
 

237 | P a g e  
 

Study of Checkpoint Restore mechanism for Fault Tolerance 

in Cloud computing 

Pooja Kathalkar
1
, A. V. Deorankar

2
 

1
 Department of Computer Science and Engineering,  

Government College of Engineering Amravati (MH), India 

2
 Department of Computer Science and Engineering,  

Government College of Engineering Amravati (MH), India 

 

ABSTRACT  

 

Fault tolerance is probably one of the greatest challenges that the high performance computing community is facing 

today. As a part of this study, we understand the many faces of checkpoint / restore, the de-facto fault tolerance 

method in practice. Checkpointing is an efficient fault tolerant component that takes a snap intermittently to save 

redundant process execution in the memory in the event of task or VM failure. This is particularly valuable in spot 

instances circumstances as it save unfinished computation should in case there is process failure and the client do 

not have to pay for that. Checkpointing policies are taken occasionally at a client defined rate. On the one hand, 

checkpointing overhead instances are taken into consideration. On the other hand, the price of saving checkpoints is 

not taken into account, as the cost of saving service is insignificant in contrast to cost of VMs. In addition, it can be 

performed simultaneously with the job execution; therefore the period of time for transmitting checkpoint data is 

unnoticed as it is negligible. 

 

Keywords : Checkpoint Restore, Cloud Computing, Fault Tolerance, multi-level rollback,  VM 

 

1. Introduction 

Fault tolerance in cloud computing is a critical requisite for realtime systems, due to potentially devastating 

consequences of faults when it occurs in both heterogynous and homogeneous computing environments. The fault 

tolerance mechanism presented in this research article consists of the following mechanism: fault detector, 

checkpointing and restart mechanism, job migration and replication mechanism. To implement this design, the 

following assumptions have to be made.  



 

238 | P a g e  
 

 The datacenter is anticipated to made enough cloud resources, to circumvent VM denials as a result of 

resource disputation. The assumption is not over ambitious as the resources needed are much lesser than the 

datacenter capability.  

 At any given period, at most one host or VM can fail, which will result to job migration. It can also be 

finished or executed by its backups before another host fails.  

 Faults can either be temporary or stable and also self-regulating from one another. 

 

1.1 Process Checkpointing 

The goal of process checkpointing is to save the current state of a process. In current HPC applications, a process 

consists of many user-level or system-level threads, making it a parallel application by itself. Process checkpointing 

techniques generally use a coarse-grain locking mechanism to interrupt momentarily the execution of all the threads 

of the process, giving them a global view of its current state, and reducing the problem of saving the process state to 

a sequential problem. Independently of the tool used to create the checkpoint, we distinguish three parameters to 

characterize a process checkpoint:  

At what level of the software stack it is created; 

• How it is generated; 

• How it is stored. 

1.1.1 Saving Executive State 

The checkpoint routine, provided by the checkpointing framework, is usually a blocking call that terminates once 

the serial file representing the process checkpoint is complete. It is often beneficial, however, to be able to save the 

checkpoint in memory, or to allow the application to continue its progress in parallel with the I/O intensive part of 

the checkpoint routine. To do so, generic techniques, like process duplication at checkpoint time can be used, if 

enough memory is available on the node: the checkpoint can be made asynchronous by duplicating the entire 

process, and letting the parent process continue its execution, while the child process checkpoints and exits. This 

technique relies on the copy-on-write pages duplication capability of modern operating systems to ensure that if the 

parent process modifies a page,the child will get its own private copy, keeping the state of the process at the time of 

entering the checkpoint routine. 

1.1.2 Restoring Executive State 

When a failure has occurred, the recovery mechanism restores system state to the last checkpointed value. This is 

the fundamental idea in the tolerance of a fault within a system employing checkpoint-recovery. Ideally, the state 

will be restored to a condition before the fault occurred within the system. After the state has been restored, the 

system can continue normal execution. 

State is restored directly from the last complete snapshot, or reconstructed from the last snapshot and the 

incremental checkpoints. The concept is similar to that of a journaled file system, or even RCS(revision control 



 

239 | P a g e  
 

system), in that only the changes to a file are recorded. Thus when the file is to be loaded or restored, the original 

document is loaded, and then the specified changes are made to it. In a similar fashion, when the state is restored to a 

system which has undergone one or more incremental checkpoints, the last full checkpoint is loaded, and then 

modified according to the state changes indicated by the incremental checkpoint data. 

If the root cause of the failure did not manifest until after a checkpoint, and that cause is part of the state or input 

data, the restored system is likely to fail again. In such a case the error in the system may be latent through several 

checkpoint cycles. When the it finally activates and causes a system failure, the recovery mechanism will restore the 

state (including the error!) and execution will begin again, most likely triggering the same activation and failure. 

Thus it is in the system designers best interest to ensure that any checkpoint-recovery based system is fail fast - 

meaning errors are either tolerated, or case the system to fail immediately, with little or no incubation period. 

Such recurring failures might be addressed through multi-level rollbacks and/or algorithmic diversity. Such a system 

would detect multiple failures as described above, and recover state from checkpoint data previous to the last 

recovery point. Additionally, when the system detects such multiple failures it might switch to a different algorithm 

to perform its functionality, which may not be susceptible to the same failure modes. The system might degrade its 

performance by using a more robust, but less efficient algorithm in an attempt to provide base level functionality to 

get past the fault before switching back to the more efficient routines. 

 

1.2 Classification Of Checkpointing Schemes 

Checkpointing can be classified along various dimensions. We will start by identifying checkpoints by their scope. 

These are the typical granularities at which checkpointing schemes are developed, each with their own advantages 

and disadvantages. 

1.2.1System-Level Checkpoints 

These checkpoints are taken at the OS level. The thought behind these checkpoints is to provide fault tolerance to 

applications that are already running, but do not have any application level fault handling mechanism. We believe 

these are best suited for machines that either run a bunch of very varied application workloads and its very difficult 

for all of them to maintain checkpoints independently or have legacy applications running on them that are not 

equipped with checkpointing. The advantage of these checkpoints are that applications (and thus their developers) 

need not care about checkpointing recovery, which can be a daunting task to implement. 

1.2.2 Application-level Checkpoints 

These checkpoints are at the other extreme. They are completely application-based, and are in fact, written by the 

developers of the application. The notion behind this scheme is that the application 

 

 

 



 

240 | P a g e  
 

itself is the best judge of when and what it needs to save in order to minimize loss in the face of failure. 

Advantage(s) - In agreement with the notion, the application has precise knowledge of the state it needs to save in 

order to reconstruct following a failure. There might be large amounts of memory that need not be saved at all 

(which the system-level checkpointing schemes are not at all aware 

of),andthatcouldresultinveryefficientcheckpointing.Disadvantage(s)-Neitherare all the already running, widespread 

legacy applications equipped with checkpointing code, nor is it possible to update them to include checkpointing 

facilities.  

1.2.3 Library-level Checkpoints  

This checkpointingmechanismisalsoreferredtoascompiler-levelorruntime-level.In contrast to the two extreme 

granularities mentioned above, library-level conveniently sits at a spot neither too close to the application, nor too 

far away from it. In terms of benefits, these checkpointing schemes identify pretty closely with the application that is 

running and can do a fair bit of analysis to identify important information of an application at compile-time / 

runtime. While this seems to give the best of both worlds,one of the biggest challenges that this technique faces, is 

when to take acertain checkpoint. A typical case where timing of the checkpoint can make a huge difference, is 

when checkpoints are initiated when a process is in a loop, or is performing some 

temporarycomputationthatisverymemoryorI/Ointensive.Iftheschemehadbeena little more application aware, it would 

have prevented this by taking a checkpoint at a more appropriate time. Some example of library-level checkpointing 

are [James Plank et al. 1995], [Michael Litzkow, Todd Tannenbaum, Jim Basney and Miron Livny 1997] and [Yi-

min Wang et al. 1995]. Another way of classifying checkpoints is on the amount of data stored ateachcheckpoint 

interval. 

1.2.4 Non-Incremental (Whole) Checkpoints  

In non-incremental checkpoints, the entire memory (the bulk in any checkpoint) is saved to disk at every interval. 

This is beneficial when most of the memory is dirtied 

ineveryinterval.Mostworkloadsshowthatthisisnottruebecauseoflocality.Another advantage of this technique is that it 

is only essential that you store the latest 

checkpointondisk.Insystemswherediskspaceisverylimitedand/orcostly,thistechnique proves more cost effective than 

incremental checkpointing. The obvious disadvantage of this scheme is that entire memory needs to be written to 

disk on every interval, an inherently costly task. For intervals that are very far apart, this scheme might make sense, 

but for sub-second intervals, it is a near impossible scheme to implement. 

 

1.2.5 Incremental Checkpoints  

As the name suggests, this technique only saves the changed pages of memory (since the last checkpoint) onto disk. 

Locality aids this technique tremendously. Unlike entire checkpoints, we need to store the whole sequence of 

checkpoints taken from the start till the latest increment in order to reconstruct the system in case of failure. Due to 

this, not only is more disk space needed, but reconstruction cost is also higher than non-incremental checkpoints. 



 

241 | P a g e  
 

But, since recovery is not the common case, this technique still fares better than non-incremental checkpoints, 

especially in read-intensive workloads. Another disadvantage of this technique is that the memory is updated at 

word-granularity and memory is checkpointed at page-granularity. 

2. Related Work 

 

A survey of the literature on fault tolerant checkpointing shows that a large number of papers have been published. 

The Chandy-Lamport [1] algorithm is one of the earliest nonblocking all-process coordinated checkpointing 

algorithm for static nodes. In this algorithm, markers are sent along all channels in the network which leads to a 

message complexity of O(N2 ), and requires channels to be FIFO. 

Lai and Yang [2] proposed an algorithm. In this algorithm, when a process takes a checkpoint, it piggybacks a flag 

to the message it sends out from each channel. The receiver checks the piggybacked flag to see if there is a need to 

take a checkpoint before processing the message. If so, it takes a checkpoint before processing the message to avoid 

an inconsistency. To record the channel information, each process needs to maintain the entire message history on 

each channel as part of the local checkpoint.  

Elnozahy et al. [3] proposed an all-process nonblocking synchronous checkpointing algorithm with a message 

complexity of O(N). They use checkpoint sequence numbers to identify orphan messages, thus avoiding the need for 

processes to be blocked during checkpointing. 

Koo-Toeg [4] proposed a minimum-process coordinated checkpointing protocol which relaxes the assumption that 

all communications are atomic. It reduces the number of synchronization messages and number of checkpoints. 

Cao and Singhal [5] proposed minimum-process blocking algorithm for mobile systems. Every process maintains its 

direct dependencies in a bit array of length n for n processes. Initiator process collects the direct dependency vectors 

of all processes, computes minimum set. After that, it broadcasts the checkpoint request along with the minimum set 

to all processes. 

Kim and Park [6] proposed an improved scheme to address failures during checkpointing. It allows the new 

checkpoints in some subtrees to be committed. In the approach, a process commits its tentative checkpoint if none of 

the processes, on which it transitively depends, fails; and the consistent recovery line is advanced for those processes 

that committed their checkpoints. The initiator and other processes which transitively depend on the failed process 

have to abort their tentative checkpoints. Thus, in case of a node failure during checkpointing, total abort of the 

checkpointing is avoided. 

Neves et al. [7] gave a loosely synchronized coordinated checkpointing protocol that removes the overhead of 

synchronization. This approach assumes that the clocks at the processes are loosely synchronized. Loosely 

synchronized clocks can trigger the local checkpoints at all the processes roughly at the same time without a 

coordinator. After taking a checkpoint, a process waits for a period, which is sum of maximum time to detect a 

failure of other process in the system and the maximum deviation between clocks. It is assumed that all checkpoints 



 

242 | P a g e  
 

belonging to a particular coordination session have been taken without the need of exchanging any message. If a 

failure occurs, it is detected within the specified time and the protocol is aborted. 

L. Kumar et al. [8] proposed an all-process non-intrusive checkpointing protocol for distributed systems, where just 

one bit is piggybacked along with normal messages. This is done by incurring extra overhead of vector transfers 

during checkpointing. 

L. Kumar et. al [9] and P. Kumar et. al [64] reduced the height of the checkpointing tree and the number of useless 

checkpoints by keeping nonintrusiveness intact, at the extra cost of maintaining and collecting dependency vectors, 

computing the minimum set and broadcasting. 

Higaki and Takizawa [10] proposed a hybrid checkpointing protocol, where fixed hosts checkpoint synchronously 

and MHs checkpoint independently. Mobile stations use message logging and checkpointing, while fixed stations 

use only checkpointing, to form a consistent global state. 

In 2017, Shafi’i Muhammad Abdulhamid, Muhammad Shafie Abd Latiff proposed Checkpointed league 

championship algorithm[11] in which they develop  a fault-tolerance aware task scheduling scheme for the IaaS 

Cloud technology using a Checkpointed League Championship Algorithm (CPLCA) intelligent scheme. The task 

migration is combined with the checkpointing strategy in this scheme. The motivation being that while job migration 

can help to transfer failed jobs to any available VM, the checkpointing strategy will help to continue the execution 

from the last saved state. This will ultimately help to reduce the time taken to restart the execution from the 

beginning instead. 

3. Conclusion 

Checkpoint - Rollback is a technique which can be used to build fault tolerance into a computing system. 

This paper provide information about checkpoint Restore technique and various mechanism proposed by different 

author to enhance the performance of checkpoint restore technique.  This study throws light on process of check 

pointing and classification of check pointing schemes. 

 

 

 

References 

[1]. Chandy K. M. and Lamport L., “Distributed Snapshots: Determining Global State of Distributed Systems,” 

ACM Transaction on Computing Systems, vol. 3, No. 1, pp. 6375, February 1985. 

[2]. T.H. Lai and T.H. Yang,“ On Distributed Snapshots”, Information Processing Letters, vol. 25, pp. 153-158, 

1987. 

[3]. Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The Performance of Consistent Checkpointing,” 

Proceedings of the 11th Symposium on Reliable Distributed Systems, pp. 39-47, October 1992. 



 

243 | P a g e  
 

[4]. Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for Distributed Systems,” IEEE Trans. on 

Software Engineering, vol. 13, no. 1, pp. 23-31, January 1987 

[5]. Cao G. and Singhal M., “On the Impossibility of Minprocess Non-blocking Checkpointing and an Efficient 

Checkpointing Algorithm for Mobile Computing Systems,” Proceedings of International Conference on Parallel 

Processing, pp. 37-44, August 1998. 

[6]. J.L. Kim, T. Park, “An efficient Protocol for checkpointing Recovery in Distributed Systems,” IEEE Trans. 

Parallel and Distributed Systems, pp. 955-960, Aug. 1993. 

[7]. Neves N. and Fuchs W. K., “Adaptive Recovery for Mobile Environments,” Communications of the ACM, vol. 

40, no. 1, pp. 68-74, January 1997. 

[8]. L. Kumar, M. Misra, R.C. Joshi, “Checkpointing in Distributed Computing Systems” Book Chapter 

“Concurrency in Dependable Computing”, pp. 273-92, 2002. 

[9]. L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal checkpointing for mobile distributed systems” 

Proceedings. 19th IEEE International Conference on Data Engineering, pp 686 – 88, 2003 

[10]. Higaki H. and Takizawa M., “Checkpoint-recovery Protocol for Reliable Mobile Systems,” Trans. of 

Information processing Japan, vol. 40, no.1, pp. 236-244, Jan. 1999. 

[11]. Shafi’i Muhammad Abdulhamid, Muhammad Shafie Abd Latiff., “A checkpointed league championship 

algorithm-based cloud scheduling scheme with secure fault tolerance responsiveness”, Applied Soft Computing 

Journalhttp://dx.doi.org/10.1016/j.asoc.2017.08.048 

[12]. Saurabh Kadekodi, “Compression in Checkpointing and Fault Tolerance Systems”, . ACM Trans. Embedd. 

Comput. Syst. V, N, Article A (January YYYY), 8 pages. 

[13]. Rachit Garg, Praveen Kumar, “A Review of Fault Tolerant Checkpointing Protocols for Mobile Computing 

Systems”, International Journal of Computer Applications (0975 – 8887)  Volume 3 – No.2, June 2010. 

 

 

 

 


