International Journal of Advance Research in Science and Engineering Q
Volume No.07, Issue No.04, April 2018 IJARSE

www.ijarse.com ISSN: 2319-8354

Fully discrete Finite Element Approximations of

Semilinear Parabolic Equations in a Nonconvex Polygon

Tamal Pramanick™®

'Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati - (India)

ABSTRACT

In this paper, we consider the semilinear parabolic problems with homogeneous Dirichlet boundary conditions
in a two-dimensional nonconvex polygon. We study the fully discrete error analysis for backward Euler method
which is based on an error splitting technique. Previously, in [1], an effort has been made for problems in
nonconvex polygons mainly focused on linear models. Also in [2], Thomée has discussed the error analysis for
semilinear parabolic problems for a convex polygonal domain. A special feature in a nonconvex polygon is the
presence of singularities in the solutions generated by the corners. Due to the nonlinearity in the forcing term
and the non-smoothness of the solution in a nonconvex polygon, the analysis is not straightforward. We
establish the convergence inL= (L*}for the semidiscrete finite element solution.
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1. INTRODUCTION
The purpose of this paper is to study certain error estimates for piecewise linear finite element approximations to
solutions of the semilinear parabolic equations in a nonconvex polygonal domain. We consider the discretization
in both time and space, where the discretization with respect to space considered with piecewise linear finite
elements and in time we apply the backward Euler method.
Let £ be a bounded nonconvex polygonal domain in B with boundary 802. We restrict our attention to spatially
semidiscrete approximate solutions of the semilinear initial-boundary value problem, for u = u(x, £},

u, — A= flu)inf, t €],

u=1a0 on 90t €], (1.1)

with wu=0 infl,
wherew; denotes du/dt, the Laplacian denoted by A = £3_, 8* /éxfand J = (0.TL.T = 0, be a finite interval in
time. We assume the smooth function fon R such that

fuldl =B for ueR. (1.2)

The solution of parabolic partial differential equations in nonconvex polygonal domains is involved in many
physical applications such as heat conduction in chip design, environmental modeling, porous media flow and
modeling of complex technical engines (cf. [3]). The analysis for such PDEs and for the corresponding
numerical methods is always been a challenging research area due to the non-smoothness of the solution around

the reentrant corner of the domain. In the recent years Chatzipantelidiset. al. [1, 4] has studied the error analysis
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for linear parabolic models in a nonconvex polygon. To the best of author’s knowledge the error estimates for
the semilinear parabolic models in a nonconvex polygonal domain is introducing for the first time in the
literature.
For simplicity, we assume that « is exactly one interior angle wis reentrant,i.e., such that @ = w <X 2m,
Setting® = /e, we havel/2 <= @ == 1. For the case of L-shaped domain, w = 3w /2and# = 2/3.The regularity
of the solutions of a simple elliptic problem

—Au=f in ) with u=10 on 30, (1.3)
for the nonconvex domain has been extensively studied, see Grisvard [5, 6]. In [7], Kellogg have shown the
regularity shift-theorem for the solution of the problem (1.3) as

[e| |2 += < ClIfl|g-2+5 = CllAul |-1+sf0r0 = 5 < B, (1.4)
whereH* = H*({1) are fractional order Sobolev spaces, see Section 2. But we can not expect such estimate (1.4)
for s = £ due to the singularity in the solution. A more precise analysis for the case s = § was presented by
Bacutaet. al. [8] in the framework of Besov spaces. In this paper we concentrate on the fully discrete finite
element approximations for the problem (1.1) and derive convergence properties in the L=(L*) norm.
The rest of the paper is organized as follows. In Section 2 we have presented some preliminary notations which
will be used throughout this paper. In this section we have stated our main result for the estimates of the error
between the solutions of the continuous and the fully discrete problem. Section 3 devoted to the proof of the
fully discrete error estimates. There is a reduction in the convergence rate with respect to space discretization
from optimal order to @(h* jcaused by the presence of singularity in the solution due to the reentrant corner in
the domain. However a systematical mesh refinement near the corners have been introduced in this section
which gives an improvement of the convergence rate to the optimal order. With respect to time we have
obtained an optimal convergence of order(k}. Numerical results are presented in Section 4. Finally, some

concluding remarks are presented in the last section.

2. NOTATIONSANDPRELIMINARIES.

In this section, we introduce some basic preliminary notations which will be used throughout the paper. We
denote the standard Lebesgue spaces by LP(1),1 =p = oo, with the norm||- ||z . In particular, for
p=2L*(0)is a Hilbert space  with the norm ||-Il =1l-1lzw induced by the inner product
(u,v) = [ u(x)v{x)dx. Foraninteger m = Oand 1 < p < oo, W™ (1) denotes the standard Sobolev space.In
particular, for = 2, we denote the Hilbert space W™(f) by H™({) with the norm || - | ™y (cf. [9, 10]).
For aninteger m = 0, sets =m+ ,0 = ¢ =1, and then H* = H*(f}) denote the sobolev spaces of fractional

order with the norm defined by

2 o Fa) — gy [ |2 1/2
el = ([l [ + Zatem S S g oo ey

lz-ylz+22

For a given Banach space B and for 1 = p = o2, we define
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1O.T: B) = v : [0.7] ~ B | () € Bforalmostall ¢ € [0.T]and [ [lv(@)Iat < o}
i

equipped with the norm

llzans = (Fw@I5a) ",
with the standard modification for p = c2. We write ||v|| z om0 = vz -
2.1FULLY DISCRETE FINITE ELEMENT SOLUTION
Let J;, = {K?} be the family of quasiuniform triangulations of {lwith mMRETﬁdfﬂm{K:] = h, in the sense of
Ciarlet [11] and Thomée [2]. Let thus5y = H3(f) be the finite dimensional space corresponding to the
triangulationsT; is defined by
Sn=L{reC: y|is linear, wr e Thand ¥]zn =101
whereC = C(f1} be the space of continuous functions on fI. We study the semidiscrete solution uz: ] — S such
that
I[ul-.:_r,;};} + (Va, Vi) = (F Gy ), 1) vyeS, te].(21)
With (0} = v,
wherer;, € 55 is an approximation of .
We shall now turn to fully discrete schemes for the backward Euler method. Let & be the constant time step,
£, = nk.U" be the approximation of the exact solution u{t,Jin 5. This method is defined by replacing the
time derivative in (2.1) by a backward Euler quotient dU™ = (U™ — U™~ /k,
(U™, x) + GU V) = (FU™)x)  VWyeS, n=1, (2.2)
With U° = v,
We also consider the linearized version of (2.2) with replacing the term U™ by U™~ in the nonlinear term
Flum):
(Bu™, y) + WU Vy) = (FIU™ 1. y)  VyeS, n=1, (2.3)
With U? = v,
The main aim of this paper is to prove the following estimate in L= (L*} norm for the error between the solutions

of the fully discrete problem (2.2) or (2.3) and the continuous problem (1.1).

Theorem 2.1.Let U™ and u be the solutions of (2.2) or (2.3), and (1.1), respectively. Assume that (1.2) hold
true. Then, under the appropriate regularity assumptions for u. we have

o™ —ule )| = Cllv, —vl| + CG) (h%F +k) for B<s<1 t, €] (2.4)
For the purpose of the proof of Theorem 2.1, we introduce the so called elliptic or Ritz projectionRonto 5,
defined by

(VR Vy) = Vo, Vy) vy €5y, for ve HI(). (2.5)
Setting ¥ = Ry v in (2.5), it follows that the Ritz projection is stable in H3 (1), i.e.,
IWRyvl| = [Ivel]  wv e HE().
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We therefore have the following error estimate in this projection.
Lemma 2.2.Let B, be defined by (2.5). Then for v € H***(0) n H(), § < s = 1with C = C,, we have
[IRyw — | + RF[IV(Ryw — )| < Ch®# |lawl |-

Proof.The proof is easily follows from [1, Lemma 2.5].

3. PROOFOF THEOREM 2.1
We first decompose the error in a standard way as
U — ulty) = (U" — Rpult,)) + (Rpult,) — ult,)) = 8™ + p", (3.1)
whereR;, is defined by (2.5). In view of Lemma 2.2, the bound for o™ = p(t,) is given by
llp™I] = ch®® [laule ] -1es = CQIR, (3.2)

hence it only remains to estimate 8™. From (2.2) we have using (2.5), ¥ £ 3.
(6™ x) + (Vo™ Vy) = (U™, ) + (VU™ Vy) — (GRpu™.x) — (VR,u™Vy)
= (FWU™)y) — @l g) — (Rpu™ —ul. y) — (VRpu"Vy)
= (FW™), x) — Gl x) — (3™ x) — (Bu™ — uf.x) — (Vu™,Vy)
= (FW™) - Fu™, 1) — (@px) — (Fu™ — ul.y),
or,
(8™, ) + (V8™ Wy) = (FW™) — Fu™, ) — (Fp™x) — (Fu™ — u™, ¥).(3.3)

Therefore, choosing ¥ = #™ and using (1.2) and (3.1), we obtain
1 _ -
5 allenI|” + e[ < ¢ (Jlm —wml] + |18 + | 15w - uzl]) |67

z 2 _ 2 _ 2
< c(lle”l]” + NenIl + [13e| + |16u™ - wfl|)

2
= f:(||9“|| +Rn),

_ a2 _ 2
whereR,, =||;:r"||2 + ||5‘p“|| + ||Bu” —uFll . This yields

(1 - c ||fir“||2 = |fir“‘1||2 + CKR,,

which gives, for small &,

|f5r“‘1||2 + CkR,,

el < +co

by repeated application we have

g™l = @ +cion

2 n
||5'”|| + E’R:Z(l +Ck)™ I R;
i=1

s
= r:||9”|| +CKEP, R, for ty€]. (3.4)
Using Lemma 2.2, we have

l1271] = clw)n®,
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£

1321 = 172 — 501 = i |
t

_I-'_

p.ds|| = clu)r®,
and let w’ = du’ — HJ: Then
E
ew? = ult;) —ulty_y) — ku.(t;) = - j J (5 —tj_1)un(s)ds,
tia
or,
- i
132 — 4| = 1167 f (s — tj-s Jup (s)ds || = C(u)k.
tis

Altogether these estimates, we obtain R; = C(u)(h* + k)".8 <s < 1. Again
|18°1] =
Therefore, equation (3.4) yields

l187]| = €|lvy, —»l| + C)(F* +x).

Altogether (3.1), (3.2) and (3.5), shows the required estimate of (2.4). In the same argument this estimates can

lvp — Rvl| = [lvn — vl| + | [Rav — vl| = |lvy — vl| + CR¥ | 6wl [ - e

be easily obtained for linearized modification form (2.3)(see e.g., [2, Theorem 13.3]). Hence this completes the
proof.

Remark 3.1.Note that, @ k% }is the best possible convergence we obtain away from the nonconvex corner as
the singularity at the reentrant corner pollutes the finite element solution everywhere in I for the case of

globally quasiuniform mesh. However, with a systematical refinement of triangulations towards the nonconvex
corner we obtain an optimal order convergence @{h*}in L“‘(Lz} norm. The refinement were introduced by

Babugka[12].

Further refinement towards the nonconvex corner.In order to introduce the refinement of triangulations
systematically (cf. [1]), let €(x) be the distance to the nonconvex corner and d; = 2-1, forj = 0,1,....J. Assume
that, for j=01. 0 ={xe: df2<d(x) €430 =0, UD; U, and
N, ={xefl: d(x) = dy/2}.Choose J such that dy = kY where h be the meshsize in the interior of the
domain. Furthermore, choose v = 1/8 such that

h; = Chd ™" fandCh® = kb, = ChYE, with ¢ = 0, (3.6)
wheree be any small positive number, and h; denotes the maximal meshsize onfl;. Also let the mesh is locally
quasiuniform on each ﬂJ S0 that b = h¥and dim(5;) = Ch~?. The finite element triangulations for an L-

shaped domain is depicted in Figure 1a.

We now have the following auxiliary result.

Lemma 3.2.Let R}, be defined by (2.5). Then with the triangulations above, satisfying (3.6), we have
IRyv — vl | + 1| IV(Ryr — 01| < €h?|lawl].

Proof.Following Chatzipantelidiset. al. [1, Lemma 2.9]with s = 1, the proof is easily follows.
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We finally show that the optimal order error bounds for Theorem 2.1 is obtained by refinement towards the
nonconvex corner.
Theorem 3.3.Let /™ and u be the solutions of (2.2) or (2.3), and (1.1), respectively. Assume that the
triangulations underlying the 5, are refined as in Lemma 3.2, and (1.2) hold true. Then, under the
appropriate regularity assumptions for 1, we have
[lom = wle )| < cllvy — ol| + €0 (B2 + K.

Proof.In view of Lemma 3.2 and following the similar argument as in the proof of Theorem 2.1, the rest of the
proof is standard.
4. NUMERICAL EXPERIMENTS

In this section we perform numerical experiments of test problems to validate the theoretical rates of
convergence (ROC).

Example 4.1.Let us consider the problem on the L-shaped domain, = (0.1)* x [0.6,1)*:

u, — Au = u — u?inf) x (0,0.1],

u=70 on 80 = (0,0.1],

with ulx, v, 0) = xy inf},

We consider the backward Euler method with P, finite elements and choose the initial mesh size h = 0.152and
k= 0.02, The ROC is given in Table 1, which shows that our numerical results gives an optimal order

convergence which coincides with the theoretical rates of convergence. The finite element solution is depicted

in Figure 1b.
Table 1: ROC in L™ (L*) norm for Example 4.1
h #dof up ey, — al IL:(LJ} ROC
0.152 129 0.230134 3.670431e-01 ----
0.076 461 0.231145 9.600612e-02 1.935
0.038 1762 0.231187 2.425745e-02 1.984
0.019 6860 0.231201 5.464576e-03 2.151
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(@) (b)
Figure 1: (a) Finite element discretizations for the L-shaped domain, further refinement made near the nonconvex corner. (b)

Finite element solution for the L-shaped domain for k = 0.01%, & = 0.0Z, maximum value of solution= 0.2312.

5. CONCLUSIONS

We have presented an approach for the solution of Semilinear parabolic equations in nonconvex polygonal

domains. A priori error estimates in L**(L*Jnorms for the fully discrete case are discussed and analyzed.

Starting from a convergence rate @(h** + k)jin L™ {L*)norm for the nonconvex polygon, we have obtained an

optimal order convergence @{h* + k)with a proper mesh refinement near the re-entrant corners of the domain.
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