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ABSTRACT: 

Functionally graded materials (FGM) are most commonly used for barrier coating against large thermal 

gradient. Now a day’s FG materials are replacing the composite materials because in high temperature 

environment various discontinuities like cracks, unbending, delaminating etc. are accounted in composite 

material. In FGM, variation of material properties are continues across the thickness and this material property 

variation is obtained by three function laws that is exponential law, sigmoid law and power law and then 

comparing it. In this work explores the effects of heat conduction variation in the thickness direction of the 

proposed 3-layer FGM composite. Then micromechanical modeling of functionally graded thermal barrier 

coating is considered to predict stresses under thermal and mechanical loading. Residual stress is calculated 

for assumed FGM beam model by using mathematical tool MATLAB and than comparing the results with the 

previous work and in last section see the nature of neutral shift and deflection in a assumed FGM beam model.  

Keywords: 

FGM, Residual thermal stresses, function laws, heat conduction 

1.INTRODUCTION: 

Functionally graded materials (FGMs), Which are advanced multiphase composites and have a smooth spatial 

variation in material. Functionally graded materials (FGMs) are made from a chemical-alloy mixture of metals 

and ceramics. FGMs are useful for many engineering sectors such as the aerospace, aircraft, automobile, and 

defense industries, spring and most recently the electronics and biomedical sectors.  

A functionally graded material (FGM) is made from metal & ceramic. Ceramic have mechanically brittle and 

good high-temperature behavior. Another may be a metal which is exhibits better mechanical and heat-transfer 

properties but cannot withstand to high temperatures. But ceramic is the hotter region and metal is the cooler 

region. In the high-temperature condition, the strength of the metal is reduced. 
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The ceramic materials have better characteristic in heat resistance property and ceramic applications have a low 

toughness. FGMs are stable in ultrahigh temperature variations or large thermal gradients & thermo-mechanical 

loading. Typical examples include towers, movable arms, and antennae that can be reduced to elastic beams 

with variable cross-sections, and beams used in high-performance surface and air vehicles. e.g., FGM sensors 

and  

Actuators, FGM metal/ceramic armor, FGM photo-detectors and FGM dental implant In “Functionally Grad ed  

Materials” (FGMs) the material properties are varied in a particular way. 

Thus, Functionally Graded Materials (FGMs) are 

locally varied so that a certain variation of the local material properties is achieved. FGM is also defined as the 

volume   fraction of two or more materials wh i c h  are achieved continuously as a function of positional on g certain 

directions of the structure. 

E.g. mixture of ceramic and metal by grading the material properties in a particular manner and the effect of 

interlaminate stresses developed at the interfaces of the laminated composite beam. 

1.1DrawbacksofLaminatedComposites: 

The laminated composite materials provide the design flexibility, stiffness and strength. The anisotropic 

constitution of laminated composite structures often result in stress concentrations near material and geometric 

discontinuities that can damage in the form of matrix cracking and adhesive bond separation. FGMs alleviate 

these problems because of a continuous variation of material properties from one surface to other. 

2. FGM  Material Structure Composition: 

2.1 Effective Properties of FGM: 

Effective properties of FGM are obtained by basic three laws i.e. Power Law (P-FGM), Exponential Law (E-

FGM) and Sigmoid Law (S-FGM).  

Material property Property related formula 

Thermal conductivity (𝑘) 
𝑘 𝑧 =  𝑘𝑡  1 +

3 𝑘𝑏 − 𝑘𝑡 𝑉𝑚  𝑧 

3𝑘𝑡𝑉𝑚  𝑧 +  𝑘𝑏 + 2𝑘𝑡 𝑉𝑐 𝑧 
  

Modulus of elasticity 𝐸  
𝐸 𝑧 =  𝐸𝑡  

𝐸𝑡 +  𝐸𝑏 − 𝐸𝑡  𝑉𝑐 𝑧  
2/3

𝐸𝑡 +  𝐸𝑏 − 𝐸𝑡 [ 𝑉𝑐 𝑧  
2/3

− 𝑉𝑐 𝑧 ]
  

Poission’s  ratio  𝑣  𝑣 𝑧 =  𝑣𝑡 − 𝑣𝑏 𝑉𝑐 𝑧 + 𝑣𝑏  
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In Table, K and G are the bulks modulus and modulus of rigidity, respectively. Also, the undefined parameters 

are given by 

K t = 
Et 

3(1−2𝑉t  )
    ;     Gt  

= Et 

2(1+𝑉t  )
 

G b =  
Eb

2(1+Vb   )
    ;   K b = 

Eb

3(1−2Vb   )
 

The subscripts t and b stand for the material property at the top and bottom, respectively for the corresponding 

property. t corresponds to the material property of the pure ceramic, and b corresponds to the material property 

of the pure metal. 

2.2 Volume fraction distribution laws of FGMs: 

In Power Law (P-FGM), a model is created that describes the function of composition throughout the material. 

In Figure 3.3b, the volume fraction Vc, describes the volume of ceramic at any point z across, the thickness h 

according to a parameter n which controls the shape of the function [44]. 

Vc (z) =  
𝑧

ℎ
+

1

2
 
𝑛

   (3.1) 

In the law of FGM denoted the volume fraction of metal, Vm (z), in the FGM is 1-Vc (z). A graphical 

representation of volume fraction of ceramic for various values of the parameter n can be seen in Figure 3.4. 

The area to the right of each line represents the amount of metal, and the area to the left represents the amount of 

ceramic in the material. It should be noted that n→0, the material approaches to a homogeneous ceramic, while 

as n→∞, the material becomes entirely metal. For 0 ‹ n ‹ ∞, the metal will contain both metal and ceramic. 

When n = 1, the distribution of ceramic and metal is in equal portion. According to Nakamura and Sampath 

[50], the values of n should be taken in the range of (1/3, 3), as values outside this range will produce an FGM 

having too much of one phase. 

Table: Effect of Power Law Index (n) on the Volume Fraction 

Thickness 

z(m) 

Power index 

(n=.4) 

Power index 

(n=.8) 

Power index 

(n=1) 

Power index 

(n=1.8) 

Power index 

(n=2.8) 

Coefficient of thermal expansion (𝛼) 𝛼 𝑧 

=  𝛼𝑡 − 𝛼𝑏 𝑉𝑐 𝑧 + 𝛼𝑏

+  
𝑉𝑚  𝑧 𝑉𝑐 𝑧  𝛼𝑡 − 𝛼𝑏  𝑘𝑏 − 𝑘𝑡 

 𝑘𝑏 − 𝑘𝑡 𝑉𝑐 𝑧 + 𝑘𝑏 + (3𝑘𝑏𝑘𝑡/4𝐺𝑚 )
  

Density ( 𝜌 ) 𝜌 𝑧 =  𝜌𝑡 − 𝜌𝑏 𝑉𝑐 𝑧 + 𝜌𝑏  

Yield strength (𝜎𝑦) 𝜎𝑦 (z)=(𝜎𝑦𝑡 − 𝜎𝑦𝑏 )Vc z + 𝜎𝑦𝑏  
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.015 1 1 1 1 1 

.01 1 1 1 1 1 

.0075 .9480 .8987 .8750 .7863 .6881 

.005 .8913 .7944 .7500 .5958 .4469 

.0025 .8286 .6866 .6250 .4291 .2682 

0 .7579 .5743 .500 .2892 .1436 

 

Fig. (a) Effect of power law index (n) on the volume fraction. 

Table: Effect of Power Law Index (n) on the Young modulus E 

Thickness 

z(m) 

Power index 

(n=.4) 

Power index 

(n=.8) 

Power index 

(n=1) 

Power index 

(n=1.8) 

Power index 

(n=2.8) 

Power index 

(n=3.8) 

.015 3.9×10
11 

3.9×10
11 

3.9×10
11 

3.9×10
11 

3.9×10
11 

3.9×10
11 

.01 3.9×10
11

 3.9×10
11

 3.9×10
11

 3.9×10
11

 3.9×10
11

 3.9×10
11

 

.0075 3.80×10
11

 3.71×10
11

 3.67×10
11

 3.51×10
11

 3.338×10
11

 3.18×10
11

 

.005 3.70×10
11

 3.53×10
11

 3.45×10
11

 3.17×10
11

 2.904×10
11

 2.70×10
11

 

.0025 3.59×10
11

 3.33×10
11

 3.22×10
11

 2.87×10
11

 2.582×10
11

 2.40×10
11

 

0 3.46×10
11

 3.13×10
11

 3.00×10
11

 2.61×10
11

 2.358×10
11

 2.22×10
11

 

-.0025 3.31×10
11

 2.92×10
11

 2.77×10
11

 2.40×10
11

 2.2155×10
11

 2.14×10
11

 

-.005 3.13×10
11

 2.69×10
11

 2.55×10
11

 2.24×10
11

 2.137×10
11

 2.109×10
11

 

-.0075 2.88×10
11

 2.44×10
11

 2.32×10
11

 2.14×10
11

 2.105×10
11

 2.1007×10
11

 

-.01 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 

-.015 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11
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Fig. (b) Effect of power law index (n) on the young modulus E 

One of most common methods to determine the effective properties of FGM is the rule of mixtures and is given 

by 

𝑃 𝑧 =  𝑃𝑡 − 𝑃𝑏 𝑉𝑐 𝑧 + 𝑃𝑏   (3.2) 

𝐸 𝑧 =  𝐸𝑡 − 𝐸𝑏 𝑉𝑐 𝑧 + 𝐸𝑏   (3.3) 

One of most common methods to determine the effective properties of FGM is the rule of mixtures and is given 

by 

𝑃 𝑧 =  𝑃𝑡 − 𝑃𝑏 𝑉𝑐 𝑧 + 𝑃𝑏   (3.2) 

𝐸 𝑧 =  𝐸𝑡 − 𝐸𝑏 𝑉𝑐 𝑧 + 𝐸𝑏   (3.3) 

Where Pt and Pb represent the material property of the top and bottom respectively. Pt corresponds to Pc or the 

material property of the pure ceramic and Pb corresponds to Pm or the material property of the pure metal. This 

equation holds true for the modulus of elasticity, density, thermal expansion, thermal conductivity and Poisson’s 

ratio.  

These equations become important when determining the material properties for discrete steps in a modeling 

process as current finite element software cannot handle a true functionally graded structure. The material 

property for the center of the discrete layer within the beam should be determined using the above approaches 

and applied to the entire layer of the FGM. Using the power law index (n), total composition of ceramic 

percentage in a composite material can be determined with the help of Equation 3.4 as seen below. This 

composition helps to understand the basic characteristics of materials. 

𝑉𝑡𝑜𝑡𝑎𝑙 ,𝑐𝑒𝑟𝑎𝑚𝑖𝑐 =
1

𝑛+1
   (3.4) 
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Another valuable parameter which can be determined from the value of n is the average material property across 

the thickness. This is derived from Equation 3.2 and Equation 3.4. This expression can be used for quick 

calculations treating the material as homogeneous such as solving for the volume fraction of a functionally 

graded structure. The average material property can be determined as [46]. 

𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑃𝑡−𝑃𝑏

𝑛+1
+ 𝑃𝑏    (3.5) 

Another quantity that might be interested in for modeling or judging the basic properties of the material is the 

point within the FGM at which the volume fraction transition from mostly metal to mostly ceramic is given as 

[47]. 

𝑍𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

ℎ
= 0.51/𝑛 −

1

2
   (3.6) 

An engineer can use any of these values as a goal and solve for the value of n which satisfies that need in the 

particular application. The value of n along with the materials used defines the characteristics of the material 

composition and can be tailored to produce desired result. Structural designers requiring significant thermal 

protection should consider low values of n which will yield a ceramic rich panel. Conversely the opposite holds 

true for the designer who wishes to produce a structurally sound material with slightly less thermal protection. 

Many researchers used Exponential Law (E-FGM) to describe the material properties of FGM. This function is 

more convenient than power law because there is no need to take power index and the properties of FGM are 

totally dependent on ceramic and material properties. It directly generates the young’s modulus across the 

thickness and change according to exponential law as given below. 𝐸 𝑧 = 𝐴𝑒𝛽(𝑧+
ℎ

2
)
   

 (3.7) 

𝐴 = 𝐸𝑚   and 𝛽 =
1

ℎ
ln  

𝐸𝑐

𝐸𝑚
  

𝐸 𝑧 = 𝐸𝑚𝑒
1

ℎ
ln 

𝐸𝑐
𝐸𝑚

 (𝑧+
ℎ

2
)
  

Here, Ec and Em represent the modulus of elasticity of top (ceramic) and bottom (metal). 

Chung and Chi (2001) defined the volume fraction using two power-law functions to ensure smooth distribution 

of stresses among all the interfaces. The two power law functions are defined by:𝑉1 𝑧 = 1 −
1

2
 
ℎ 2 −𝑧

ℎ 2 
 
𝑛

for 

0 ≤ 𝑧 ≤ ℎ 2 (3.8)𝑉2 𝑧 =
1

2
 
ℎ 2 +𝑧

ℎ 2 
 
𝑛

        for  −ℎ 2 ≤ 𝑧 ≤ 0  (3.9) 

By using rule of mixture, the Young’s modulus of the S-FGM can be calculated by:𝐸 𝑧 = 𝑉1 𝑧 𝐸𝑐 +  1 − 𝑉1(𝑧) 𝐸𝑚   

for 0 ≤ 𝑧 ≤ ℎ 2  (3.10)          𝐸 𝑧 = 𝑉2 𝑧 𝐸𝑐 +  1 − 𝑉2 𝑧  for−ℎ 2 ≤ 𝑧 ≤ 0(3.11) 

Table: Variation of Young modulus in an S-FGM Beam across the Thickness. 



 

354 | P a g e  
 

Thickness 

z(m) 

Power index 

(n=.4) 

Power index 

(n=.8) 

Power index 

(n=1) 

Power index 

(n=1.8) 

Power index 

(n=2.8) 

Power index 

(n=3.8) 

.015 3.9×10
11 

3.9×10
11 

3.9×10
11 

3.9×10
11 

3.9×10
11 

3.9×10
11 

.01 3.9×10
11

 3.9×10
11

 3.9×10
11

 3.9×10
11

 3.9×10
11

 3.9×10
11

 

.0075 3.38×10
11

 3.603×10
11

 3.675×10
11

 3.825×10
11

 3.884×10
11

 3.895×10
11

 

.005 3.21×10
11

 3.383×10
11

 3.45×10
11

 3.641×10
11

 2.770×10
11

 2.835×10
11

 

.0025 3.09×10
11

 3.185×10
11

 3.225×10
11

 3.363×10
11

 2.497×10
11

 2.598×10
11

 

0 3×10
11

 3×10
11

 3×10
11

 3×10
11

 3×10
11

 3×10
11

 

-.0025 2.902×10
11

 2.815×10
11

 2.775×10
11

 2.636×10
11

 2.502×10
11

 2.401×10
11

 

-.005 2.782×10
11

 2.616×10
11

 2.55×10
11

 2.358×10
11

 2.229×10
11

 2.164×10
11

 

-.0075 2.616×10
11

 2.396×10
11

 2.325×10
11

 2.174×10
11

 2.118×10
11

 2.104×10
11

 

-.01 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 

-.015 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 2.1×10
11

 

 

Fig. variation of young modulus in an s-fgm beam across the thickness. 
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FGM
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T ( °C) k (W/m K) E (GPa) 10
6
 (1/K) Y(MPa) 

0 61.8 194 11.4 420 

27 60.7 204 11.6 397 

100 57.8 195 12.1 381 

200 53.5 204 12.7 362 

300 49.0 193 13.3 380 

400 44.5 188 13.9 359 

500 40.2 183 14.4 313 

600 35.7 167 14.8 284 

700 31.2 141 15.0 167 

800 27.3 106 14.8 72 

900 26.0 74 12.6 44 
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2.3 Consideration of Temperature Dependency of Material Properties for FGMs: 

FGMs are generally used in applications where high temperature environments fields are involved. In these high 

temperature environments, some material properties (thermal conductivity ( k ), coefficient of thermal expansion 

(α ), modulus of elasticity ( E ), and yield strength (Y ) are of particular pertinence to this work) become 

temperature-dependent [58]. 

Basically two materials will be used, which are steel and alumina (Al2O3). The thermal properties for the 

materials are shown in Table 3.6 and Table 3.7. These material property data were collected from engineering 

manuals, material handbooks [59], and an online database of material properties [60]. 

Table: Thermal properties of alumina [60] 

T ( °C) k (W/m K) E (GPa) 10
6
 (1/K)  Y (MPa) 

0 50.45 415 4.75 459 

27 42.00 408 5.55 455 

100 29.5 393 6.86 442 

200 21.56 380 7.42 424 

300 16.92 373 7.79 407 

400 13.54 371 8.15 390 

500 10.62 370 8.43 375 

600 8.77 368 8.72 363 

700 7.80 364 9.02 355 

800 7.08 353 9.29 350 

900 6.45 336 9.53 349 

Fig. temperature dependence of the thermo-elastic properties of steel. 

2.3.1 Temperature profile Modeling: 

In this part present the mathematical formulation and solution of the heat conduction steady-state problem for 

composite FGMs beam model under thermal loading.  

2.3.1.1 One-dimensional Heat Conduction Steady-State Exact Solution for 3-Layer FGM beam: 

This part considers the solution of the conduction steady-state problem in a composite beam consisting of 3 

layers, which are assumed to be in prefect thermal contact. This section is a formulation to find the one 

dimensional temperature distribution for a 3-layer beam with a middle FGM layer. 

2.3.1.2 The mathematical formulation of heat conduction problem is given with boundary condition as: 

𝑑

𝑑𝑧
 
𝑘1𝑑𝑇1 𝑧 

𝑑𝑧
  =0  (ℎ1+a)< z < -a4.1 

𝑑

 𝑑𝑧
 
𝑘2𝑑𝑇2 𝑧 

𝑑𝑧
 =0,  a< z < a   4.2 
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𝑑

𝑑𝑧
 
𝑘3𝑑𝑇3 𝑧 

𝑑𝑧
  =0,  a< z < (a+h2) 4.3 

Subject to boundary and interface condition  

T1 =Tb  at z = - (h1 + a) 4.4 

𝑘1𝑑𝑇1 𝑧 

𝑑𝑧
 = 

𝑘2𝑑𝑇2 𝑧 

𝑑𝑧
    4.5 

 

T1  =  T2  at z = -a  4.6 

𝑘2𝑑𝑇2 𝑧 

𝑑𝑧
   =   

𝑘3𝑑𝑇3 𝑧 

𝑑𝑧
4.7  

 

T2  =  T3   at z = a  4.8 

Where 𝑘1, 𝑘2 and 𝑘3 are the thermal conductivity coefficient for metal (steel), graded layer, and ceramic 

(alumina).the solution to the equation (4.1-4.3) subjected to the boundary and interface condition given by Eqs.( 

4.4-4.8) can be found the numerically. In Special cases can results in exact solution such as when 𝑘1 = 𝑘𝑏and 

𝑘3 =  𝑘𝑡  are constant throughout layers 1 and 3, while 𝑘2(𝑧) is assumed to vary only in direction of the beam 

thickness according to 

𝑘2(𝑧) = 𝑘𝑡𝑒
−.5ln⁡(

𝑘𝑡
𝑘𝑏

)(1−
𝑧

𝑎
 )  

   4.9 

The solution of the ordinary differential equation (4.1-4.3) for each layer is given in form 

T1 (z) = C1 z + C2    4.10 

T2 (z) = C3 (
𝑘𝑡

𝑘𝑏
)−.5𝑧/𝑎  + C4   4.11 

T3 (z) = C5 z + C6    4.12 

2.3.1.3 Beam Theory for Stress Calculations: 

In this section, mechanical stress distribution has been determined for a three layered composite beam having a 

middle layer of functionally graded material (FGM), by analytical methods. Beam is subjected to uniformly 

distributed transverse loading  with continuous and smooth grading of metal and ceramics based on P-FGM 

Law, E-FGM Law and S-FGM Law are considered for study and Poisson ratio is to be held constant across 

FGM layer. Analytical solution is based on simple Euler-Bernoulli type beam theory. 
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The dimension of FGM beam of width unity and thickness h are considered, where the material property varies 

continuously in thickness direction (z). FGM beams have their volume fraction of ceramics Vc defined according 

to the power law function, sigmoid law function and exponential law function and the volume fraction of metal 

Vm is obtained as  

𝑉𝑚  𝑧 = 1 − 𝑉𝑐(𝑧)    (4.13) 

The mathematical modeling for evaluating the properties of functionally graded materials (P(z)) or 𝑃𝑏  is the 

bottom layer property and 𝑃𝑡 is the top layer property, which are chosen from any of the three laws expresses as 

per the Equations 3.2, 3.7, 3.9-3.11. 

𝑃 𝑧 = 𝑃𝑏 +  𝑃𝑡 − 𝑃𝑏 𝑉𝑐(𝑧)   (4.14) 

The basic assumptions are derived by that laws which is: 

The beam is assumed to be in a state of plane strain, it is normal to the xz plane. 

Euler-Bernoulli type beam theory is applied. 

There is no variation in thickness along the length of beam. 

Poisson’s ratio is to be held constant along FG layer. 

Material properties are independent of temperature gradient. 

For a cantilever beam, the displacement field can be written as: 

w (x, z) = w(x) 

u (x, z) = u0(x) – z
𝑑𝑊(𝑥)

𝑑𝑥
 

In above equations, u and w are denoted as horizontal and vertical displacement of beam across the thickness. It 

may be noted that u0 denotes displacement of points on the middle surface of the beam along the x direction. It 

is assumed that σzz is negligible. Then the stress-strain relations take the form: 

𝜎𝑥 𝑧 = 𝐸 (𝑧)𝜀𝑥  , 𝜏𝑥𝑧  𝑧 = 𝐺 (𝑧)𝛾𝑥𝑧   (4.15) 

Where the plane strain Young modulus is given by: 

𝐸 =
𝐸

1−𝑣2  

The expressions for axial strain and stress can be derived as: 

𝜀𝑥 =
𝑑𝑢 (𝑥,𝑧)

𝑑𝑥
=

𝑑

𝑑𝑥
 u0 𝑥 − 𝑧

𝑑𝑊 𝑥 

𝑑𝑥
 = 𝜀𝑥0 + 𝑧𝑘𝑥   
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𝜀𝑥0 =
𝑑𝑢0

𝑑𝑥
     ,      𝑘𝑥 = −

𝑑2𝑤(𝑥)

𝑑𝑥 2  

 z 𝑧 = 𝐸  𝑧 . 𝜀𝑥0 + 𝑧. 𝐸  𝑧 . 𝑘𝑥   (4.16) 

 

𝜎𝑥
𝜎𝑧
𝜏𝑥𝑧

 =  

𝑄11 𝑄13 0
𝑄13 𝑄33 0

0 0 𝑄55

  

𝜀𝑥
𝜀𝑧
𝛾𝑥𝑧

   (4.17) 

 𝑄 𝑖𝑗  =  𝑄𝑖𝑗    

𝑄11 =
𝐸

1−𝑣2 = 𝑄33 , 𝑄13 =
𝑣𝐸

1−𝑣2, 𝑄55 =
𝐸

2(1+𝑣)
 

Here, 𝑄 𝑖𝑗  and  𝑄𝑖𝑗   both are stiffness matrices and 𝜀𝑥0, k are axial strain in the middle surface and the beam 

curvature. According to Euler-Bernoulli beam theory, the axial force and bending moment, N and M, are 

defined  

(N, M) =   𝐸  𝑧 . 𝜀𝑥0 + 𝑧. 𝐸  𝑧 . 𝑘 (1, 𝑧)𝑑𝑧
ℎ1

−ℎ1
 (4.18) 

Deformation case considered the axial force resultant is zero for analytical solution so that the expressions for 

the deformation take the form 

𝐶0𝜀𝑥0 + 𝐶1𝑘 = 0  

𝐶1𝜀𝑥0 + 𝐶2𝑘 = 𝑀𝑚𝑎𝑥𝑖𝑚𝑢𝑚   

C0, C1, and C2 are the coefficients of mid-plane strain and curvature. Using Equation 4.16, the  axial stresses in 

ceramic, metal and FGM section across the thickness of proposed model are obtained.  

2.3.1.4 Temperature Profile modeling for thermal stress formulation: 

When proposed FGM beam model is subjected to uniform temperature change (ΔT), the total strain under a 

small strain assumption, can be taken as made up of elastic and thermal part. For a beam under plane strain 

condition, the only non-zero stress component is 𝜎𝑥 :  

𝜎𝑥 = 𝐸(𝑧) 𝜀𝑥0
𝑇 + 𝑧. 𝑘𝑇 − 𝛼 𝑧 ∆𝑇   (4.19) 

Where 𝜀𝑥0
𝑇  is the strain at the mid-plane (z = 0) of the FGM layer and 𝑘𝑇  is the laminate curvature due to 

temperature gradient. Since only thermal loading is considered here: 

 𝐹𝑥 = 0,  𝑀𝑥 = 0 

On the other hand 

 𝑁,𝑀 =  𝜎𝑥𝑥  1, 𝑧 𝑑𝑧 = 0
ℎ1

−ℎ1
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The axial force and bending moment in thermal gradient can be obtained as given below: 

𝑁𝑇 =  ∆𝑇   𝑄  𝑘 𝛼 𝑘(ℎ𝑘 − ℎ𝑘−1)𝑚
𝑘=1  (4.20) 

𝑀𝑇 =
1

2
 ∆𝑇   𝑄  𝑘  𝛼 𝑘(ℎ𝑘

2 − ℎ𝑘−1
2 )𝑚

𝑘=1  (4.21) 

Here, m is the number of lamina and in proposed model three laminas is considered. Further thermal strain, mid-

plane strain and curvature, mechanical strain and thermal stresses are calculated by below formulas: 

 𝜀𝑇 = (∆𝑇) 𝛼   

 
𝜀𝑥0
𝑇

𝑘𝑇
 =  

𝐴 𝐵
𝐵 𝐷

 
−1

 𝑁
𝑇

𝑀𝑇   

 𝜀 =  𝜀𝑥0
𝑇  + 𝑧 𝑘𝑇   

 𝜀𝑀 =  𝜀 −  𝜀𝑇   

 𝜎𝑇 =  𝑄   𝜀𝑀     (4.22) 

The coefficient of thermal expansion for FGM is obtained by rule of mixture 

α z =  αc − αm  Vc + αm   

3. PERFORMANCE EVALUATION: 

The Performance Evaluation of FGM beam under Distribution of temperature in one dimension, stress 

generation according to depth of mechanical and thermal loading which is performed using a formulation 

presented in the previous chapter and the mathematical tool MATLAB is used for coding and generation of 

graph between different properties of FGM. The beam responses are compared with earlier studies. Also a study 

to determine the influence of neutral surface position on deflection of functionally graded beam under uniformly 

distributed loading is presented. 

3.1 Temperature Distribution: 

A three layered composite system of Al2O3 – FGM – Steel, Sic – FGM – C and 𝛼Al2O3 – FGM–(W, Ti) C is 

considered in which middle layer is FGM and other two are ceramic (Al2O3, Sic,𝛼Al2O3) and metal (steel, C, 

(W, Ti) C). Acantilever beam of 1 m length made of the composite system of thickness 0.03 m is considered. 

The topmost material is ceramic (Al2O3, Sic,𝛼Al2O3) which has a thickness of 0.005 m and the bottom layer is 

metal (steel, C, (W,Ti)C). of same thickness as ceramic. In between these two layers there is an FGM layer of 

0.02 m and the beam has unit width. According to Nakamura and Sampath, the value of n should be taken in the 

range of [1/3,3], as values outside this range will produce an FGM having too much of one phase. Here n is 

represented the grading parameter which will be taken (n=1.4) for solve the problem and FGM thickness (.02m). 

First, fixed-free boundary condition is considered and beam is subjected to a uniformly distributed load (q =200 
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kN/m) and there is no rise in temperature (ΔT = 0°C). Next, free-free boundary condition is considered and the 

effect of thermal loading is studied were beam is subjected to a temperature gradient (ΔT = 200°C). Effect of 

temperature rise/fall is considered by augmenting the thermal strain to the mechanical strain. The coefficients of 

thermal expansion of FGM beam are calculated by rule of mixture from the properties of metal and ceramic are 

given in Table.  

 

Fig. temperature distribution graph between αal2o3& (w, ti) c (present work) 

Axial Stress distribution of three layered Composite FGM Beam across the thickness & according to the volume 

fraction distributions in composite (Metal & Ceramic) and FGM beam table: 

Table: Axial Stress of Three Layered Composite FGM Beam across the Thickness 

Thickness 

(z)m 

With FGM Without FGM 

Ceramic (σx) Pa FGM (σx) 

Pa 

Metal (σx) 

Pa 

Ceramic (σx) Pa FGM (σx) 

Pa 

Metal (σx) 

Pa 

0.015 7.9909×10
8 

---- ---- 7.9909×10
8 

---- ---- 

0.01 4.88×10
8
 ---- ---- 4.88×10

8
 ---- ---- 

0.0075 ---- 3.24×10
8
 ---- 3.35×10

8
 ---- ---- 

0.005 ---- 1.66 ×10
8
 ---- 1.83×10

8
 ---- ---- 

0.0025 ---- 0.255×10
8
 ---- .302×10

8
 ---- ---- 

0 ---- -0.94×10
8
 ---- -1.22×10

8
 ---- -1.22×10

8
 

-0.0025 ---- -1.905×10
8
 ---- ---- ---- -1.48×10

8
 

-0.005 ---- -2.676×10
8
 ---- ---- ---- -2.301×10

8
 

0 50 100 150 200 250 300
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Temperature(°C)

T
h

ic
k

n
e

s
s

 z
(m

)

 

 

Alfa Alumina & C

Ceramic(alfa Alumina)

FGM

Metal (W,Ti)C



 

361 | P a g e  
 

-0.0075 ---- -3.316×10
8
 ---- ---- ---- -3.13×10

8
 

-0.01 ---- ---- -3.946×10
8
 ---- ---- -3.946×10

8
 

-0.015 ---- ---- -5.59×10
8
 ---- ---- -5.59×10

8
 

 

Fig.(a) axial stress with fgm & without fgm ( present work) 

 

Fig. (a) axial thermalstress with fgm & without fgm ( present work) 

3.2 Comparisons of Performance for Three Function Laws: 

Properties of proposed FGM model are obtained from P, S and E function laws and the variation of young’s 

modulus for three laws is presented in Figure. 

TABLE : Comparisons of Axial Mechanical Stresses in Three Layered Composite FGM 

Thickness 

Z  (m) 

POWER LAW Sigmoid Law Exponential Law 

Ceramic 

(σx) Pa 

FGM 

(σx)Pa 

Metal 

(σx)Pa 

Ceramic 

(σx) Pa 

FGM 

(σx)Pa 

Metal 

(σx)Pa 

Ceramic 

(σx) Pa 

FGM 

(σx)Pa 

Metal 

(σx)Pa 

.015 8.09×10
8
 – – 7.9× 10

8
 – – 7.9× 10

8
 – – 

.01 5.03×10
8
 – – 4.8× 10

8
 – – 4.9× 10

8
 – – 

.0075 – 3.22×10
8
 – – 

3.2× 

10
8
 

– – 
3.1× 

10
8
 

– 

0.005 – 1.66×10
8
 – – 1.6× – – 1.5× – 
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10
8
 10

8
 

0 – -.78×10
8
 – – 

-.94× 

10
8
 

– – 
-.87× 

10
8
 

– 

-.005 – -2.5× 10
8
 – – 

-2.6× 

10
8
 

– – 
-2.7× 

10
8
 

– 

-.0075 – -3.2× 10
8
 – – 

-3.3× 

10
8
 

– – 
-3.3× 

10
8
 

– 

.01 – – 
-3.8× 

10
8
 

– – 
-3.9× 

10
8
 

– – 
-3.9× 

10
8
 

-.0015 – – 
-5.5× 

10
8
 

– – 
-5.5× 

10
8
 

– – 
-5.5× 

10
8
 

 

Figure: Comparisons of Axial Thermal Stresses in Three Layered Composite FGM ( present Work) 

4. CONCLUSIONS: 

Functionally graded materials are good replacement of composite materials because they overcome the 

unbinding type problems. These materials are commonly used in aerospace industries where the harsh 

temperature is major issue. The basic properties of FGM can be obtained by any of the three function laws, 

power law (P-FGM), sigmoid law (S-FGM) and exponential law (E-FGM).  

In this work comparing all these function law’s and fined out that E-FGM law is better than the other two 

function law. Because in FGM region, property is change continuous, not in a parabolic nature.  

After that taking three FG materials and doing comparative study in relation to the heat conduction and 

concluded that alumina and carbon has good head conduction because the temperature difference in their FGM 

region is low than the other two FG materials. 
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Generating residual stress and mechanical stress for three layer composite FGM by using a mathematical tool 

MATLAB and compare the obtained results with the previous work and predict that FGM is more suitable in 

thermal loading than mechanical loading. 

Nature of neutral surface shift is determined for variation of power law index and also the deflection of FGM 

beam with changing power law index is examined. When the power law exponent is increased the maximum 

deflection of the beam is increased. 

FUTURE SCOPE OF WORK 

 We suggest further investigation of functionally graded beam structures with material properties 

varying in directions other than through the thickness 

 A further investigation regarding the techniques for estimating effective material properties of 

functionally graded materials is desirable. In the graded layer of real FGMs, ceramic and metal 

particles of arbitrary shapes are mixed up in arbitrary dispersion structures. Hence, the prediction of the 

thermo-elastic properties is not a simple problem, but complicated due to the shape and orientation of 

particles, the dispersion structure, and the volume fraction. This situation implies that the reliability of 

material-property estimations becomes an important key for designing a FGM that meets the required 

performance. 

 The thickness of the middle FGM can be optimized. 
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