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ABSTRACT:

Functionally graded materials (FGM) are most commonly used for barrier coating against large thermal
gradient. Now a day’s FG materials are replacing the composite materials because in high temperature
environment various discontinuities like cracks, unbending, delaminating etc. are accounted in composite
material. In FGM, variation of material properties are continues across the thickness and this material property
variation is obtained by three function laws that is exponential law, sigmoid law and power law and then
comparing it. In this work explores the effects of heat conduction variation in the thickness direction of the
proposed 3-layer FGM composite. Then micromechanical modeling of functionally graded thermal barrier
coating is considered to predict stresses under thermal and mechanical loading. Residual stress is calculated
for assumed FGM beam model by using mathematical tool MATLAB and than comparing the results with the

previous work and in last section see the nature of neutral shift and deflection in a assumed FGM beam model.
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1.INTRODUCTION:

Functionally graded materials (FGMs), Which are advanced multiphase composites and have a smooth spatial
variation in material. Functionally graded materials (FGMs) are made from a chemical-alloy mixture of metals
and ceramics. FGMs are useful for many engineering sectors such as the aerospace, aircraft, automobile, and
defense industries, spring and most recently the electronics and biomedical sectors.

A functionally graded material (FGM) is made from metal & ceramic. Ceramic have mechanically brittle and
good high-temperature behavior. Another may be a metal which is exhibits better mechanical and heat-transfer
properties but cannot withstand to high temperatures. But ceramic is the hotter region and metal is the cooler

region. In the high-temperature condition, the strength of the metal is reduced.
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The ceramic materials have better characteristic in heat resistance property and ceramic applications have a low
toughness. FGMs are stable in ultrahigh temperature variations or large thermal gradients & thermo-mechanical
loading. Typical examples include towers, movable arms, and antennae that can be reduced to elastic beams

with variable cross-sections, and beams used in high-performance surface and air vehicles. e.g., FGM sensors

and

Actuators, FGM metal/ceramic armor, FGM photo-detectors and FGM dental implant In “Functionally Graded

Materials” (FGMs) the material properties are varied in a particular way.
Thus, Functionally Graded Materials (FGMs) are

locally varied so that a certain variation of the local material properties is achieved. FGM is also defined as the
volure fraction of twoor more materials which are achieved continuously as a function of positional on g certain

directions of the structure.

E.g. mixture of ceramic and metal by grading the material properties in a particular manner and the effect of

interlaminate stresses developed at the interfaces of the laminated composite beam.
1.1DrawbacksofLaminatedComposites:

The laminated composite materials provide the design flexibility, stiffness and strength. The anisotropic
constitution of laminated composite structures often result in stress concentrations near material and geometric
discontinuities that can damage in the form of matrix cracking and adhesive bond separation. FGMs alleviate

these problems because of a continuous variation of material properties from one surface to other.
2. FGM Material Structure Composition:
2.1 Effective Properties of FGM:

Effective properties of FGM are obtained by basic three laws i.e. Power Law (P-FGM), Exponential Law (E-
FGM) and Sigmoid Law (S-FGM).

Material property Property related formula
Thermal conductivity (k 3(ky, — k)Y,
y (k) @ = k(14 (ky — ke )V (2)
3k, (2) + (ky + 2k)V.(2)

Modulus of elasticity (E)

E, + (B, — ED(V.(2))"" )

E(z) = E, (
E, + (B, — ED[(V.(0)" = v.(2)]

Poission’s ratio (v) v(z) = (v, —vp)V.(2) + vy

349 |Page




International Journal of Advance Research in Science and Engineering Q
Volume No.07, Special Issue No.02, April 2018
www.ijarse.com

IJARSE
ISSN: 2319-8354

a(z)
= (a, —ap)V.(2) + o

( Vo @V (2)(a — ap) (kpy — k¢) )
(kp — k)Ve(2) + kyy + (Bkpk,/4Gry)

Coefficient of thermal expansion ()

Density (p) p(2) = (p: — pp)Ve(2) + pp

Yield strength (a,,) 0, (2)=(0ye — 0,,)Ve(2) + 0y

In Table, K and G are the bulks modulus and modulus of rigidity, respectively. Also, the undefined parameters

are given by

_Et ) - Et
K= 3(1—2vt) ' G, 2(14Vt)

_ Ep . _ Ep
Gp= 21+Vy ) Kp= 3(1-2Vp )

The subscripts t and b stand for the material property at the top and bottom, respectively for the corresponding
property. t corresponds to the material property of the pure ceramic, and b corresponds to the material property

of the pure metal.
2.2 VVolume fraction distribution laws of FGMs:

In Power Law (P-FGM), a model is created that describes the function of composition throughout the material.
In Figure 3.3b, the volume fraction V., describes the volume of ceramic at any point z across, the thickness h

according to a parameter n which controls the shape of the function [44].

1 n

Ve@ = (5+3)

In the law of FGM denoted the volume fraction of metal, V, (2), in the FGM is 1-V. (z). A graphical

(3.1)

representation of volume fraction of ceramic for various values of the parameter n can be seen in Figure 3.4.

The area to the right of each line represents the amount of metal, and the area to the left represents the amount of
ceramic in the material. It should be noted that n»—0, the material approaches to a homogeneous ceramic, while
as n—oo, the material becomes entirely metal. For 0 < n ¢ oo, the metal will contain both metal and ceramic.
When n = 1, the distribution of ceramic and metal is in equal portion. According to Nakamura and Sampath
[50], the values of n should be taken in the range of (1/3, 3), as values outside this range will produce an FGM

having too much of one phase.

Table: Effect of Power Law Index (n) on the Volume Fraction

Thickness

z(m)

Power index
(n=.4)

Power index
(n=.8)

Power index
(n=1)

Power index
(n=1.8)

Power index
(n=2.8)
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015 1 1 1 1 1
.01 1 1 1 1 1
.0075 .9480 .8987 .8750 7863 .6881
.005 .8913 7944 7500 5958 4469
.0025 .8286 .6866 6250 4291 2682
0 7579 5743 .500 2892 .1436
Cerami¢ (Alumina)
0.005 /-
2 / /
- // .// .//
’ ~
Vé/// n=38
Metal (Steel) _—:: .18
=+=n=28
01 0.2 03 0:/D|ume ;J(E;C“O" VCOG 07 08 09 1
Fig. (a) Effect of power law index (n) on the volume fraction.
Table: Effect of Power Law Index (n) on the Young modulus E
Thickness | Power index | Power index | Power index | Power index | Power index | Power index
z(m) (n=.4) (n=.8) (n=1) (n=1.8) (n=2.8) (n=3.8)
.015 3.9x10™ 3.9x10™ 3.9x10™ 3.9x10™ 3.9x10M" 3.9x10M"
.01 3.9x10™ 3.9x10™ 3.9x10™ 3.9x10™ 3.9x10M" 3.9x10M"
.0075 3.80x10™ 3.71x10M" 3.67x10M" 3.51x10™ 3.338x10™ 3.18x10™
.005 3.70x10™ 3.53x10™ 3.45x10™ 3.17x10™ 2.904x10M 2.70x10™
.0025 3.59x10™ 3.33x10™ 3.22x10M 2.87x10™" 2.582x10™ 2.40x10™
0 3.46x10™ 3.13x10™ 3.00x10™ 2.61x10™" 2.358x10™ 2.22x10™
-.0025 3.31x10" 2.92x10M 2.77x10% 2.40x10M 2.2155x10" | 2.14x10™
-.005 3.13x10" 2.69x10M 2.55x10M 2.24x10M 2.137x10% 2.109x10™
-.0075 2.88x10™ 2.44x10M 2.32x10M 2.14x10" 2.105x10™ 2.1007x10™
-01 2.1x10™ 2.1x10™ 2.1x10™ 2.1x10™ 2.1x10™ 2.1x10"
-.015 2.1x10™ 2.1x10™ 2.1x10" 2.1x10™ 2.1x10" 2.1x10"
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Fig. (b) Effect of power law index (n) on the young modulus E

One of most common methods to determine the effective properties of FGM is the rule of mixtures and is given
by

P(z) = (P, = P,)V(2) + Py 3.2)

E(z) = (E;, — Ex)V.(2) + E, (3.3)

One of most common methods to determine the effective properties of FGM is the rule of mixtures and is given
by

P(z) = (P, = Py)V(2) + Py 3.2)

E(z) = (E, - E))V.(2) + E, 3.3)

Where P, and Py, represent the material property of the top and bottom respectively. P; corresponds to P, or the
material property of the pure ceramic and P, corresponds to P, or the material property of the pure metal. This
equation holds true for the modulus of elasticity, density, thermal expansion, thermal conductivity and Poisson’s

ratio.

These equations become important when determining the material properties for discrete steps in a modeling
process as current finite element software cannot handle a true functionally graded structure. The material
property for the center of the discrete layer within the beam should be determined using the above approaches
and applied to the entire layer of the FGM. Using the power law index (n), total composition of ceramic
percentage in a composite material can be determined with the help of Equation 3.4 as seen below. This
composition helps to understand the basic characteristics of materials.

Vtotal ceramic — n+1l (34)
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Another valuable parameter which can be determined from the value of n is the average material property across
the thickness. This is derived from Equation 3.2 and Equation 3.4. This expression can be used for quick

calculations treating the material as homogeneous such as solving for the volume fraction of a functionally

graded structure. The average material property can be determined as [46].

P¢—P
Paverage = :
n+1

+ P, (3.5

Another quantity that might be interested in for modeling or judging the basic properties of the material is the
point within the FGM at which the volume fraction transition from mostly metal to mostly ceramic is given as
[47].

Zransition  __ 1/ _l
i 51n 1 (36)

An engineer can use any of these values as a goal and solve for the value of n which satisfies that need in the
particular application. The value of n along with the materials used defines the characteristics of the material
composition and can be tailored to produce desired result. Structural designers requiring significant thermal
protection should consider low values of n which will yield a ceramic rich panel. Conversely the opposite holds

true for the designer who wishes to produce a structurally sound material with slightly less thermal protection.

Many researchers used Exponential Law (E-FGM) to describe the material properties of FGM. This function is
more convenient than power law because there is no need to take power index and the properties of FGM are

totally dependent on ceramic and material properties. It directly generates the young’s modulus across the

h
thickness and change according to exponential law as given below. E(z) = AePED
(3.7)

A=E, and B = %ln (—)

Ee

1, (Ecy, ,h
E(z) = Emeﬁln(Em)(”E)

Here, E.and E, represent the modulus of elasticity of top (ceramic) and bottom (metal).

Chung and Chi (2001) defined the volume fraction using two power-law functions to ensure smooth distribution

_ AN
of stresses among all the interfaces. The two power law functions are defined by:V;(z) =1 — %(h}/l izz) for

0<z<h/2B8)V() = +("22)

w2 for —h/2<z<0 (3.9)

By using rule of mixture, the Young’s modulus of the S-FGM can be calculated by:E(z) = V,(2)E, + [1 — V;(2)]E.,
for0 <z < h/2(3.10) E(z) =V,(2)E, + [1 — V,(2)]for—h/2 < z < 0(3.11)

Table: Variation of Young modulus in an S-FGM Beam across the Thickness.
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Thickness | Power index | Power index | Power index | Power index | Power index | Power index
z(m) (n=.4) (n=.8) (n=1) (n=1.8) (n=2.8) (n=3.8)
015 3.9x10™ 3.9x10™ 3.9x10™ 3.9x10™ 3.9x10M" 3.9x10M"
01 3.9x10™ 3.9x10™ 3.9x10™ 3.9x10™ 3.9x10M" 3.9x10M"
.0075 3.38x10™ 3.603x10™ 3.675x10™ 3.825x10™ 3.884x10™ 3.895x10™
.005 3.21x10™ 3.383x10™ 3.45x10™ 3.641x10" 2.770x10M 2.835x10™
.0025 3.09x10™ 3.185x10™ 3.225x10™ 3.363x10™ 2.497x10M 2.598x10™
0 3x10™ 3x10™ 3x10™ 3x10™ 3x10™ 3x10™
-.0025 2.902x10™ 2.815x10M 2.775x10M 2.636x10M 2.502x101 2.401x101
-.005 2.782x10" 2.616x10™ 2.55x10™! 2.358x10™! 2.229x10™ 2.164x10™
-.0075 2.616x10™ 2.396x10™! 2.325x10™! 2.174x10" 2.118x10™ 2.104x10™
-.01 2.1x10™ 2.1x10™ 2.1x10" 2.1x10™ 2.1x10" 2.1x10"
-.015 2.1x10™ 2.1x10™ 2.1x10" 2.1x10™ 2.1x10" 2.1x10"

Ceramig(Alumina) )
0.01 /
/

yar

% =
— -
letal (Steel) :Eii

Fig. variation of young modulus in an s-fgm beam across the thickness.

T(°C) [ K(W/mK) | E (GPa) | a x10° (LK) | oy (MPa)
0 61.8 194 11.4 420
27 60.7 204 11.6 397
100 | 578 195 12.1 381
200 | 535 204 12.7 362
300 | 49.0 193 13.3 380
400 | 445 188 13.9 359
500 | 40.2 183 14.4 313
600 | 35.7 167 14.8 284
700 | 3Ll2 141 15.0 167
800 | 273 106 14.8 72
900 | 26.0 74 12.6 44
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2.3 Consideration of Temperature Dependency of Material Properties for FGMs:

FGMs are generally used in applications where high temperature environments fields are involved. In these high
temperature environments, some material properties (thermal conductivity ( k ), coefficient of thermal expansion
(o ), modulus of elasticity ( E ), and yield strength ([1y ) are of particular pertinence to this work) become

temperature-dependent [58].

Basically two materials will be used, which are steel and alumina (Al,Oz). The thermal properties for the
materials are shown in Table 3.6 and Table 3.7. These material property data were collected from engineering

manuals, material handbooks [59], and an online database of material properties [60].

Table: Thermal properties of alumina [60]

T(°C) [ k(W/mK) | E (GPa) | ax10°(/K) | o Y (MPa)
0 50.45 415 475 459
27 42.00 408 555 455
100 | 295 393 6.86 442
200 | 2156 380 7.42 424
300 | 16.92 373 7.79 407
400 | 13.54 371 8.15 390
500 | 10.62 370 8.43 375
600 | 8.77 368 8.72 363
700 | 7.80 364 9.02 355
800 | 7.08 353 9.29 350
900 | 6.45 336 953 349

Fig. temperature dependence of the thermo-elastic properties of steel.
2.3.1 Temperature profile Modeling:

In this part present the mathematical formulation and solution of the heat conduction steady-state problem for

composite FGMs beam model under thermal loading.
2.3.1.1 One-dimensional Heat Conduction Steady-State Exact Solution for 3-Layer FGM beam:

This part considers the solution of the conduction steady-state problem in a composite beam consisting of 3
layers, which are assumed to be in prefect thermal contact. This section is a formulation to find the one

dimensional temperature distribution for a 3-layer beam with a middle FGM layer.

2.3.1.2 The mathematical formulation of heat conduction problem is given with boundary condition as:

= [+ = (hy+a)< z < -a4.1 < [2522] =0, a<z<a 4.2
dz dz dz dz
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d [k3 dT3 (Z)
dz

— =0 a<z < (athyp) 4.3

Subject to boundary and interface condition

T, =Ty at z=-(hy+a) 4.4
k1dT1(z) _ kpdT(2)

dz - dz 4.5
T1 = T2 at Z=-a 4.6
kadTa(z) _  k3dT3(2)

dz - dz 4.7 }
T,=Ts at z=a 4.8

Where kq,k, and k5 are the thermal conductivity coefficient for metal (steel), graded layer, and ceramic
(alumina).the solution to the equation (4.1-4.3) subjected to the boundary and interface condition given by Egs.(
4.4-4.8) can be found the numerically. In Special cases can results in exact solution such as when k; = k;and
ks = k, are constant throughout layers 1 and 3, while k,(z) is assumed to vary only in direction of the beam
thickness according to

ok
—.51na,z¢"ﬁ)(1—§)

ky(z) = ke 4.9

The solution of the ordinary differential equation (4.1-4.3) for each layer is given in form

Ti(2)=C1z2+C 4.10

T2(2) = Ca ()54 + C, 4.11
b

T3(2)=Csz+Cs 412

2.3.1.3 Beam Theory for Stress Calculations:

In this section, mechanical stress distribution has been determined for a three layered composite beam having a
middle layer of functionally graded material (FGM), by analytical methods. Beam is subjected to uniformly
distributed transverse loading with continuous and smooth grading of metal and ceramics based on P-FGM
Law, E-FGM Law and S-FGM Law are considered for study and Poisson ratio is to be held constant across

FGM layer. Analytical solution is based on simple Euler-Bernoulli type beam theory.
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The dimension of FGM beam of width unity and thickness h are considered, where the material property varies
continuously in thickness direction (z). FGM beams have their volume fraction of ceramics V. defined according
to the power law function, sigmoid law function and exponential law function and the volume fraction of metal

V,, is obtained as
V.(2) =1-V.(2) (4.13)

The mathematical modeling for evaluating the properties of functionally graded materials (P(z)) or P, is the
bottom layer property and P,is the top layer property, which are chosen from any of the three laws expresses as
per the Equations 3.2, 3.7, 3.9-3.11.

P(z) =P, + (P, — P)V.(2) (4.14)

The basic assumptions are derived by that laws which is:

The beam is assumed to be in a state of plane strain, it is normal to the xz plane.
Euler-Bernoulli type beam theory is applied.

There is no variation in thickness along the length of beam.

Poisson’s ratio is to be held constant along FG layer.

Material properties are independent of temperature gradient.

For a cantilever beam, the displacement field can be written as:

w (X, ) = w(X)

dw (x)

u (X, ) = Up(X) — =

In above equations, u and w are denoted as horizontal and vertical displacement of beam across the thickness. It
may be noted that u, denotes displacement of points on the middle surface of the beam along the x direction. It

is assumed that o, is negligible. Then the stress-strain relations take the form:
0,(2) = E(2)ey, 14,(2) = C(@)Va, (4.15)
Where the plane strain Young modulus is given by:

E =

1—v?2

The expressions for axial strain and stress can be derived as:

_du(xz) _ d

dw (x)
g, =50 = £ (4y(x) - 2

. ) = gy + zk,
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du d2?w(x

o=t o k==

2(z2) = E(2).e,0 + 2. E(2). k, (4.16)

O Qu Qi3 0]r1&

[azl =[Qi Q3 O l [gzl (4.17)

TXZ 0 0 Q55 ]/xz

[Qy] = [@y]

Q11=$=Q331 Q13=$, stzﬁ

Here,[Q;; Jand [Qy;] both are stiffness matrices and &, k are axial strain in the middle surface and the beam
curvature. According to Euler-Bernoulli beam theory, the axial force and bending moment, N and M, are
defined

(N, M) = f_";l[E(z). £x0 + 2. E(2). k| (1, 2)dz (4.18)

Deformation case considered the axial force resultant is zero for analytical solution so that the expressions for

the deformation take the form
COSXO + Clk =0
ClsxO + CZk = Mmaximum

Co, Cy, and C, are the coefficients of mid-plane strain and curvature. Using Equation 4.16, the axial stresses in

ceramic, metal and FGM section across the thickness of proposed model are obtained.
2.3.1.4 Temperature Profile modeling for thermal stress formulation:

When proposed FGM beam model is subjected to uniform temperature change (AT), the total strain under a
small strain assumption, can be taken as made up of elastic and thermal part. For a beam under plane strain

condition, the only non-zero stress component is o, :
o, = E(2)[ely + z. kT — a(2)AT] (4.19)

Where & is the strain at the mid-plane (z = 0) of the FGM layer and kT is the laminate curvature due to

temperature gradient. Since only thermal loading is considered here:
YFE =0, XM, =0
On the other hand

N, M) = [" 6,,(1,2)dz =0
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The axial force and bending moment in thermal gradient can be obtained as given below:
T = (aT) X7 [Qle[adi (hye — hye—1) (4.20)
MT =2 (A7) T3, [Qle el (hE — hE_p) (4.21)

Here, m is the number of lamina and in proposed model three laminas is considered. Further thermal strain, mid-

plane strain and curvature, mechanical strain and thermal stresses are calculated by below formulas:

{e"} = (AD){a}

PRI FA

{e} = {efo} + 2{k"}

{e"}={e} — {7}

{o"} = [Ql{"} (4.22)

The coefficient of thermal expansion for FGM is obtained by rule of mixture
a(z) = (ac = o) (Vo) + oy

3. PERFORMANCE EVALUATION:

The Performance Evaluation of FGM beam under Distribution of temperature in one dimension, stress
generation according to depth of mechanical and thermal loading which is performed using a formulation
presented in the previous chapter and the mathematical tool MATLAB is used for coding and generation of
graph between different properties of FGM. The beam responses are compared with earlier studies. Also a study
to determine the influence of neutral surface position on deflection of functionally graded beam under uniformly

distributed loading is presented.
3.1 Temperature Distribution:

A three layered composite system of Al,O; — FGM — Steel, Sic — FGM — C and aAl,O; — FGM—(W, Ti) C is
considered in which middle layer is FGM and other two are ceramic (Al,Os, Sic,aAl,O3) and metal (steel, C,
(W, Ti) C). Acantilever beam of 1 m length made of the composite system of thickness 0.03 m is considered.
The topmost material is ceramic (Al,Os, Sic,aAl,O3) which has a thickness of 0.005 m and the bottom layer is
metal (steel, C, (W,Ti)C). of same thickness as ceramic. In between these two layers there is an FGM layer of
0.02 m and the beam has unit width. According to Nakamura and Sampath, the value of n should be taken in the
range of [1/3,3], as values outside this range will produce an FGM having too much of one phase. Here n is
represented the grading parameter which will be taken (n=1.4) for solve the problem and FGM thickness (.02m).

First, fixed-free boundary condition is considered and beam is subjected to a uniformly distributed load (q =200
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kN/m) and there is no rise in temperature (AT = 0°C). Next, free-free boundary condition is considered and the

effect of thermal loading is studied were beam is subjected to a temperature gradient (AT = 200°C). Effect of

temperature rise/fall is considered by augmenting the thermal strain to the mechanical strain. The coefficients of

thermal expansion of FGM beam are calculated by rule of mixture from the properties of metal and ceramic are

given in Table.

Ceramic(alfa Alumina)

2(m)

3
M%\)C
,

—— Alfa Alumina & C
250

Fig. temperature distribution graph between aal,03& (W, ti) ¢ (present work)

L
50 100 150
Temperature('C)

L
200

Axial Stress distribution of three layered Composite FGM Beam across the thickness & according to the volume

fraction distributions in composite (Metal & Ceramic) and FGM beam table:

Table: Axial Stress of Three Layered Composite FGM Beam across the Thickness

Thickness | With FGM Without FGM

(z2)m Ceramic (o,) Pa | FGM (6,) | Metal (6,) | Ceramic (6,) Pa | FGM (o,) | Metal (o,)
Pa Pa Pa Pa

0.015 7.9909x10° 7.9909x10°

0.01 4.88x10° 4.88x10°

0.0075 3.24x10° | - 3.35x10°

0.005 1.66 x10° | ---- 1.83x10°

0.0025 0.255x10° | ---- .302x10°

0 -0.94x10% | - -1.22x10° -1.22x10°

-0.0025 -1.905%x10° | ---- ~1.48x10°

-0.005 -2.676x10° | - -2.301x10°
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-0.0075 -3.316x10° | - -3.13x10°
-0.01 -3.946x10° | ---- -3.946x10°
-0.015 -5.59x10° | - -5.59x10°

Fig.(a) axial stress with fgm & without fgm ( present work)

(Cerami (Alumin:

N

I
/
y

VA

Metal(Steel)

—— With FGM

—— Without FGM

1 05

15 2 25 3

0 05 1
Axial thermal Stress(Pa) <o

Fig. (a) axial thermalstress with fgm & without fgm ( present work)

3.2 Comparisons of Performance for Three Function Laws:

Properties of proposed FGM model are obtained from P, S and E function laws and the variation of young’s

modulus for three laws is presented in Figure.

TABLE : Comparisons of Axial Mechanical Stresses in Three Layered Composite FGM

) POWER LAW Sigmoid Law Exponential Law
Thickness _ _ i
Z (m) Ceramic | FGM Metal Ceramic | FGM Metal Ceramic | FGM Metal
m
(Gx) Pa (GX)Pa (Ux)Pa (Gx) Pa (Gx)Pa (Gx)Pa (Gx) Pa (GX)Pa (Gx)Pa
.015 8.09x10% | — - 7.9x10° | - - 79x10° | - -
01 5.03x10° | — — 48x10° |- — 49x10° | - —
8 3.2% 3.1x
.0075 - 3.22x10° | — - o - - . —
10 10
0.005 - 1.66x10°% | — - 1.6x - - 1.5x —
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Figure: Comparisons of Axial Thermal Stresses in Three Layered Composite FGM ( present Work)
4. CONCLUSIONS:

Functionally graded materials are good replacement of composite materials because they overcome the
unbinding type problems. These materials are commonly used in aerospace industries where the harsh
temperature is major issue. The basic properties of FGM can be obtained by any of the three function laws,
power law (P-FGM), sigmoid law (S-FGM) and exponential law (E-FGM).

In this work comparing all these function law’s and fined out that E-FGM law is better than the other two

function law. Because in FGM region, property is change continuous, not in a parabolic nature.

After that taking three FG materials and doing comparative study in relation to the heat conduction and
concluded that alumina and carbon has good head conduction because the temperature difference in their FGM

region is low than the other two FG materials.
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Generating residual stress and mechanical stress for three layer composite FGM by using a mathematical tool
MATLAB and compare the obtained results with the previous work and predict that FGM is more suitable in

thermal loading than mechanical loading.

Nature of neutral surface shift is determined for variation of power law index and also the deflection of FGM
beam with changing power law index is examined. When the power law exponent is increased the maximum

deflection of the beam is increased.
FUTURE SCOPE OF WORK

e We suggest further investigation of functionally graded beam structures with material properties

varying in directions other than through the thickness

e A further investigation regarding the techniques for estimating effective material properties of
functionally graded materials is desirable. In the graded layer of real FGMs, ceramic and metal
particles of arbitrary shapes are mixed up in arbitrary dispersion structures. Hence, the prediction of the
thermo-elastic properties is not a simple problem, but complicated due to the shape and orientation of
particles, the dispersion structure, and the volume fraction. This situation implies that the reliability of
material-property estimations becomes an important key for designing a FGM that meets the required

performance.
e  The thickness of the middle FGM can be optimized.
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