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ABSTRACT 

The Complications in the hip replacement are often caused the failure of implants. Several experiments have 

been performed and investigated with different combination of load, cements, and implants to find the cause of 

failures. Performing the experiment several times is quite expensive and time consuming whereas mathematical 

molding is cheap and essential tool. The following study consist the Mathematical model for heat transfer, fluid 

flow, and stress distribution using sets of governing differential equations and weak form to analyze the hip 

arthoplasty. 
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Total hip replacement is the replacing hip joint with a Artificial implant called prosthesis. This surgery usually 

done in case of hip diseases like pain, trauma, arthritis, necrosis, deformity, fracture and tumors. 

The two mostly used techniques in such surgery are Cemented arthroplasty and uncemented 

arthroplasty[3].Cemented arthroplasty is mostly used technique due to its fast recovery. Even, the cement mantle 

stresses are reduces by 35-60% in intact cement-implant[1]. Even after the high success rate, still there are the 

cases of prosthesis failure or prosthesis loosening [2]. The average life span of prosthesis is around 15 years. 

This is why it leads the problems for younger patients  

To get rid of such problem several studies of acrylic bone cement were done using various combination of 

implants cements with different bone stiffness, patient weight by Yettram and Markolf (1976, [18]), and Urist 

(1975, [8,10]).A 2D finite element methods used to calculate the normal and shear stress distributions on the 

implants-cement and cement-bone interfaces. The result shows that stresses increased with the decreased 

stiffness of the stem [16]. A very less effect found due to Cement stiffness and stem shape. It was also noted that 

nerve palsy and Musculoskeletal loading are also play important role in failure. [5,6]. Moreover the failure of 

prosthesis is found to be associated with stress caused by load sharing between bone and prosthesis. Turner 

(2005, [9,11]) also according to mechanical theory, aseptic loosening is assumed to be result of cyclic stress 

generated by daily activities on the implants and hip joint assembly.[12,13] 

The Complications of the hip replacement are often caused by the distribution of mechanical stresses over the 

implant-bone. Several mathematical model of bone are investigated using nonlinear differential equations. As 

the performance and success of cemented total hip arthroplasty is related to the stress fields in the hip prosthesis 

cement mantle-bone assembly. 
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Performing the experiment several times is quite expensive and time consuming whereas mathematical molding 

is cheap and essential tool. In the following study a mathematical model is generated to study the stress 

distribution in the prosthesis-hip joint assembly.The following sets of equilibrium equations are governed the 

2D stress distribution in the artificial hip assembly. 
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And strain is different direction is given as 
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From the generalized Hook’s law for 2D plane stress condition 
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Here σij is stress tensor in different direction, εij is strain tensor, 𝑝  ij used for body forces, 𝑢  and 𝑣  are the 

displacement in x and y direction. Cij are stiffness component, ρ is density 

Using the equations (iii) to (v), equation (i) and (ii) can be rewritten as 
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Weak form of the governing differential equation using weight function W1 

 𝑊1  −
𝜕

𝜕𝑥
 𝐶11

𝜕𝑢

𝜕𝑥
+ 𝐶12

𝜕𝑣

𝜕𝑦
 −

𝜕

𝜕𝑦
 𝐶33  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
  − 𝑝11 +  𝜌

𝜕2

𝜕𝑡 2 𝑢 𝑑𝑥 𝑑𝑦 =  𝑊1  
 𝐶11

𝜕𝑢

𝜕𝑥
+ 𝐶12

𝜕𝑣

𝜕𝑦
 𝑛𝑥 +

𝑛𝑦  𝐶33  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
  

 𝑑𝑠

  (ix) 

Equation (ix) rewritten as  
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And using weight function W2 
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Equation (xi) rewritten as  

  −
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𝑊2 𝜌𝜕2𝜕𝑡2𝑣𝑑𝑥𝑑𝑦−𝑊2𝐶33𝜕𝑢𝜕𝑦+𝐶33𝜕𝑣𝜕𝑥𝑛𝑥+𝑛𝑦𝐶12𝜕𝑢𝜕𝑥+𝐶22𝜕𝑣𝜕𝑦𝑑𝑠=0   (xii) 

Displacement functions 𝑢  and 𝑣 in term of lagrangian functions given as  

u(x,y,t)=u1(t)N1(x,y)+ u2(t)N2(x,y)+ u3(t)N3(x,y)……. un(t)Nn(x,y)(  xiii) 

v(x,y,t)=v1(t)N1(x,y)+ v2(t)N2(x,y)+ v3(t)N3(x,y)……. vn(t)Nn(x,y)  (xiv) 

W(x,y,t)=W1(t)N1(x,y)+ W2(t)N2(x,y)+ W3(t)N3(x,y)……. Wn(t)Nn(x,y)  (xv) 

Above equation rewritten in form of generalized  equations 

𝑢 𝑥, 𝑦, 𝑡 =  𝑁𝑖 𝑥, 𝑦, 𝑡 𝑛
𝑖=1 𝑢𝑖 𝑡    (xvi) 

v 𝑥, 𝑦, 𝑡 =  𝑁𝑖 𝑥, 𝑦, 𝑡 𝑛
𝑖=1 𝑣𝑖 𝑡    (xvii) 

 𝑊𝑖 𝑥, 𝑦, 𝑡 =  𝑁𝑖 𝑥, 𝑦, 𝑡 𝑛
𝑖=1 𝑊𝑖 𝑡   (xviii)  

Put the equations (xvi) - (xvii) in equations (x) and (xii) and convert the resultant equations into matrix form, we 

obtain set of ordinary nonlinear differential equation 

Mü+A(u)u=P  (xix) 

Equation (xix) can be solved by any suitable solving method like MOL, GDM, DEM, QNM. 

To analyise the effect of heat transfer the following unsteady heat equation can be used 

𝜌𝐻
𝜕𝜃

𝜕𝑡
+ 𝛻.  −𝛼𝛻𝜃 = 0   (xx) 
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Here , 𝜃 used for temperature, H is heat capacity,  𝛼 is thermal conductivity, t is for time. 

Naviour-stoke and Brinkman  eqquations use for the cemented flow in the hip replacement and is governed by 

the following equation 

𝛻. 𝑢 = 0     (xxi) 

𝜌
𝜕𝑢

𝜕𝑡
− 𝛻. 𝜏𝑚 + 𝜌 𝑢. 𝛻 𝑢 + 𝛻𝑝𝑚 = 𝑝 (xxii) 

Where u is velocity of fluid,  𝑝𝑚  is the pressure, p represents force, 𝜏𝑚  shear tensor, D is deformation tensor 

Also 

𝜏𝑚 = 2𝜂𝛶𝐷 

𝐷 =
1

2
 𝛻𝑢 + (𝛻𝑢)𝑇  

To model flow in porous media Brinkman equation used 

𝛻. 𝑣 = 0  (xxiii) 

𝜌
𝜕𝑣

𝜕𝑡
− 𝛻. 𝜏𝑐 +

𝜂

𝑘
𝑣 + 𝛻𝑝𝑐 = 𝑝 (xxiii) 

The viscosity (𝜂) and shear rate (𝛶) is given as 

𝜂 = 𝑚𝛶𝑛−1 

𝛶 =  2𝑡𝑟 𝐷2  

II.CONCLUSIONS 

A set of some governing differential equations with proper boundary conditions can give a good mathematical 

model. The mathematical model, presented in this study can be solved any above mention numerical techniques 

and stress distribution and other field variables can be obtain. Although some factors are still not consider in the 

development of model. 
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