
 

338 | P a g e  

 

Fully discrete Finite Element Approximations of 

Semilinear Parabolic Equations in a Nonconvex Polygon 

Tamal Pramanick
1,a)

 

1
Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati -  (India) 

 

ABSTRACT 

In this paper, we consider the semilinear parabolic problems with homogeneous Dirichlet boundary conditions 

in a two-dimensional nonconvex polygon. We study the fully discrete error analysis for backward Euler method 

which is based on an error splitting technique. Previously, in [1], an effort has been made for problems in 

nonconvex polygons mainly focused on linear models. Also in [2], Thomée has discussed the error analysis for 

semilinear parabolic problems for a convex polygonal domain. A special feature in a nonconvex polygon is the 

presence of singularities in the solutions generated by the corners. Due to the nonlinearity in the forcing term 

and the non-smoothness of the solution in a nonconvex polygon, the analysis is not straightforward. We 

establish the convergence in for the semidiscrete finite element solution. 
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1. INTRODUCTION 

The purpose of this paper is to study certain error estimates for piecewise linear finite element approximations to 

solutions of the semilinear parabolic equations in a nonconvex polygonal domain. We consider the discretization 

in both time and space, where the discretization with respect to space considered with piecewise linear finite 

elements and in time we apply the backward Euler method. 

Let  be a bounded nonconvex polygonal domain in  with boundary . We restrict our attention to spatially 

semidiscrete approximate solutions of the semilinear initial-boundary value problem, for , 

  

 

 

(1.1) 

where  denotes , the Laplacian denoted by and  be a finite interval in 

time. We assume the smooth function on ℝ such that 

 . (1.2) 

The solution of parabolic partial differential equations in nonconvex polygonal domains is involved in many 

physical applications such as heat conduction in chip design, environmental modeling, porous media flow and 

modeling of complex technical engines (cf. [3]). The analysis for such PDEs and for the corresponding 

numerical methods is always been a challenging research area due to the non-smoothness of the solution around 

the reentrant corner of the domain. In the recent years Chatzipantelidiset. al. [1, 4] has studied the error analysis 
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for linear parabolic models in a nonconvex polygon. To the best of author’s knowledge the error estimates for 

the semilinear parabolic models in a nonconvex polygonal domain is introducing for the first time in the 

literature. 

For simplicity, we assume that  is exactly one interior angle is reentrant,i.e., such that . 

Setting , we have . For the case of -shaped domain, and .The regularity 

of the solutions of a simple elliptic problem 

                                                        (1.3) 

for the nonconvex domain has been extensively studied, see Grisvard [5, 6]. In [7], Kellogg have shown the 

regularity shift-theorem for the solution of the problem (1.3) as 

for                                    (1.4) 

where  are fractional order Sobolev spaces, see Section 2. But we can not expect such estimate (1.4) 

for  due to the singularity in the solution. A more precise analysis for the case  was presented by 

Bacutaet. al. [8] in the framework of Besov spaces. In this paper we concentrate on the fully discrete finite 

element approximations for the problem (1.1) and derive convergence properties in the  norm. 

The rest of the paper is organized as follows. In Section 2 we have presented some preliminary notations which 

will be used throughout this paper. In this section we have stated our main result for the estimates of the error 

between the solutions of the continuous and the fully discrete problem. Section 3 devoted to the proof of the 

fully discrete error estimates. There is a reduction in the convergence rate with respect to space discretization 

from optimal order to caused by the presence of singularity in the solution due to the reentrant corner in 

the domain. However a systematical mesh refinement near the corners have been introduced in this section 

which gives an improvement of the convergence rate to the optimal order. With respect to time we have 

obtained an optimal convergence of order . Numerical results are presented in Section 4. Finally, some 

concluding remarks are presented in the last section. 

 

2. NOTATIONSANDPRELIMINARIES. 

In this section, we introduce some basic preliminary notations which will be used throughout the paper. We 

denote the standard Lebesgue spaces by , with the norm . In particular, for 

, is a Hilbert space  with the norm  induced by the inner product 

. For an integer and ,  denotes the standard Sobolev space.In 

particular, for , we denote the Hilbert space  by  with the norm  (cf. [9, 10]). 

For an integer , set , , and then  denote the sobolev spaces of fractional 

order with the norm defined by 

 

.  

For a given Banach space  and for , we define 



 

340 | P a g e  

 

 

equipped with the norm 

, 

with the standard modification for . We write . 

2.1FULLY DISCRETE FINITE ELEMENT SOLUTION 

Let  be the family of quasiuniform triangulations of with , in the sense of 

Ciarlet [11] and Thomée [2]. Let thus  be the finite dimensional space corresponding to the 

triangulations  is defined by 

 

where  be the space of continuous functions on . We study the semidiscrete solution  such 

that 

(2.1) 

                                                             With     

where  is an approximation of  

We shall now turn to fully discrete schemes for the backward Euler method. Let  be the constant time step, 

 be the approximation of the exact solution in  . This method is defined by replacing the 

time derivative in  (2.1)  by a backward Euler quotient   

                                     (2.2) 

                                                             With     

We also consider the linearized version of (2.2) with replacing the term  by  in the nonlinear term 

: 

                               (2.3) 

                                                                With     

The main aim of this paper is to prove the following estimate in  norm for the error between the solutions 

of the fully discrete problem (2.2) or (2.3)  and the continuous problem (1.1). 

 

Theorem 2.1.Let  and  be the solutions of (2.2) or (2.3), and (1.1), respectively. Assume that (1.2) hold 

true. Then, under the appropriate regularity assumptions for  we have 

                       (2.4) 

For the purpose of the proof of Theorem 2.1, we introduce the so called elliptic or Ritz projection onto , 

defined by 

.                                  (2.5) 

Setting  in (2.5), it follows that the Ritz projection is stable in ,  i.e., 

. 
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We therefore have the following error estimate in this projection. 

Lemma 2.2.Let  be defined by (2.5). Then for ,  with , we have 

. 

Proof.The proof is easily follows from [1, Lemma 2.5]. 

3. PROOFOF THEOREM 2.1 

We first decompose the error in a standard way as 

                     (3.1) 

where  is defined by (2.5). In view of Lemma 2.2, the bound for   is given by 

                                                 (3.2) 

hence it only remains to estimate . From (2.2) we have using (2.5),  

 

 

 

 

or, 

(3.3) 

Therefore, choosing  and using (1.2) and (3.1), we obtain 

 

 

 

where   This yields 

 

which gives, for small  

 

by repeated application we have 

 

                                            (3.4) 

Using Lemma 2.2, we have 
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and let .  Then 

 

or, 

 

Altogether these estimates, we obtain . Again 

 

Therefore, equation (3.4) yields 

 

Altogether (3.1), (3.2)  and (3.5), shows the required estimate of  (2.4). In the same argument this estimates can 

be easily obtained for linearized modification form (2.3)(see e.g., [2, Theorem 13.3]). Hence this completes the 

proof. 

Remark 3.1.Note that, is the best possible convergence we obtain away from the nonconvex corner as 

the singularity at the reentrant corner pollutes the finite element solution everywhere in  for the case of 

globally quasiuniform mesh. However, with a systematical refinement of triangulations towards the nonconvex 

corner we obtain an optimal order convergence in norm. The refinement were introduced by 

Babu ka[12]. 

 

Further refinement towards the nonconvex corner.In order to introduce the refinement of triangulations 

systematically (cf. [1]), let  be the distance to the nonconvex corner and  for  Assume 

that, for   and 

Choose  such that , where  be the meshsize in the interior of the 

domain. Furthermore, choose  such that 

and ,   with  ,                              (3.6) 

where  be any small positive number, and  denotes the maximal meshsize on . Also let the mesh is locally 

quasiuniform on each  so that and  . The finite element triangulations for an -

shaped domain is depicted in Figure 1a. 

We now have the following auxiliary result. 

Lemma 3.2.Let  be defined by (2.5). Then with the triangulations above, satisfying (3.6), we have 

. 

Proof.Following Chatzipantelidiset. al. [1, Lemma 2.9]with , the proof is easily follows. 
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We finally show that the optimal order error bounds for Theorem 2.1 is obtained by refinement towards the 

nonconvex corner. 

Theorem 3.3.Let  and  be the solutions of (2.2) or (2.3), and (1.1), respectively. Assume that the 

triangulations underlying the  are refined as in Lemma 3.2, and (1.2) hold true. Then, under the 

appropriate regularity assumptions for , we have 

 

Proof.In view of Lemma 3.2 and following the similar argument as in the proof of Theorem 2.1, the rest of the 

proof is standard. 

4. NUMERICAL EXPERIMENTS 

In this section we perform numerical experiments of test problems to validate the theoretical rates of 

convergence (ROC). 

Example 4.1.Let us consider the problem on the L-shaped domain, : 

 

 

 

We consider the backward Euler method with  finite elements and choose the initial mesh size and 

. The ROC is given in Table 1, which shows that our numerical results gives an optimal order 

convergence which coincides with the theoretical rates of convergence. The finite element solution is depicted 

in Figure 1b. 

Table 1: ROC in  norm for Example 4.1 

h #dof   
ROC 

0.152 

0.076 

0.038 

0.019 

129 

461 

1762 

6860 

0.230134 

0.231145 

0.231187 

0.231201 

3.670431e-01 

9.600612e-02 

2.425745e-02 

5.464576e-03 

---- 

1.935 

1.984 

2.151 
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(a)                                                                           (b) 

Figure 1: (a) Finite element discretizations for the -shaped domain, further refinement made near the nonconvex corner. (b) 

Finite element solution for the -shaped domain for , , maximum value of solution= . 

5. CONCLUSIONS 

We have presented an approach for the solution of Semilinear parabolic equations in nonconvex polygonal 

domains. A priori error estimates in norms for the fully discrete case are discussed and analyzed. 

Starting from a convergence rate in norm for the nonconvex polygon, we have obtained an 

optimal order convergence with a proper mesh refinement near the re-entrant corners of the domain. 
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