer et al., 2013). Independently from the model used, part of the 

dataset obtained by experimental measurements is used for training the model, and the remaining part is used for 

its validation. The goodness of the model is provided by the parameters sensitivity, specificity, and accuracy. 

The proportion of samples predicted to be infected that are actually “infected” is referred to as sensitivity or true 

positive rate, while the proportion of samples that are correctly predicted to be “healthy” is called specificity, or 

true negative rate. Accuracy is the proportion of right guesses, both “healthy” and “infected” samples (Parikh et 

al., 2008). 

Both precision agriculture and plant phenotyping have specific needs and challenges in regards to plant disease 

detection. In order to obtain objective and reliable automated diagnosis and detection of plant diseases, new 

approaches must be introduced and incorporated into traditional monitoring and rating systems. Optical sensors 

are promising tools for non invasive disease detection and diagnosis. There are an increasing number of imaging 

and non invasive sensors available that can support diagnosis and plant disease detection. The progress in sensor 

and information technologies together with the expansion of geographic information systems opens new 

opportunities for precision agriculture and plant phenotyping. 

1.1 Role of Sensors for plant disease detection: 

RGB-imaging  

Digital photographic images are important tools in plant pathology for assessing plant health. Digital cameras 

are easy to handle and are a simple source of RGB (red, green, and blue) digital images for disease detection, 

identification, and quantification. The technical parameters of these simple, handheld devices such as the light 

sensitivity of the photo sensor, spatial resolution, or optical and digital focus have improved significantly every 

year. Today, nearly every person, farmer or phytopathologist, carries modern and sophisticated digital camera 

sensors together with a mobile phone or tablet computer. Video cameras or scanners are alternative methods for 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134354/#B18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134354/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134354/#B5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134354/#B16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134354/#B20
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assessing digital images of different plant organs, from roots to inflorescences. RGB sensors are used on every 

scale of resolution for monitoring plants during the growing season. 

RGB-color images with the red, green, and blue channels have been used to detect biotic stress in plants (Bock 

et al., 2008). Along with color information in the RGB, LAB (L for lightness and A and B for the color-

opponent dimensions, based on nonlinearly compressed coordinates), YCBCR (color compression scheme Y is 

the luma component and CB and CR are the blue-difference and red-difference chroma components, 

respectively), or HSV (hue, saturation, value) color space, the spatial information provides important 

characteristics of plant diseases (Bock et al., 2010). Furthermore, color, gray levels, texture, dispersion, 

connectivity, and shape parameters can be defined as features for the detection and identification of disease 

symptoms in plants (Camargo and Smith 2009; Neumann et al., 2014). Several research groups have used 

pattern recognition methods and machine learning to detect and to identify plant diseases from RGB images. In 

addition, systematic selection of relevant features from the RGB images increase classification accuracies 

(Behmann et al., 2014). Digital image analysis is a well-established technology used in plant disease 

assessment. Several software packages, such as ASSESS 2.0, “Leaf Doctor,” Scion Image software, and 

custom-made modules are available (Bock et al., 2010; Pethybridge and Nelson 2015; Tucker and Chakraborty 

1997; Wijekoon et al., 2008). In ASSESS 2.0, the color distribution of the images is analyzed in histograms, 

which are the basis for subsequent thresholding. The parameters for healthy and diseased areas can be adjusted 

by the user in a well-organized graphical user interface. In addition, disease severity can be extracted as diseased 

pixels or as a percentage after the background is masked from the object of interest. ASSESS 2.0 is very 

practical for the evaluation of disease severity on single leaves and well-arranged images. Special attention must 

be given to the image acquisition step. Uniform focus, sharpness, and illumination are crucial for high accuracy 

and reliable results from automated image analysis. Furthermore, under natural conditions, the imaging angle 

(leaf orientation) and distance between the object and the sensor (pixel size) are additional influences on the 

image quality. Difficulty in detection and low levels of accuracy are often the result of heterogenic conditions 

and low image quality. The most important principle for success is a sound standardized imaging procedure that 

yields repeatable results. 

Multi- and hyperspectral reflectance sensors. 

Spectral sensors are generally categorized based on the spectral resolution (i.e., the number and width of 

measured wavebands), on their spatial scale, and on the type of detector, (i.e., imaging or nonimaging sensor 

systems). Multispectral sensors were the first spectral sensors invented. These sensors typically assess the 

spectral information of objects in several relatively broad wavebands. Multispectral imaging cameras may 

provide data, for instance, in the R, G, and B wavebands and in an additional near-infrared band. The evolution 

of modern hyperspectral sensors increased the complexity of the measured data by a spectral range of up to 350 

to 2,500 nm and a possible narrow spectral resolution below 1 nm (Steiner et al., 2008). Contrary to nonimaging 

sensors, which average the spectral information over a certain area, hyperspectral imaging sensors provide 
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spectral and spatial information for the imaged object. Hyperspectral data can be observed as huge matrices with 

spatial x- and y-axes, and the spectral information as reflectance intensity per waveband in the third dimension, 

z. The spatial resolution strongly depends on the distance between the sensor and the object. Thus, airborne or 

space borne, far range systems have lower spatial resolution than near-range or microscopic systems. The spatial 

resolution has a strong influence on the detection of plant diseases or plant-pathogen interactions (Mahlein et 

al., 2012b; West et al., 2003). Airborne sensors are suitable for the detection of field patches that are diseased 

with soil borne pathogens (Hillnhütter et al., 2011) or in later stages of the diseases (Mahlein et al., 

2012a; Mewes et al., 2011; Steddom et al., 2005). Sensors with a spatial resolution of approximately 1 m are 

hardly suitable for the detection of single symptoms or diseased leaves and plants; here, proximal sensor 

platforms are preferable (Oerke et al., 2014; West et al., 2003). Despite multiple studies the use of innovative 

hyperspectral imaging systems in plant pathology and in disease severity assessment is still in the research stage 

(Bock et al., 2010). The optical properties of leaves are characterized by (i) light transmission through a leaf, (ii) 

light that is absorbed by leaf chemicals (e.g., pigments, water, sugars, lignin, and amino acids), and (iii) light 

reflected from internal leaf structures or directly reflected from the leaf surface. Thus, reflectance of light from 

plants is a complex phenomenon dependent on multiple biophysical and biochemical interactions. The visible 

range (VIS 400 to 700 nm) is mainly influenced by leaf pigment content, the near-infrared reflectance (NIR 700 

to 1,100 nm) depends on the leaf structure, internal scattering processes, and on the absorption by leaf water, 

and the short-wave infrared (1,100 to 2,500 nm) is influenced by the composition of leaf chemicals and water 

(Carter and Knapp 2001; Jacquemoud and Ustin 2001). Changes in reflectance due to plant pathogens and plant 

diseases can be explained by impairments in the leaf structure and chemical composition of the tissue during 

pathogenesis that is highly specific, e.g., succession of chlorotic and necrotic tissue or the appearance of typical 

fungal structures, such as powdery mildew hyphae and conidia or rust uredospores. Whereas biotrophic fungi 

such as powdery mildews or rusts have a relatively low impact on tissue structure and chlorophyll composition 

during early infection perthotrophic pathogens, such as those that cause leaf spots, often induce degradation of 

tissue due to pathogen-specific toxins or enzymes that ultimately results in necrotic lesions. In contrast, powdery 

mildews and rust fungi produce fungal structures on the leaf surface that can influence the optical properties of 

the plant-pathogen interaction. Complex and unique interactions are exemplarily visualized for sugar beet leaf 

diseases by raster electron microscopy and by semithin sections of diseased leaf parts. These highly complex 

and unique disease patterns enable an identification of diseases based on the spectral properties of 

plants Mahlein et al., (2010, 2013) demonstrated the differentiation of foliar pathogens of sugar beet based on 

leaf reflectance. Building on these results, Rumpf et al., (2010) was able to detect early Cercospora leaf spot, 

powdery mildew, and rust-diseased sugar beets before the appearance of visible symptoms. In other plant 

pathogen systems, noninvasive spectral data proved to be useful for the monitoring of Fusarium 

graminearum in wheat (Bauriegel et al., 2011), Venturia inaequalis in apple (Delalieux et al., 2007), 

or Phytophthora infestansin tomato (Wang et al., 2008). In proximal sensing, hyperspectral imaging also was 

shown to be useful for the assessment of mycotoxin-producing pathogens in maize (Del Fiore et al., 2010). 

Furthermore, Bravo et al., (2003) used in-field spectral images for the early detection of yellow rust infected 

wheat. Soil borne diseases were successfully discriminated by Hillnhütter et al., (2011), who looked at the 
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symptoms caused by the nematode Heterodera schachtii and the soil borne fungus Rhizoctonia solani in sugar 

beet fields. In work on sugarcane, Apan et al., (2004) were able to detect orange rust using EO-1 Hyperion 

hyperspectral imaging. Later, Huang et al., (2007) obtained reliable and accurate detection of yellow rust in 

wheat by ground based spectral measurements and airborne hyperspectral imaging. In addition to detection of 

plant diseases during the vegetation period, hyperspectral imaging is widely used for monitoring fruit health and 

quality. Canker lesions of citrus fruits (Qin et al., 2009), apple surface defects (Mehl et al., 2004), or rot of 

strawberries (ElMasry et al., 2007) can be identified by hyperspectral imaging sensors. These techniques are 

important in screening fruits and crops to avoid storage diseases. 

 

Thermal sensors 

Infrared thermography (IRT) assesses plant temperature and is correlated with plant water status (Jones et al., 

2002), the microclimate in crop stands (Lenthe et al., 2007), and with changes in transpiration due to early 

infections by plant pathogens (Oerke et al., 2006). Emitted infrared radiation in the thermal infrared range from 

8 to 12 μm can be detected by thermographic and infrared cameras and is illustrated in false color images, where 

each image pixel contains the temperature value of the measured object. In plant science, IRT can be used at 

different temporal and spatial scales from airborne to small scale applications. However, it is often subject to 

environmental factors such as ambient temperature, sunlight, rainfall, or wind speed. The leaf temperature 

shows a close correlation to the plant transpiration (Jones 1992; Jones et al., 2002), which is affected by a 

diversity of pathogens in different ways. Whereas many foliar pathogens, such as leaf spots or rusts, induce 

local and well-defined changes, impairment by root pathogens (e.g., Rhizoctonia solani or Pythium spp.) or 

systemic infections (e.g., Fusarium spp.) often influences the transpiration rate and the water flow of the entire 

plant or plant organs. Local temperature changes due to pathogen infection or to defense mechanisms have been 

reported for plant-virus interactions in tobacco and for Cercospora beticola in sugar beet by Chaerle et al., 

(2004). Oerke et al.,(2006) monitored cucumber diseased with downy mildew (Pseudoperonospora cubensis) or 

scab disease in apple caused by Venturia inaequalis (Oerke et al., 2011) successfully by IRT. In the plant-

pathosystem for apple and V. inaequalis, thermography was also able to visualize the spatial colonization of 

apple tissues by the pathogen over and beyond visible symptoms, where hyphae and conidia were only 

microscopically detectable (Oerke et al., 2011). Gomez (2014) monitored the infection and spread 

of Peronospora sparsa on different Rosa cultivars. Applications in the field have been demonstrated by Nilsson 

(1991), with a high correlation between disease severity of various root and leaf diseases and in different crops 

(barley, wheat, oat, sugar beet, potatoes, etc.). For effective analysis of IRT images, the heterogeneity between 

and within leaves can be utilized. The mean temperature difference within single leaves, plants, and crop stands 

is an important indicator for the appearance of plant disease. 

1.2.     Precision agriculture for managing plant diseases: 
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Plant pathogens are severe constraints to the production yield of crop fields worldwide. Current agricultural 

policies are aimed to minimize the use of pesticides and fertilizers through better targeting, and the integration 

with cultural control of weeds, pests, and diseases (Maloy, 2005). The implementation of precision agriculture 

relies on the development of technologies that allow the identification and mapping of constraints in the crop 

fields, such as imaging techniques (Mulla, 2013). They can be used to evaluate the effects of stress on plant 

metabolism (Cerovic et al., 1999; Barón et al., 2012, 2016). Consequently, imaging techniques are powerful 

non-destructive tools that have become essential: they provide crucial information for the decision-making and 

for the right timing of the procedures to be applied (Usha and Singh, 2013; Li et al., 2014; Mahlein, 2016). 

Disease and Pathogen Detection During plant-pathogen infection, the physiological state of the infected tissue is 

altered, such as changes in photosynthesis, transpiration, stomatal conductance, accumulation of Salicylic acid 

(SA) and even cell death (Xu et al, 2006). Foliar disease can directly be detected by modern optical sensor 

technology. Using hyperspectral reflectance images (Olivier et al., 2003) and (Moshou et al., 2004) were able to 

identify powdery mildew of barley, diseased cucumber leaves and yellow rust of wheat respectively. But digital 

infrared thermography have the potential to identify and quantify with high spatial resolution management zones 

in disease control and associated pathogens, as they are sensitive to physiological disorders associated with 

fungal attack as well as disease(Oerke et al., 2006), in addition leaf diseases often affect plant transpiration. 

Thermal infrared has been proved by various researchers to be a useful tool for the pre-symptomatic effect of 

disease and pathogen on plant. (Oerke et al., 2006) (Oerke et al., 2005) used thermal infrared to detect 

Pseudoperonospora cubensis that causes downy mildew in cucumber, The maximum temperature difference 

(MTD) within a leaf or a canopy turned out to be suitable for the differentiation of infected and non-infected 

tissue under controlled conditions, transpiration rate and leaf temperature were similar for healthy and infected 

leaves under non controlled conditions but for infected tissues, transpiration rates showed higher variation 

depending on disease symptoms. However, (Xu et al., 2006) found a decrease in leaf temperature of about 0.5˚C 

- 1.3˚C lower for the infected leaves than the healthy leaves while they were assessing the different temperature 

distribution between the leaves infected by tobacco mosaic virus strain-TMV-U1 and the non-infected leaves 

within different tomato species using digital infrared thermal imaging in combination with microscopic 

observations. However in the later stages of the disease, the MTD decreased because of leaf senescence and leaf 

transpiration was increased by all stages of scab development, therefore, MTD may be used not only for the 

differentiation between diseased and non-diseased leaves, but also for disease quantification. TIR could also be 

used to detect pathogen before visible symptoms occur (Stoll et al., 2008) explored the potential of thermal 

imaging for pathogen detection (Plasmopara viticola) in grapevine (Vitis vinifera L. cv. Riesling) on well 

irrigated or non-irrigated grapevines. The analysis of thermal images showed that pathogen development caused 

an increase in leaf temperature at the point of infection in irrigated vines, non-irrigated vines showed a lower 

temperature at the sites of inoculation. Thermal imaging is a straightforward choice for providing information 

for pre-symptomatic diagnosis of biotic stresses before the appearance of visible necrosis on leaves by 

visualizing and analyzing the temperature difference between infected and non-infected leaves (Kim et al., 

2014). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134354/#B33
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1.3. Remote sensing of plant disease: 

Remote sensing is a technique for obtaining information on an object without physical contact, by measuring the 

electromagnetic energy reflected/backscattered or emitted by the surface of the Earth (De Jong and Van der 

Meer 2006). Being noncontact technique, spectral measurements is included in remote sensing that acquired by 

portable instruments such as handheld spectroradiometers (also called proximal sensing). These measurements 

are processed and analyzed to retrieve information on the object observed (i.e., plant health, in this case). It is an 

indirect assessment technique, able to monitor vegetation conditions from distance, and evaluate the spatial 

extent and patterns of vegetation characteristics and plant health, in this application. Sensors can be 

distinguished into active or passive whether they emit artificial radiation and measure the energy reflected or 

backscattered (active sensors) or they measure the reflected solar radiation or the emitted thermal radiation 

(passive sensors). Radar and Lidar are examples of active RS instruments. The use of passive instruments can 

measure the solar radiation reflected in the visible (VIS; wavelength range, 400– 700 nm), near-infrared (NIR; 

wavelength range, 700– 1,100 nm), and shortwave infrared (SWIR; 1,100– 2,500 nm), and the energy emitted in 

the thermal infrared (TIR; 3 to 15 μm) wavelength regions of the electromagnetic spectrum. Passive 

instruments, for their specific characteristics, are employed in the vast majority of RS PDD applications (Heald 

et al., 1972). The spectral signature of vegetation is influenced by variables describing canopy structure (leaf 

area and orientation, spatial arrangement, and roughness) and on the optical, dielectric, or thermal characteristics 

of the vegetation elements. 

There are certain examples in which ARS employed remote sensing technology for detecting crop disease and 

assessing its impact on productivity include using CIR photography to identify circular areas affected by cotton 

root rot, Phymatotrichum omnivorum; (Henneberry et al., 1979) and to estimate yield losses caused by blackroot 

disease in sugar beets (Schneider and Safir, 1975). Cook et al. (1999) also demonstrated the potential for aerial 

video imagery to detect P. omnivorum in kenaf, a crop whose tall growth habit makes it almost impossible to 

survey from the ground. The TIR can provide previsual, detection of diseases that interfere with the flow of 

water from the soil through the plant to the atmosphere. As an example, Pinter et al. (1979) found that cotton 

plants whose roots were infected with the soil-borne fungus P. omnivorum and sugar beets infected with 

Pythium apanidermatum both displayed sunlit leaf temperatures that were 3 to 5°C warmer than adjacent 

healthy plants. The TIR was also useful for detecting root disease in red clover under irrigated conditions (Oliva 

et al., 1994a). Much more research is required when using remote sensing for identifying specific diseases or 

when separating them from other causes of plant stress. Hyperspectral techniques are likely to provide some 

assistance, but coupling existing techniques with weather driven computer models of disease development will 

probably provide the best approach. 

II.CONCLUSION 

Early detection of pathogen infections is pivotal to managing polycyclic diseases. The detection of plant 

diseases was done by traditional nucleic acid and serological assays but, nowadays other innovative methods 

like remote sensing, use of various sensors and application of precision agriculture are used for quick and 
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efficient detection and diagnosis of diseases. Many aspects of crop management have already begun to benefit 

from application of remote sensing and other technologies. The future brings tremendous prospectus for 

integrating the spatially and temporally rich information provided through these innovative technologies. 
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