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ABSTRACT 

In this study, we present Fibonacci-type polynomials. We have used their Binet’s formula to derive the 

identities. The proofs of the main theorems are based on simple algebra and give several interesting properties 

involving them.  
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I. INTRODUCTION 

Fibonacci polynomials are a great importance in mathematics. Large classes of polynomials can be defined by 

Fibonacci-like recurrence relation and yield Fibonacci numbers [15]. Such polynomials, called the Fibonacci 

polynomials, were studied in 1883 by the Belgian Mathematician Eugene Charles Catalan and the German 

Mathematician E. Jacobsthal.  

The polynomials ( )nf x studied by Catalan are defined by the recurrence relation 

                                                   2 1( ) ( ) ( )n n nf x xf x f x                                                           (1.1) 

where 1 2( ) 1, ( )f x f x x  , and 3n  . Notice that (1)n nf F , the nth Fibonacci number.  

The Fibonacci polynomials studied by Jacobsthal were defined by 

                                                   1 2( ) ( ) ( )n n nJ x J x xJ x                                                          (1.2) 

where 1 2( ) 1 ( )J x J x  , and 3n  .  

The Pell polynomials ( )np x are defined by 

                                                 1 2( ) 2 ( ) ( )n n np x xp x p x                                                          (1.3) 

where 0 1( ) 0, ( ) 1p x p x  , and 2n  .  

The Lucas polynomials ( )nl x , originally studied in 1970 by Bicknell, are defined by  

                                                   1 2( ) ( ) ( )n n nl x xl x l x                                                              (1.4) 

where 0 1( ) 2, ( )l x l x x  , and 2n  . 
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It is well known that the Fibonacci polynomials and Lucas polynomials are closely related. Obviously, they 

have a deep relationship with the famous Fibonacci and Lucas sequences. That is (1)n nf F and (1)n nl L , 

where 
nF and 

nL are the Fibonacci and Lucas numbers. Swamy [11] defined the Fibonacci Polynomials and 

obtained some more identities for these polynomials. Hogget and Lind [17] make a similar “symbolic 

substitution” of certain sequences into the Fibonacci polynomials, they extend these results to the substitution of 

any recur rent sequence into any sequence of polynomials obeying a recurrence relation with polynomial 

coefficients. Since then many problems about the polynomials have been proposed in various issue of the 

Fibonacci Quarterly. Hoggatt, Philips and Leonard [16] have obtained some more identities involving Fibonacci 

Polynomials and Lucas polynomials. A. Lupas [3] present many interesting properties of Fibonacci and Lucas 

Polynomials. C. Berg [4] defined Fibonacci numbers and orthogonal polynomials. S. Falcon and A. Plaza [13] 

defined the k-Fibonacci polynomials are the natural extension of the k-Fibonacci numbers and many of their 

properties admit a straightforward proof and many relations for the derivatives of Fibonacci polynomials are 

proven. K. Kaygisiz and A. Sahin [10] present new generalizations of the Lucas numbers by matrix 

representation, using Generalized Lucas Polynomials. G. Y. Lee and M. Asci [8], consider the Pascal matrix and 

define a new generalization of Fibonacci polynomials called (p, q)-Fibonacci polynomials. They obtain 

combinatorial identities and by using Riordan method they get a factorizations of Pascal matrix involving (p, q)-

Fibonacci polynomials. Many authors have studied Fibonacci polynomials. Panwar, Singh and Gupta [18] 

derived many fundamental properties and sums of generalized Fibonacci Polynomials. In this paper, we present 

Fibonacci-type Polynomials by changing the initial terms and recurrence relation.  

 

II. FIBONACCI-TYPE POLYNOMIALS 

The Fibonacci-type polynomials defined by 

                               1 2( ) ( ) 2 ( ) ; 2n n ny x y x x y x n                                                            (2.1) 

with 0 1( ) 2 ( ) 2y x and y x   

First few polynomials are 

2( ) 2 4y x x   

3( ) 2 8y x x   

2

4( ) 2 12 8y x x x    

2

5( ) 2 16 24y x x x    

2 3

6( ) 2 20 48 16y x x x x     

… 
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III. PROPERTIES OF FIBONACCI-TYPE POLYNOMIALS 

1.  First Explicit Formula for Fibonacci-type polynomials 

In the 19th century, the French mathematician Binet devised two remarkable analytical formulas for the 

Fibonacci and Lucas numbers. In our case, Binet’s formula allows us to express the Fibonacci-type Polynomials 

in function of the roots 
1 2&  of the following characteristic equation, associated to the recurrence relation 

(2.1): 

                                                                   
2 2t t x                                                                   (3.1) 

 

Theorem 1:  (Binet’s formula). The nth Fibonacci-type Polynomial is given by 

                                                        

1 1

1 2

1 2

( ) 2
n n

ny x
  


 

                                                           (3.2) 

where 1 2&  are the roots of the characteristic equation (3.1) , 1 2   and  

1

1 1 8

2

x 
  and 2

1 1 8

2

x 
  . 

 

Proof: we use the Principle of Mathematical Induction (PMI) on n.  It is clear the result is true for 

0 1n and n  by hypothesis. Assume that it is true for i such that 0 1i r   , then                         

                                                                  

1 1

1 2

1 2

( ) 2
i i

iy x
  


 

 

It follows from definition of Fibonacci-type Polynomials and from equation (3.2), 

                                                

3 3

1 2
2 1

1 2

( ) ( ) 2 ( ) 2
r r

r r ry x y x x y x
 

 

 
  

 
                        (3.3) 

Thus, the formula is true for any positive integer n. 

 

Proposition 2:  For any integer 1n  ,  

                                                    

2 1

1 1 1

2 1

2 2 2

2

2

n n n

n n n

x

x

 

 

   

   
                                                                 (3.4) 

Proof: Since 1 2&  are the roots of the characteristic equation (3.1), then 

                                                        

2

1 1

2

2 2

2

2

x

x

  

  
 

now, multiplying both sides of these equations by 
1 2&n n  respectively, we obtain the desired result. 
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Theorem 3:  For any integer 1n  , 

                                                 2 1 2( ) ( ) ( ) (2x 1) ( )n n n ny x y x y x y x                                (3.5) 

Proof: By using Eq. (3.2) in the R.H.S. of Eq. (3.5) and taking in to account that 1 2 2x   , it is obtained 

 
1 1 1 1

1 2 1 2

1 2 1 2

RHS  2 2
n n n n      

 
   

 

              
1 1 2 2

1 2 1 2

2 1 1n n
     

          
        

 

                1 1

1 2 1 2

1 2

2
(2 1)n n n n x       

 
   

              

1 1

1 2 1 2

1 2 1 2

2 2 (2 1)
n n n n

x
       

     
      

            

              1 2( ) (2x 1) ( )n ny x y x      

This completes the proof. 

  

Corollary 3.1:  2 1( ) ( ) 2 ( ) (2x 1)J ( )n n n ny x y x J x x                                                (3.6)                        

 

Theorem 4:  For any integer 1n  ,    

                   
 

 

2

1 2
2

1 2

1 2

4 ;
1 8 ( )

4 ;

n n

n n

if n is even
x y x

if n is odd


  
  

  


                                (3.7) 

Proof: From the Binet’s formula of Fibonacci-type Polynomials 

                       

 
 2 2 2

1 1 1 2 22

1 2

4
( ) 2( )n n n

ny x     
 

                 

If n is even   2 2

1 1 21 8 ( ) 4( )n nx y x     

If n is odd   2 2

1 1 21 8 ( ) 4( )n nx y x       

Let us denote 
1 2( )n n   by ( )nj x .  

Then previous formula become:          2 2

11 8 ( ) 4 ( )nx y x j x                                                      (3.8) 

 

2. Catalan's Identity 

Catalan's identity for Fibonacci numbers was found in 1879 by Eugene Charles Catalan a Belgian 

mathematician who worked for the Belgian Academy of Science in the field of number theory. 
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Theorem 5: (Catalan’s identity)  
2 2

1 1 1 1( ) ( ) ( ) ( 2 ) ( )n r

n n r n r ry x y x y x x y x

                           (3.9) 

Proof: 

2

2 1 2 1 2 1 2
1 1 1

1 2 1 2 1 2

( ) ( ) ( ) 4 4
n n n r n r n r n r

n n r n ry x y x y x
   

    

         
      

         
 

                                                      

 

2 2

1 2
1 22

1 21 2

4
2 ( )

( )

r r
n

r

  
   

   
 

                                                        
2

1 2

1 2

2 2
r r

n r
x

   
   

  
  

            
2 2

1 1 1 1( ) ( ) ( ) ( 2 ) ( )n r

n n r n r ry x y x y x x y x

         

This completes the proof. 

 

Corollary 5.1: 
2 2

1 1 1( ) ( ) ( ) ( 2 ) 4 ( )n r

n n r n r ry x y x y x x J x

                                                        (3.10) 

 

3.  Cassini's Identity 

This is one of the oldest identities involving the Fibonacci numbers. It was discovered in 1680 by Jean-

Dominique Cassini a French astronomer. 

 

Theorem 6: (Cassini’s identity or Simpson’s identity)            

                         
2 1

1 2( ) ( ) ( ) ( 2 ) 4n

n n ny x y x y x x 

                                                                       (3.11) 

Proof: Taking 1r   in Catalan’s identity (3.10) the proof is completed. 

 

4.  Limit of the quotient of two consecutive terms 

A useful property in these polynomials is that the limit of the quotient of two consecutive terms is equal to the 

positive root of the corresponding characteristic equation. 

Theorem 7:  
1

1

2

( )
lim

( )

n

n
n

y x

y x






 
 

 
                                                                                              (3.12) 

Proof: By Binet’s formula (3.2), we have    
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2

11 1 2

1 1

2 1 2
2

1 1 2

1
( )

lim lim lim
( ) 1 1

n

n n

n

nn nn n n
n

y x

y x



   


 
 

     
  

     
 

   

 

and taking into account that 2

1

lim 0

n

n

 
 

 
, since 2 1  , Eq. (3.12) is obtained. 

 

Theorem 8:  If 
1

0

( )
n

n i

i

S y x



 , then 
1

2 ( )
( )

( 2 )

n
n n

y x
S y x

x


 
   

 
                                           (3.13) 

Proof: By Binet’s formula (3.2), we have    

1 2

0 1 2

2
i in

n

i

S


 


 
  

     
 

1 1

1 2

1 2 1 2

1 12

1 1

n n     
  

      
 

     
  

1 1

1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2

2

1 1

n n n n         
     

            
\ 

1

2 ( )
( )

( 2 )

n
n n

y x
S y x

x


 
   

 
 

This completes the proof. 

 

Corollary 8.1: 
11 ( )

2 ( )
( 2 )

n
n n

J x
S J x

x


  

    
  

                                                                          (3.14) 

 

IV. SUMS OF FIBONACCI-TYPE POLYNOMIALS 

In this section, we study the sums of Fibonacci-type Polynomials. This enables us to give in a straightforward 

way several formulas for the sums of such Polynomials. 

 

Theorem 9: For fixed integers , 0 1p q with q p   ,  the following equality holds  

                      ( 2) 1 ( 1) 1 1( ) ( ) ( ) ( 2 ) ( )p

p n q p p n q pn qy x j x y x x y x                                              (4.1) 
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Proof: From the Binet’s formula of Fibonacci-type and jacobsthal-Lucas 

Polynomials,  
( 1) ( 1)

1 2
( 1) 1 1 2

1 2

( ) ( ) 2
p n q p n q

n n

p p n qj x y x
   

  

  
    

  
 

                              ( 2) ( 2)

1 2 1 2 1 2

1 2

2
( )p n q p n q p pn q pn q            

  
 

                           ( 2) 1 1( ) ( 2 ) ( )p

p n q pn qy x x y x         

then,  the equality becomes, 

( 2) 1 ( 1) 1 1( ) ( ) ( ) ( 2 ) ( )p

p n q p p n q pn qy x j x y x x y x           

This completes the proof. 

 

Theorem 10: For fixed integers , 0 1p q with q p   , the following equality holds  

            
 1 ( 1) 1 1 1

1

0

( ) ( ) ( 2 ) ( ) ( )
( )

1 ( ) ( 2 )

p
n

q p n q pn q q p

pi q p
i p

y x y x x y x y x
y x

j x x

       

 



   


  
             (4.2) 

Proof: Applying Binet’s formula of generalized Fibonacci Polynomials, 

1 2
1

0 0 1 2

( ) 2
pi q pi qn n

pi q

i i

y x
 

 

 

 


 
   

                  1 2

0 01 2

2 n n
pi q pi q

i i

 

 

 
       

                    

                  
1 1 2 2

1 2 1 2

2

1 1

pn q p q pn q p q

p p

       
  
      

      

                   1 1 ( 1) 1 1

1
( 2 ) ( ) ( ) ( ) ( )

( 2 ) ( ) 1

p

pn q q p p n q qp

p

x y x y x y x y x
x j x

       
     
   

                                  

                  
 1 ( 1) 1 1 1( ) ( ) ( 2 ) ( ) ( )

1 ( ) ( 2 )

p

q p n q pn q q p

p

p

y x y x x y x y x

j x x

          


  
 

This completes the proof. 

  

Corollary 10.1: 
 ( 1)

1

0

( ) ( ) ( 2 ) ( ) ( )
( )

1 ( ) ( 2 )

p
n

q p n q pn q q p

pi q p
i p

J x J x x J x J x
y x

j x x

   

 



    
 

  
          (4.3) 
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V. CONCLUSION 

We have derived many fundamental properties in this paper. We describe sums of generalized Fibonacci-type 

Polynomials. This enables us to give in a straightforward way several formulas for the sums of such 

Polynomials. These identities can be used to develop new identities of polynomials. 
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